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PREFACE 
 

This textbook is a second part of course in introductory physics for students 

mastering science or engineering. The main objective of this part is electromagnetism, 

which involves the theory of electricity, magnetism, and  electromagnetic fields. 

The mathematical background of the student taking this course should include 

one or two semesters of calculus. A large number of examples of varying difficulty are 

presented as an aid in understanding concepts. In many cases, these examples serve as 

models for solving another problems.  

 

Electricity and Magnetism 
 

2. Electric Field in a Vacuum 
 
2.1  Electric charge 

 

Electrostatics is a science dealing with the interaction of electric charges at rest. 

The motion at velocities v<<c may also be taken into consideration. 

 In nature there are two kinds of electric charges: positive and negative. These 

definitions have been established historically. In our “common” world, the electric 

charge of a body is caused either by excess of deficiency of electrons or protons – the 

main particles of which atoms are composed, (the third fundamental particle – neutron 

has no electric charge). The electron carries the negative charge –e, the proton carries 

the positive charge +e. SI unit of e = 1.610
-19

 Coulomb. One coulomb is a charge, 

passing through the conductor’s cross-section during the unit time (1 sec) when the 

current strength equals 1A.  

 Electrons, protons and neutrons are the “bricks” of which the atoms and 

molecules of any substance are built , therefore all bodies contain electric charges. The 

charge q of a body is formed by a plurality of elementary charges, i.e.  

Neq              (1.1) 

An elementary charge is so small that macroscopic charges may be considered to have 

continuously changing magnitudes. 

 The magnitude of a charge in different inertial frames is known to be the same; 

thus, an electric charge is a relativistic invariant.  

 Electric charges can vanish and appear again. Two elementary charges of 

opposite signs always appear or vanish simultaneously. For example, an electron and 

positron meeting each other annihilate themselves giving birth to two or more gamma-

photons: e
-
+e

+
2. And vice versa, a gamma-photon getting into the field of an atomic 

nucleus transforms into a pair of particles (an electron and a positron), i.e.: e
-
+e

+
. 

 Thus, the total charge of an electrically isolated system (no charged particles can 

penetrate through the surface confining it) does not change. This statement forms the 

law of electric charge conservation. It must be noted that the law is associated with the 

relativistic invariance of a charge. Indeed, if the magnitude of a charge depended on its 

velocity, then by bringing charges of one sign into motion we would change the total 

charge of the relevant isolated system. 
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2.2  Coulomb’s law 
 

 The law describing the interaction between point charges was established 

experimentally in 1785 by Charles A. De Coulomb. A  point charge is defined as a 

charged body whose dimensions may be disregarded in comparison with the distances 

from this body to other bodies carrying electric charges. Coulomb’s law can be 

formulated as follows: the force of interaction between two stationary point charges is 

proportional to the magnitude of each of them and inversely proportional to the square 

of the distance between them; the direction of the force coincides with that of straight 

line (see Figure 1.1), connecting the charges. 

 
Figure 1.1 

 

Coulomb’s law can be expressed by the formula 

122

21
12 eF

r

qq
k


      (1.2) 

Here k is the proportionality constant which is positive, q1 and q2 is the magnitudes of 

the interacting charges, r is the distance between the charges, e12 is the unit vector 

directed from the charge q1 to q2, F12 is the force acting on the charge q1 (Figure 1.1 

corresponds to the case of like charges). 

 The force F21 differs from F12 in its sign. Experiments show that the force of 

interaction between two charges does not change if other charges are placed near them. 

Assume that we have the charge q and, in addition N other charges q1, q2, …, qN. Then, 

the resultant force F with which N charges qi act on the charge q can be expressed by  

     



N

i
i

1

FF ,      (1.3) 

where Fi is the force with which the charge qi acts on the charge q in the absence of the 

other N-1 charges. The formula (1.3) is the sequence of the field superposition 

principles. 

 Experimental facts show that Coulomb’s law holds for distances from 10
-15

 m up 

to, at least, several kilometers. In terms of the SI-units, the formula (1.2) can be written 

as 122

21

0
12

4

1
eF 







r

qq
    (1.4) 

The quantity 0 is called the electric constant, 0 = 8.8510
-12

 F/m. 

 

2.3  Electric Field Strength 
 

To describe and characterize the properties of space surrounding an electric 

charge the notion of electric field was introduced. An electrostatic field is characterized 

by the quantity E called the electric field strength. The force F acting upon an electric 

charge q located in an electrostatic field is 

EF q       (1.5) 

q q

r

e12
F F12 21

1 2
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Comparing (1.5) and (1.4) we come to a conclusion that the electric field strength 

produced by a point charge q at a distance r is equal (absolute magnitude) to  

2
04 r

q
E


      (1.6) 

In the vector form, Equation (1.6) can be expressed by  

2
04 r

q r




e
E  (see Figure 1.2)    (1.7) 

 We have already mentioned that the force with which a system of charges acts 

on a charge not belonging to the system equals the vector sum of the forces which each 

of the charges of the system exerts separately on the given charge (see Equation 1.3). 

Hence, if follows that the field strength of a system of charges equals the vector sum of 

the field strengths that would be produced by each of the charges of the system 

 

 
                                             Figure 1.2 (q is positive) 

 

separately:  

 i
EE      (1.8) 

This statement is called the principle of electric field superposition. 

 

2.4  Gauss’ Theorem 
 

The flux of an electric field strength vector through a closed surface equals the 

algebraic sum of the charges enclosed by this surface divided by , i.e. 






)(0

1

i
iqsdE     (1.9) 

This statement is known as Gauss’ theorem. 

 When considering fields set up by macroscopic charges (i.e. charges formed by 

an enormous number of elementary charges), it is conventional to describe their 

distribution in space continuously, with a finite density. The volume density of a charge 

 is determined as the ratio of the charge dq to the infinitely small (physically) volume 

dV containing this charge: 

dV

dq
     (1.10) 

An infinitely small (physically) volume is the volume which on the one hand is 

sufficiently small for the density within its limits to be considered identical, and on the 

other hand is sufficiently great for the discreteness of the charge not manifest itself. 

q

r

q
t

er

F
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Thus, replacing the surface integral in Equation (1.9) with a volume one in accordance 

with Stokes’ theorem, we have 

 




V V

dVdVE
0

1
    (1.11) 

This relation holds for any arbitrary chosen volume V. Hence,  





0

1
E       (1.12) 

Equation (1.12) expresses Gauss’ theorem in the differential form. 

 

 

2.5  Calculating fields with the aid of Gauss’ theorem 
 

Using Gauss’ theorem it is rather easy to calculate the electric field 
strength produced by the charged bodies with some kind of symmetry. 
 

2.5.1 Field of an uniformly charged ball 
 

As an example, let us calculate the electric field strength inside and 
outside of a uniformly charged ball.  

 
 

Figure 1.3. (radius R, volume charge density  is 

positive) 

 

It is quite obvious that the electric field at every 

point is directed along the radius vector (the electric 

field has a spherical symmetry). A glance at the 

Figure 1.3 shows that for every arbitrary spherical 

surface S inside the ball, we can write Gauss’ 

theorem as follows: 

   


 3

0 3

41
rEdS  

(directions of E and ds coincide), or 


 3

0

2

3

41
4 rrE  which leads to 

rE 



03

1
      (1.13) 

or taking into consideration that 
334 R

q


  (q is the total charge of the ball), we have 

3
04 R

rq
E




 ,    r < R     (1.14) 

For the distance r > R,                     
2

04 r

q
E


      (1.15) 

The result is shown in Figure 1.4 (We recommend our readers to make the necessary 

calculations). 

R

rS
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Figure 1.4. Electric field strength produced by the uniformly charged ball 

 

 

2.5.2 Field of an Infinite, Homogeneously Charged Plane 
 

If a charge is concentrated in a thin surface layer of the body carrying the 

charge, a quantity called the surface density  is usually used.    

dS

dq
       (1.16) 

Here, dq is the charge contained in the layer of area dS. 

 Assume that the surface charge density at all points of a plane (see Figure 1.5) is 

identical and equal to . Let us imagine a cylindrical surface with generatrices 

perpendicular to the plane and bases S arranged 

symmetrically relative to the plane, see Figure 1.5. 

It follows from the consideration of symmetry that 

the field strength at any point is directed at right 

angles to the plane. Indeed, since the plane is infinite 

and homogeneously charged, there is no reason why 

the vector E should deflect to a side from a normal to 

the plane. It is further evident that at points 

symmetrical relative to the plane, the field strength is 

identical in magnitude and opposite in direction. 

Thus, we can write 

0

2





S
SE    (1.17) 

Whence,  

02


E     (1.18) 

The result does not depend on the length of the cylinder. So, the 

magnitude of the field strength is the same at any point. The field 

strength within two parallel infinite planes (see Figure 1.6) carrying 

opposite charges with a constant surface density  identical in 

magnitude can be found by superposition of the fields produced by 

each plane separately. 

Obviously, inside the planes E = E+ + E- 

0


E     (1.19) 

Outside the planes E equals zero. 

 

q

4R0
2

E

rR0

 

E = +



__
20

E = 
__

20

       Figure 1.5.  

Figure 1.6 
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2.6  Potential 
 

Let us consider the field produced by a stationary point charge q (see Figure 

1.7). At any place of this field, the point charge q'  experiences the force 

rr F
r

qq
ereF )(

4

1

2
0





    (1.20) 

Here, F(r) is the magnitude of a force, and er is the unit vector. The force (1.20) is a 

central one. A central force field is known to be conservative. Hence, the work done by 

the field on the charge q'  when it moves from one point to another does not depend on 

the path. This work can be written as follows: 

 
2

1

12 )( dlerrFA     (1.21) 

Here, dl is the elementary displacement of the charge q'. The scalar product erdl equals 

the increment dr of the magnitude of the position vector r. 

 
Figure 1.7 

 

The equation (1.21) can be written in the form: 


2

1

12
)( drrFA     (1.22) 

Calculating the integral we have 








 






210

12
4

1

r

qq

r

qq
A     (1.23) 

 The work done by the conservative force is known to be expressed as a 

decrement of the potential energy: 

2112
WWA       (1.24) 

A comparison of Equations (1.23) and (1.24) leads to the following expression for the 

potential energy of the charge q' in the field of the charge q: 

const
4

1

0








r

qq
W     (1.25) 

Obviously, when r, W0, we get  

r

qq
W







04

1
     (1.26) 

.
.

.

.{
1

2

q

r r

r

1

2
er

dr
dl

q'

F
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The quantity = W/q'  is called the field potential at a given point, and it is used 

together with the field strength E to describe electric field. So, the potential produced by 

a point charge q at a distance r is  

r

q





04

1
     (1.27) 

 Using the superposition principle we get: 








N

i i

i

r

q

104

1
     (1.28) 

The equation (1.28) signifies that the potential of the field produced by a system of 

charges equals the algebraic sum of the potentials produced by each of the charges 

separately. Whereas, the field strengths are added vectorially in the superposition of 

fields, the potentials are added algebraically. This is why it is usually more convenient 

to calculate the potentials than the electric field strengths. The work of the field forces 

on the charge q can be expressed as follows: 

)(
2112

 qA      (1.29) 

If the charge q is removed from a point having the potential  to infinity, then 




qA      (1.30) 

Hence, the potential numerically equals the work done by the forces of a field on a unit 

positive point charge when the latter is removed from the given point to infinity. Work 

of the same magnitude must be done against the electric field forces to move a unit 

positive point of a field. Equation (1.30) can be used to establish the units of potential. 

The SI unit of potential called the volt (V) is taken equal to the potential at a point when 

work of 1 joule has to be done to move a charge of 1 coulomb from infinity to this point 

1J = 1C1V. Whence,  

1C

1J
V1        (1.31) 

 

2.7 Relations between the electric field strength and potential 
 

This relation can be easily established using the relevant relation between the 

force and potential energy of conservative fields.  

WW  gradF       (1.32) 

For a charged particle in an electrostatic field, we have F=qE and W=q. Introducing 

these values into equation (1.32), we find that 

       gradE       (1.33) 

when an electric charge moves along the closed path, the work done is zero 




 0lE dqA      (1.34) 

The quantity 


lEd  is called the circulation of an electrostatic field. 

0


lEd      (1.35) 

Let us take an arbitrary surface S resting on contour  (see Figure 1.8).  

According to Stokes’ theorem, the integral of curl E taken over this surface equals the 

circulation of the vector E around contour : 
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Figure 1.9 

 




 lEddSE

S

][   (1.37) 

Since the circulation equals zero, then 

0][ 

S

dSE                              (1.38) 

  This condition holds for any surface S rested on 

arbitrary contour . This is possible only if the curl of 

the vector E at every point of the electrostatic field 

equals zero: 

                                           0][ E                                         (1.39 )                              

  

2.8 Equipotential Surfaces and Strength Lines 
 

Graphically an electrostatic field can be characterized by the equipotential 

surfaces and strength lines. An imaginary surface all of whose points have the same 

potential is called the equipotential surface. Its equation has the form: 

(x, y, z) = const     (1.40) 

The strength lines are imaginary lines drawn in such a way that a tangent to them at 

every point coincides with the direction of vector E. The density of the lines is selected 

so that their number passing through a unit area at right angles to the lines, equals the 

numerical value of vector E. Thus, the potential does not change in movement along an 

equipotential surface over the distance dl (d). Hence, the tangential component of 

vector E equals zero: 

0





l
E

l
      (1.41) 

The vector E at every point is directed along a normal to the equipotential surface 

passing through the given point. Thus, we can conclude that the field lines at every 

point are orthogonal to the equipotential surfaces. As an 

example, in Figure 1.9 the equipotential surfaces and 

strength lines of a dipole are shown. 

When an uncharged conductor is placed into an 

electrostatic field, its electric charges begin to move till 

the state of equilibrium is established. The positive 

charges are displaced in the direction of the external field, 

the negative – in the opposite direction. As a result, 

charges of opposite signs called the induced charges 

appear at the ends of the conductor (see Figure 1.10). 

The charge carriers will be redistributed until the resultant 

field inside the conductor equals zero, i.e. the strength of 

the field inside the conductor vanishes and the field lines 

outside the conductor are perpendicular to its surface 

(obviously, the conductor’s surface is an equipotential 

one). Thus, a neutral conductor placed into an electric 

field disrupts part of the field lines – they terminate on the 

negative induced charges and begin again on the positive 

one. 

 



S

+- + +
+

+
++

-
-
-
-
-

-

E (external field)

Figure 1.10 

+ -

Figure 1.8 
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1.9. Capacitance 
 

If a conductor is isolated, i.e. the other bodies are very far from it, 

then the experiments show that the charge and potential of the conductor 

are proportional one another.  

Cq      (1.42) 

A quantity  




q
C       (1.43) 

is called the capacitance. In accordance with Equation (1.43), it follows 

that the capacitance numerically equals the charge which when imparted to 

a conductor increases its potential by unity (1V). SI-unit of capacitance is a 

farad (F). The farad is a very big unit. Indeed, an isolated sphere having a 

radius of 910
9
 m, i.e. a radius 1500 times greater than that of the Earth, 

would have the capacitance of 1 F. For this reason, submultiples of farad 

are used in practice – the millifarad (mF), microfarad (F), nanofarad (nF), 

and picofarad (pF). 

 Isolated conductors have a small capacitance. However, such devices 

are needed in practice which with a low potential relative to the 

surrounding bodies would accumulate charges of an appreciable 

magnitude. Such devices, called capacitors, are based on the fact that the 

capacitance of a conductor increases when other bodies are brought close to 

it. This in its turn is due to the fact that induced charges of the sign opposite 

to that of the conductor will be closer to the conductor than charges of the 

same sign, thus diminishing the conductor’s potential and in accordance 

with equation (1.43) increasing its capacitance. Capacitors are made in the 

form of two conductors placed close to each other. The conductors forming 

a capacitor are called its plates, which can be made in the form of two 

plates, two coaxial cylinders, and two concentric spheres. Accordingly, 

they are called parallel-plate, cylindrical, and spherical capacitors. The 

electrostatic field is confined inside a capacitor. The strength (in general 

case, the electric displacement (see section 2)) lines begin on one plate and 

finish on the other. Consequently, the charges produced on the plates have 

the same magnitude and are opposite in sign. 

 The basic characteristic of a capacitor is its capacitance, by which is 

meant a quantity proportional to the charge q and inversely proportional to 

the potential difference between the plates: 

21 


q
C      (1.44) 
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 The potential difference  is called the voltage across the 

relevant plates. We shall use the symbol U to designate the voltage. Hence, 

equation (1.44) can be written as follows: 

U

q
C   

 The magnitude of capacitance is determined by the geometry of the 

capacitor (the shape and dimensions of plates and their separation 

distance), and also by the dielectric properties of the medium between the 

plates, which is characterized by the permittivity () (see section 2). 

 The capacitance of a parallel-plate capacitor is 

d

S
C


 0      (1.45) 

where S is the area of a plate, d is the separation distance of the plates. For 

example the capacitance of a cylindrical capacitor  

)/ln(

2

12

0

RR

l
C


     (1.46) 

where l is the length of the capacitor, R1 and R2 are the radii of the internal 

and external plates. The capacitance of a spherical capacitor is 

12

21
04

RR

RR
C


        (1.47) 

where R1 and R2 are the radii of the internal and external plates. 

 Capacitors can be connected in parallel; in this case the voltage 

across the both capacitors is the same, so: UCq
11

 , UCq
22

 , or 

CUUCCqqq  )(
2121

, hence 

21
CCC                                 (1.48) 

For some capacitors: 

 i
CC      (1.49) 

 

 When two capacitors are connected in series, then the magnitude of 

charges on the plates is the same, so: 
1

1
C

q
U  ; 

2

2
C

q
U  ; 

C

q
q

CC
UUU  )

11
(

21
21 , hence 

21

111

CCC
      (1.50) 

For several capacitors:  


iCC

11
      (1.51) 
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1.10 Interaction Energy of a System of Charges 
 

In accordance with equation (1.19), the interaction energy of a 

system of charged particles can be written in the form: 


 



)( 04

1

2

1

ki ik

ki

r

qq
W ,    (1.52) 

where rik is the distance between the qi and qk charges. The factor “1/2” is 

necessary in order not to take into account the Wik two times. Equation 

(1.52) can be rewritten as follows: 

 
 



)( 1 04

1

2

1

i k ik

k
i

r

q
qW     (1.53) 

The expression  






104

1

k ik

k
i

r

q
      (1.54) 

describes the potential produced by all the charges except qi at the point 

where the charge qi is located. Thus, we get the interaction energy in the 

form: 





N

i
iiqW

12

1
     (1.55) 

 

1.11 Energy of a Charged Conductor 
 

The charge q on a conductor can be considered as a system of point 

charges qi. The surface of a conductor is equipotential. Thus, having in 

mind the expression (1.46) we can write 

222

1 22 


C

C

q
qW      (1.56) 

 

1.12 Energy of a Charged Capacitor 
 

Assume the potential of a capacitor plate carrying the charge +q is 

1, and that of a plate carrying the charge –q is 2. Then, using the 

expression (1.55) we get  
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                          (1.57) 

Having in mind that U/d=E, Sd=V and the capacitance of a parallel-plate 

capacitor 
d

S
C


 0 , we can rewrite the equation (1.57) in the form 
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0 ,     (1.58) 

where, the energy density 

2

2
0 E

      (1.59) 

Equation (1.59) holds everywhere. 

 

Examples 
 

Problem 1. 
Determine the strength of the electric field generated by a straight piece of string 

carrying an electric charge with a linear density , at a point O that is r0 distant from the 

string. The angles and  are specified (Figure 1). 

Solution: The field is not symmetric. It is extremely difficult to enclose a piece of string 

with a surface using which it would be fairly easy to calculate, via Gauss law, the flux 

of vector E. We partition the string into segments so small that the charge carried by 

each can be considered point-like. We select one such segment of length dl carrying a 

charge dQ=dl (Figure 1).  

    At point O the field generated by this charge has a strength of  
 

2
0

2
0 44 rπε

γdl

rπε

dQ
dE      (2) 

From triangle ADO we get 

α/rr cos0  

Since |AC| = rd= r0d/cos, we find that triangle ABC yields 

      2
0 cos//cos|AC|dl dr  

Substituting the values of r and dl into Eq. 2, we get  

004π

d
dE

r


       (3) 

The projections of vector dE on the X and Y axes are 

00
x

4π

dcos
dE

r


     

 (4) 

00
y

4π

dsin
dE

r


     

 (5) 

Integrating 4 and 5 we find the projections (or 

components) of the sought vector E on the X and Y 

axes: 

)sin(sin
4π4π
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dE 21
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Figure 1. 
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    (7) 

Clearly, the field generated by a charged infinitely straight string, constitutes a 

particular case of the field generated by a piece of charged straight string. Indeed, for 

and Eq. 6 and 7 yield Ex=r0 and Ey=0.   

 

Problem 2. 
An infinitely long string uniformly charged with a linear density 1=+310

-7 
C/m and a 

segment of length l = 20 cm uniformly charged with a linear density 2=+210
-7

 C/m lie 

in a plane at right angles to each other and separated by a distance r0=10 cm. Determine 

the force with which these two bodies interact. 

Solution: Two objects constitute the physical system, the infinitely long string and the 

segment. Neither of the two can be considered a particle. The physical phenomenon 

consists of the effect that the field of the string has on the charge of the segment. We 

wish to find the force of this interaction. The charge Q2 = 2l carried by the segment is 

positioned in the electric field of the string, which is known. 

It would seem that to find the force acting on the charge we need only use the formula 

F = Q2E, where E = 1/2r0. This is not correct, however, since the formula is valid 

also in the case of a point charge (Q2 is distributed over the segment). On different 

sections (of equal length) of the segment of length l different forces are acting. 

Therefore, to calculate the force with which the nonhomogeneous field generated by the 

string acts on the distributed charge Q2 we use the method of differentiation and 

successive integration. We partition segment l into sections of length dx so small that 

the charge dQ=2dx of each section can be considered a point charge. The charge dQ is 

in the electric field of the string. Since this is a point charge, the force acting on it is 

x
x

QEF d
2π

dd
0

21




  

where x is the distance from charge dQ to the string. 

We now have the differential of the sought quantity. The force acting on each section of 

the segment depends on the distance x from the segment to the string, and so we select x 

as the variable of integration (it varies from x1 = r0 to x2 = r0 + l). Integrating previous 

equation with respect to x, we get 
















lr

r
r

x
x

0

0

)
l

1ln(
2π

d
2π

F
00

21

0

21  

Substitution of numerical values yields the result F  1.210
-3 

N. 

The terms of the above problem can be changed by placing the segment parallel to the 

string, at an angle to the string, in a plane perpendicular to the string, and so on. All 

these variants can be solved by the same method.  

 

Problem 3. 
A straight infinitely long cylinder of radius R0 = 10cm is uniformly charged with 

electricity with a surface density = +10
-12 

C/m
2
. The cylinder serves as a source of 

electrons, with the velocity vector of the emitted electrons perpendicular to its surface. 

What must the electron velocity be to ensure that the electrons can move away from the 

axis of the cylinder to a distance greater than r = 10
3 

m? 
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Solution: The physical system consists of two objects: the positively charged cylinder 

and an electron. The physical phenomenon consists of the electron moving in a 

decelerated manner in the electric field of the cylinder. We wish to find one of the 

parameters of motion, the electron velocity.  

To describe the motion of the electron we must first calculate the electric field of the 

cylinder. The charge on the cylinder cannot be considered a point charge. We apply 

Gauss’ law. For this we surround the cylinder with a cylindrical surface (coaxial with 

the cylinder) of an arbitrary radius r > R0 (Figure 3). In view of the symmetry of the 

problem, the electric vector E of the field of the cylinder is perpendicular at all points to 

the constructed cylindrical surface. Hence, the flux of E out of the cylindrical surface of 

length l is 

rlEE  2  

By Gauss’ theorem, 

00 σ/22  lRrlE  

whence  

r

R
E

0

0σ


    (1) 

Now, by applying the dynamical method we find that 

Newton’s second law yields  

r

R
e

t

r
m

0

0

2

2

e
d

d




 , 

where me is the electron mass, and e is the electron 

charge. From the standpoint of physics the problem is 

solved. 

It would be solved completely if we were to solve the above differential equation and 

obtain the law of motion of the electron r = r(t). Knowing this law, we could find the 

law of variation of the electron’s velocity with time, v = r(t), and so on. But instead let 

us apply the law of energy conservation. By this law,  

 ee
vm

0

2
0e

2
,     (2) 

where 0 is the potential of the cylinder, and  the potential of the field of the cylinder 

at a point r distant from the cylinder’s axis. Employing the relationship E = -ddr that 

exists between the field strength E and potential  and allowing for Eq.1, we arrive at 

the following differential equation: 

rr

R

d

dσ

0

0 



. 

Integrating, we find that 

Сr
R




 ln
σ

0

0     (3) 

with C being an arbitrary constant. Hence, 

СR
R




 0
0

0
0 ln

σ
     (4) 

The system of Equations 2,3,4 yields the following value for the sought initial velocity 

of electron: 

R0

r

l


Figure 3 
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Problem 4 
 An insulating sphere of radius a has a uniform 

charge density  and a total positive charge Q (see 

Figure 4). (a) Calculate the magnitude of the electric 

field at a point outside the sphere. 

Solution: Since the charge distribution is spherically 

symmetric, we select a spherical gaussian surface of 

radius r, concentric with the sphere, as in Fig.4a. 

Gauss’ law gives  

0
 

q
EdAdc AE  

By symmetry, E is constant everywhere on the surface, and so it can be removed from 

the integral Therefore 

00

32 1
ρπ

3

4
)π4(





 

Q
arEdAEEdA  

where we have used the fact that the surface area of a sphere is 4r
2
. Hence, the 

magnitude of the field at a distance r from the center of the sphere 

22
04 r

Q
k

r

Q
E e


   (for r>a) 

Note that this result is identical to that obtained for a point charge. Therefore, we 

conclude that, for a uniformly charged sphere, the field in the region external to the 

sphere is equivalent to that of a point charge located at the center of the sphere. 

(b) Find the magnitude of the electric field at a point inside the sphere. 

Reasoning and Solution: In this case we select a spherical gaussian surface with radius 

r<a, concentric with the charge distribution (see Figure 4b). Let us denote the volume 

of this smaller sphere by V'. To apply Gauss’ law in this situation, it is important to 

recognize that the charge qin within the gaussian surface of volume V'  is a quantity less 

than the total charge Q. To calculate the charge qin, we use the fact that qin=V', where  

is the charge per unit volume and V' is the volume enclosed by the gaussian surface, 

given by V' = 4/3r
3
 for a sphere. Therefore, 

)34( 3rVqin   

On Figure 4: 
A uniformly charged insulating sphere of radius a and total charge 

Q. (a) The field at a point exterior to the sphere is keQ/r
2
. (b) The 

field inside the sphere is due only to the charge within the gaussian 

surface and is given by (keQ/a
3
)r. 

A plot of E versus r for a uniformly charged insulating sphere. The 

field inside the sphere (r<a) varies linearly with r. The field 

outside the sphere (r>a) is the same as that of a point charge Q 

located at the origin.  

 

Figure 4 
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The magnitude of the electric field is constant everywhere on the spherical gaussian 

surface and is normal to the surface at each point. Therefore, Gauss’ law in the region 

r<a gives 

0

2 )4(


 inq
rEdAEEdA    

Solving for E gives 
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Since by definition 3

3

4
/ aQ   , this can be written  

                                                               r
a

Qk
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Qr
E

3

3

3
04


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   (for r<a) 

Note that this result for E differs from that obtained in part (a). It shows that E0 as 

r0, as you might have guessed based on the spherical symmetry of the charge 

distribution. Therefore, the result fortunately eliminates the singularity that would exist 

at r = 0 if E varied as 1/r
2
 inside the sphere. That is, if E1/r

2
, the field would be 

infinite at r = 0, which is clearly a physically impossible situation. A plot of E versus r 

is shown in Figure 4. 

 
Problem 5 

An insulating solid sphere of radius R has a uniform positive charge density with total 

charge Q (Figure 5). (a) Find the electric potential at a point outside the sphere, that is, 

for r > R. Take the potential to be zero at r = . 

Solution In Example 4, we found from Gauss’ law that the magnitude of the electric 

field outside a uniformly charged sphere is  

2r

Q
kE er   (for r>R) 

where the field is directed radially outward when Q is positive. 

 

 

 To obtain the potential at an exterior point, such as 

B in Figure 5, we substitute this expression for E into 

equation for potential at any point. Since Eds = Erdr in 

this case, we get  

Figure 5 

A uniformly charged insulating sphere of radius R and total 

charge Q. The electric potentials at points B and C are 

equivalent to those produced by a point charge Q located at the 

center of the sphere. 

A plot of the electric potential V versus the distance r from the 

center of a uniformly charged, insulating sphere of radius R. 

The curve for VD inside the sphere is parabolic and joins 

smoothly with the curve for VB outside the sphere, which is 

hyperbola. The potential has a maximum value 0 at the center 

of the sphere. 
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Q
kV eB   (for r>R) 

Note that the result is identical to that for the electric potential due to a point charge. 

Since the potential must be continuous at r = R, we can use this expression to obtain the 

potential at the surface of the sphere. That is, the potential at a point such as C in Fig.5 

is 

R

Q
kV eC   (for r=R) 

 (b) Find the potential at a point inside the charged sphere, that is, for r<R. 

Solution In Example 12 we found that the electric field inside a uniformly charged 

sphere is 

r
R

Q
kE er 3

   (for r<R) 

We can use this result to evaluate the potential difference VD  VC, where D is an 

interior point: 

 
r

R
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R rCD rR
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22
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Substituting VC = keQ/R into this expression and solving for VD, we get 

)3(
2 2

2

R

r

R

Qk
V e

D     (for r<R) 

At r = R, this expression gives a result for the potential that agrees with that for the 

potential at the surface, that is, VC. A plot of V versus r for this charge distribution is 

given in Figure 5. 

 

Problem 6  
A cylindrical conductor of radius a and charge Q is coaxial with a larger cylindrical 

shell of radius b and charge -Q (Figure 6a). Find the capacitance of this cylindrical 

capacitor if its length is l. 

 

 

 

Reasoning and Solution: If we assume that l is long compared with a and b, we can 

neglect end effects. In this case, the field is perpendicular to the axis of the cylinders 

Figure 6. 

(a) A cylindrical capacitor consists of a 

cylindrical conductor of radius a and 

length l surrounded by a coaxial 

cylindrical shell of radius b. (b) The 

end view of a cylindrical capacitor. 

The dashed line represents the end of 

the cylindrical gaussian surface of 

radius r and length l. 

 

b
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and is confined to the region between them (Figure 6 b). We must first calculate the 

potential difference between the two cylinders, which is given in general by  

 
b

aab dVV sE  

where E is the electric field in the region a<r<b. The electric field of a cylinder of 

charge per unit length  is E = 2ker. The same result applies here, since the outer 

cylinder does not contribute to the electric field inside it. Using this result and noting 

that E is along r in Figure 6b, we find that 

)ln(22
a

b
k

r

dr
kdrEVV e

b

a

b

aerab     

Substituting this into equation for the capacitance and using the fact that  = Q/l, we get 

)ln(2)ln(
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e
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Q
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Q
C   

where V is the magnitude of the potential difference, given by 2keln(b/a), a positive 

quantity. That is, V = Va – Vb is positive because the inner cylinder is at the higher 

potential. Our result for C makes sense because it shows that the capacitance is 

proportional to the length of the cylinder. As you might expect, the capacitance also 

depends on the radii of the two cylindrical conductors. As an example, a coaxial cable 

consists of two concentric cylindrical conductors of radii a and b separated by an 

insulator. The cable carries currents in opposite directions in the inner and outer 

conductors. Such a geometry is especially useful for shielding an electrical signal from 

external influences. From the latter equation we see that the capacitance per unit length 

of a coaxial cable is 

)ln(2

1

a

b
ekl

C
 . 

 

Problem 7. 
A thin ring of radius R has been uniformly charged with an amount of electricity Q and 

placed in relation to a conducing sphere in such a way that the center of the sphere, O, 

lies on the ring’s axis at a distance of l from the plane of the ring (Figure 7). Determine 

the potential of the sphere. 

Solution: The conducting sphere is situated in 

the field of the ring. We wish to calculate the 

potential of the conductor. This constitutes a 

basic problem of field theory. Since the field is 

not symmetric, it is doubtful that Gauss’ law of 

flux will lead to meaningful results. Let us 

employ the superposition method. 

The field of the ring induced charges of 

magnitude –Q` and +Q`` on the conducting 

sphere. The resultant field is generated by three 

charges: Q, - Q `, and + Q ``. Hence, according to the superposition principle, the 

potential of the conducting sphere is where  are 

the potentials of the fields generated by the charges Q,   -Q`, and +Q``, respectively. But 

at what point of the sphere? The answer is: at any point, since the potential of a 

conductor placed in an electrostatic field is the same for all points of the conductor. 

Figure 7 

+Q
+Q̀̀-Q̀

l

O
R
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In our case, the entire volume bound by the conducting sphere as equipotential. Thus, 

we need only calculate the potential at the most convenient point, the center of the 

sphere. Indeed, notwithstanding the fact that we know neither the values of the induced 

charges –Q` and +Q`` nor the distributions of the respective charge densities -` and 

+`` over the sphere, we can state that the total potential of the field of these charges at 

the special point (the center of the sphere) is zero: (the induced charges  

–Q` and +Q`` lie at equal distances from the center of the sphere, are equal in 

magnitude, |-Q`| = |+Q``|, and are opposite in sign). Hence, we need only to calculate 

the potential 1 of the ring’s field at O (Figure 7): 

1/222
0

1
)(l4π R

Q


 . 

This constitutes the potential of the sphere, . 
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Electric Field in Dielectrics 
 
2.1. Dipole Electric Moment 
 

In a strict sense, dielectrics (or insulators) are substances which cannot conduct 

an electric current. Ideal isolators do not exist in nature. All substances, even of to a 

negligible extent, conduct an electric current. But substances called conductors conduct 

a current from 10
15

 to 10
20

 times better than substances called dielectrics. 

A molecule is a system with a total charge of zero. To characterize its electrical 

properties, the quantity called the dipole electric moment (p) is used: 

 ii
q rp                                                   (2.1) 

(summation is performed both over the electrons and nuclei). If the system has the total 

electric charge equal to zero, the magnitude of the dipole moment does not depend on 

the choice of the coordinate system origin. Indeed, let us make a transformation  

ar 
ii

r ,      (2.2) 

where a is the shift of the coordinate origin. Obviously, 

pararrp    iiiiiii
qqqq )(  (2.3) 

 The electrons in a molecule are in motion, and the quantity (2.3) constantly 

changes. The velocities of electrons are so high, however, that the mean value of the 

dipole moment(2.3) is detected in practice: 

 
ii

q rp .                            (2.4) 

In other words, we shall consider that the electrons are at rest relative to the nuclei at 

certain points obtained by averaging the positions of the electrons in time. 

 The behavior of a molecule in an external electric field is determined by its 

dipole moment. Let us calculate the potential energy of a molecule located in an 

external field. Having in mind that the magnitude of <ri> is small, we can write the 

potential at the point where i-th charge is in the form 

  
ii

r .         (2.5) 

Hence,  

    
iiiiiii

qqqqW rr )( (2.6)  

Taking into account that   0
i

q  and substituting –E for   we arrive at 

          cospEW pE .         (2.7) 

 Differentiating this expression with respect to  we get the rotational momentum 

(torque) T=pEsin, or in the vector form: 

                     pET  .          (2.8) 

 Differentiating Equation (2.7) with respect to linear coordinates (x, y, z) we get 

the force acting on the dipole. For example, when a dipole is located in an 

inhomogeneous field that is symmetric relative to the x-axis, 

   0 ;cos 










zyx
FF

x

E
p

x

W
F .                   (2.9) 

Here,  is an angle between p and E. For a system containing only two charges +q and 

–q (see Figure 2.1) separated by a distance l, the dipole moment 

        lp q ,                   (2.10) 

where l is a vector having direction from the negative charge to the positive one. 
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Figure 2.1. 

 

2.2 Polar and Non-polar Molecules 
 

The interpretation of any real system by two charges of different signs holds if 

we mean by –q and +q the centers (rc) of the spherical distribution, correspondingly, of 

the negative and positive charges: 

dV

q

c

iic








rr

rr or ,
}                              (2.11) 

(summation or integration is taken over only the charges of the same sign). 

 In symmetrical molecules (such as H2, O2, N2), the centers of the spatial 

distribution of the positive and negative charges coincide in the absence of an external 

electric field. These molecules have no intrinsic dipole moments and are called non-

polar. In asymmetrical molecules (such as CO, NH, HCO the centers of the spatial 

distribution of the charges of opposite signs are displaced relative to each other, thus 

these molecules have an intrinsic dipole moment and are called polar. 

 Under the action of an external electric field, the charges of a non-polar 

molecule become displaced relative to one another; the positive ones in the direction of 

the field, the negative ones against the field. As a result, the molecule acquires an 

induced dipole moment whose magnitude is proportional to the field strength: 

Ep
0

 ,          (2.12) 

where 0 is the electric constant, and  is a quantity called the palarizability of a 

molecule. 

 The process of polarization of a non-polar molecule proceeds as if the positive 

and negative charges of the molecule were bound to each other by electric forces. In an 

external field a non-polar molecule is said to behave itself like an electric dipole. The 

action of an external field on a polar molecule consists mainly in turning of molecules 

so that its dipole moment is arranged in the direction of the field. An external field does 

not virtually affect the magnitude of a dipole moment. Consequently, a polar molecule 

behaves in an external field like a rigid dipole. 

 
2.3  Polarization of Dielectrics 
 

In the absence of an external electric field, the dipole moments of the molecules 

of a dielectric usually either equal zero (non-polar molecules) or are distributed in space 

by directions chaotically (polar molecules). In both cases, the total dipole moment of 

dielectric equals zero. (We say usually, because there are some substances that can have 

a dipole moment in the absence of an external field). 

To characterize the polarization of a dielectric at a given point, the vector 

quantity P called the polarization of a dielectric is used: 

l

+q

-q 
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V

i



p

P .     (2.13) 

Here, V is an infinitely small (in physical sense) volume,  i
p  is the resultant dipole 

moment of this volume. 

 The polarization of an isotropic (we have no possibility to discuss the general 

case of anisotropic dielectrics) is proportional to the field strength  

          EP 
0

,                                                   (2.14) 

where  is a quantity independent of E and it is called the electric susceptibility of a 

dielectric. Equation (2.14) holds for not too large magnitudes of E. 

 For dielectrics built of polar molecules, the orienting action of the external field 

is counteracted by the thermal motion of molecules tending to scatter their dipole 

moments in all directions. As a result, a certain preferable orientation of dipole 

moments of molecules sets in the direction of the field. The electric susceptibility of 

such dielectrics varies inversely with their absolute temperature. 

 In ionic crystals, the separate molecules lose their individuality. An entire crystal 

is, as it were, a single giant molecule. The lattice of an ionic crystal can be considered as 

two lattices inserted into each other, one of which is formed by the positive, and the 

other by the negative ions. When an external field acts on the crystal ions, both lattices 

are displaced relative to each other, which leads to polarization of dielectric. The 

polarization in this case is related with the field strength by Equation (2.14). We remind 

once more that the linear relation between E and P described by Equation (2.14) is valid 

only for not too strong fields. 

 
2.4  Space and Surface Bound Charges 
 

Polarization of a dielectric causes the surface density (' ), and in some cases 

also the volume density of the bound charges becomes different from zero. (We remind 

our readers that usually for not polarized dielectrics, these quantities equal zero). 

The Figure 2.2 shows schematically a polarized dielectric with non-polar (a) and 

polar (b) molecules. The polarization is attended by the appearance of a surplus of 

bound charges of the same sign in the thin surface layer of the dielectric. 

Figure 2.2. 
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To find the relation between the polarization P and surface density of bound 

charges ' , let us consider an infinite plane-parallel plate of a homogeneous dielectric 

placed in a homogeneous electric field (see Figure 2.3).  

Figure 2.3 

Let us mentally separate an elementary volume in the plate in the form of a very 

thin cylinder with generatrices parallel to E in the dielectric, and with bases of area S 

coinciding with the surfaces of the plate. A dipole electric moment of this volume 

 cosSPlPdVp .                                     (2.15) 

On the other hand, it can be expressed as follows: 

Slp  .                                              (2.16) 

Comparing Equations (2.15) and (2.16) we conclude that 

n
PP  cos ,                                              (2.17) 

where Pn is the projection of polarization onto an outward normal to the relevant 

surface. Using Equation (2.14) we can write Equation (2.17) as 

n
E

0
 ,                                                     (2.18) 

where En is the normal component of the field strength inside the dielectric. According 

to equation (2.18), at the points where the field lines emerge from the dielectric (En>0), 

positive bound charges come up to the surface, while where the field lines enter the 

dielectric (En<0), negative surface charges appear. 

 Equations (2.17) and (2.18) also hold in the most general case when an 

inhomogeneous dielectric of an arbitrary shape is located in an inhomogeneous electric 

field. By Pn and En we must understand now the normal component of the relevant 

vector taken in direct proximity to the surface element for which ' is being determined. 

Analogous but a little more tiresome calculations lead to the expression describing the 

spatial density of bound charges: 

P .                                                        (2.19) 

I.e., the density of bound charges equals the divergence of the polarization vector P 

taken with the opposite sign. 

d

- ' '

l

P



E

n

S

+ q

( - 
S

- q

n
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2.5  Electric Displacement Vector 
 

Bound charges differ from extraneous ones only in that they cannot leave the 

confines of the molecules which they are in. Otherwise, they have the same properties 

as all other charges. In particular, they are the sources of an electric field. Therefore, 

when the density of the bound charges ' differs from zero, equation (1.12) must be 

written as follows: 

)(
1

0




E .     (2.20) 

Here, ' is the density of the extraneous charges. Equation (2.20) is of virtually no use 

for finding the vector E because it expresses the properties of the unknown quantity E 

through bound charges, which in turn are determined by the unknown quantity E. 

 Calculation of the fields is often simplified if we introduce an auxiliary quantity 

whose source are only extraneous charges . To establish what this quantity looks like, 

let us substitute equation (2.19) for ' into equation (2.20): 

)(
1

0

PE 


 ,     (2.21) 

whence it follows that  

 )(
0

PΕ .       (2.22) 

The quantity  

PΕD  0        (2.23) 

is called the electric displacement, it is just the required quantity. Inserting equation 

(2.14) for P, we get 

 ΕΕΕD  1000 .                               (2.24) 

The dimensionless quantity 

 1      (2.25) 

is called the relative permittivity (or simply permittivity) of a medium. Thus,   

ΕD 
0

     (2.26) 

According the Equation (2.26), the vector D is proportional to the vector E. We remind 

our readers that we are dealing with isotropic dielectrics. In anisotropic dielectrics, the 

vectors E and D, generally speaking, are not collinear.  

 In accordance with Equations (1.7) and (2.26), the electric displacement of the 

field of a point charge in a vacuum ( = 1) is  

r
r

q
eD 




24

1
.        (2.27) 

Equation (2.22) can be written as  

D .     (2.28) 

Integration of this Equation over an arbitrary volume V yields 

 
V V

dVdVD ,       (2.29) 

or 

 
S V

dVSDd .     (2.30) 
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The quantity on the left-hand side of (2.30) is D, the flux of the vector D through 

closed surface S, while that on the right-hand side is the sum of the extraneous charges 

i
q  enclosed by this surface. Hence, 

iD
q ,      (2.31) 

Equation (2.31) is known to be the Gauss’ theorem for dielectric. This statement holds 

also for any inhomogeneous dielectric. 

 The field of the vector D can be depicted with the aid of electric displacement 

lines. Their direction and density are determined in exactly the same way as for the lines 

of the vector E. The lines of vector E can begin and terminate at both extraneous and 

bound charges. The sources of the field of the vector D are only extraneous charges. 

Hence, displacement lines can begin or terminate only at extraneous charges. These 

lines pass without interruption through points at which bound charges are placed. 

 
2.6  Examples of Calculating the Field in Dielectrics 
 
2.6.1 Field Inside a Flat Plate (see Figure 2.4) 
 

Two parallel infinite planes are charged with the surface density + and -. The 

field they produce in a vacuum is characterized by the strength E0 and the displacement  

D0 = E0. A plate of a homogeneous isotropic dielectric is located between the charged 

planes. The dielectric becomes polarized under the action of the field, and bound 

charges of density '  appear on its surfaces. These charges will set up a homogeneous 

field inside the dielectric plate whose strength by Equation (1.19) is 
0


E . In the 

given case, E' is outside the dielectric. The field strength E0 is /0. For the resultant 

field strength inside the dielectric we get 

)(
1

00
00 







 EEEE    (2.32) 

The polarization of the dielectric is due to field 

(2.32). The latter is perpendicular to the surfaces 

of the plate. Hence En=E, and in accordance 

with Equation (2.18), E
0

 . Inserting this 

quantity in Equation (2.32) we have 

EEE 
0

, whence 

          





 00

1

EE
E .                         (2.33) 

Thus, in the given case the permittivity  shows 

how many times the field in a dielectric weakens 

in comparison with the field in a vacuum. 

Multiplying Equation (2.33) by , we get the 

electric displacement inside the plate 

 

0000
DEED  .       (2.34) 

Hence, the electric displacement inside the 
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dielectric coincides with that of the external field D0. Substituting /0 for E0 into 

equation (2.34) we find 

D =     

To find ' , let us express E and E0 in Equation (2.32) through the charge densities:  

                                                













 00

0

0

)(
1 E

E , 

whence  







1
.                                                       (2.36) 

 
2.6.2 Field Inside a Spherical Layer (see Figure 2.5) 
 

A charged sphere of radius R is surrounded by concentric spherical layers of a 

homogeneous isotropic dielectric. The bound charge 
1

q  distributed with the density 
1

  

will appear on the internal surface of layer (
1

2

11
4  Rq ), and the charge 

2
q  

distributed with the density 
2

  will appear on its external surface (
2

2

22
4  Rq ). The 

sign of the charge 
2

q  coincides with that of the charge q of the sphere, while 
1

q  is of 

the opposite sign. The charges 
1

q  and 
2

q  set up a field at a distance r exceeding R1 and 

R2, respectively, that coincides with the field of a point charge of the same magnitude 

(see Equation (1.15)). The charges 
1

q  and 
2

q  produce no field inside the surfaces   

Figure 2.5. 

over which they are distributed. Hence, the field strength E' inside the dielectric is  
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
                                 (2.37) 
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and is opposite in direction to the field strength E0. The resultant field inside the 

dielectric 

2

1

2

1

0

2

0

0

1

4

1
)(

r

R

r

q
EErE







 .                                 (2.38) 

It diminishes in proportion to 1/r
2
. So, we can write 

2

1

2

12

1

2

1 )()(or  ,
)(

)(

R

r
rERE

R

r

rE

RE
 ,                             (2.39) 

where E(R1) is the field strength in the dielectric in direct proximity to the internal 

surface of the layer. It is exactly the strength that determines the quantity 
1

 : 

2

1

2

0101
)()(

R

r
rERE  ,     (2.40) 

(at each point of the surface |En|=E). Substituting expression for  from equation (2.40) 

into equation (2.38) we get 

)()(
)(1

4

1
)(

02

1

2

2

0

2

1

0

2

0

rErE
Rr

rrER

r

q
rE 







 ,          (2.41) 

whence 




)(
)( 0

rE
rE ,    (2.42) 

000
DED  .    (2.43) 

 The field inside the dielectric changes in proportion to 1/r
2
. Therefore, the 

relation 
2

1

2

221
RR  holds. Hence, 

21
qq  . Consequently, the fields set up by 

these charges at distances exceeding R2 mutually terminate each other so that outside 

the spherical layer E'=0 and E=E0. 

 Assuming that R1=R and R2=, we arrive at the case of a charged sphere 

immersed in an infinite homogeneous and isotropic dielectric. The field strength outside 

such a sphere is 

2
04

1

r

q
E





 .    (2.44) 

 Both examples considered above are characterized by the fact that a dielectric 

was homogeneous and isotropic, and the surfaces enclosing it coincided with the 

equipotential surfaces of the field of extraneous charges. The result we have obtained in 

these cases is a general one. If a homogeneous and isotropic dielectric completely fills 

the volume enclosed by equipotential surfaces of the field of extraneous charges, then 

the electric displacement vector coincides with the vector of the field strength of the 

extraneous charges multiplied by 0, and therefore, the field strength inside the dielectric 

is 1/ of that of the field strength of the extraneous charges in a vacuum. 

 If the above conditions are not satisfied, the vectors D and 0E do not coincide. 

For example, Figure 2.6 shows the field in the dielectric plate skewed relative to the 

planes carrying extraneous charges. The vector E' is perpendicular to the faces of the 

plate, therefore E and E' are not collinear. 
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Figure 2.6 

The vector D has the same direction as E, consequently D and 0E0 do not coincide in 

direction. They also fail to coincide in magnitude. 

 In the general case E' may differ from zero outside the dielectric too (see 

Figure 2.7). A rod made of a dielectric is placed in initially homogeneous electric field. 

Owing to polarization, bound charges of opposite signs are induced at the ends of the 

rod. Their field outside the rod is equivalent to the field of a dipole (the dash lines). It is 

easy to see that the resultant field E = E0 + E' near the ends of the rod is greater than the 

field E0. 
Figure 2.7. 

 
2.7  Conditions at the Interface Between Two Dielectrics 
 

Let us consider the interface between two dielectrics with the permittivities 

and  (see Figure 2.8). We choose an arbitrarily directed x-axis on this surface. We 

take a small rectangular contour of length a and width b that is partly in the first 

dielectric and partly in the second one. 
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Figure 2.8 

Let E1 and E2 be the field strengths inside dielectrics. Since [E]=0, the circulation of 

the vector E around the contour equals zero, i.e. 

02
,2,1

 bEaEaEdlE
bxxl

.               (2.45) 

where <Eb> is the mean value of El on the contour perpendicular to the interface. In the 

limit, when the width b of the contour tends to zero, we get 

E1,x = E2,x .                                                 (2.46) 

Let us represent each of the vectors E1 and E2 as the sum of the normal and tangential 

components: 

E1 = E1,n + E1, E2 = E2,n + E2,  

The equation (2.46) signifies that 

E1, = E2,    

Substituting the projections of the vector D divided by  for the projections of the 

vector E, we get 

20

,2

10

,1







DD

,    

 (2.49) 

whence it follows that  

2

1

,2

,1










D

D
.               (2.50) 

    Now let us take an imaginary cylindrical surface of height h on the interface 

between the dielectrics (see Figure 2.9). 

Figure 2.9 

Base S1 is on the first dielectric, and base S2 is on the second (S1 = S2 = S). Using the 

Gauss theorem we can write: 

0,2,1  sidennn SDSDSD .                             (2.51) 

(We assume that there are no extraneous charges on the interface). Here, <Dn> is the 

mean value of Dn on the side surface of the cylinder. If the altitude of the cylinder tends 

to zero, the last term in equation (2.51) vanishes, and we get: 

nn
DD

,2,1
 ,                                             (2.52) 

or 

nn
EE

,220,110
 ,                                         (2.53) 

whence 
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1

2

,2

.1






n

n

E

E
.                                                 (2.54) 

 The results we have obtained signify that when passing through the interface 

between two dielectrics, the normal component of the vector D and the tangential 

component of the vector E change continuously. The tangential component of the vector 

D and the normal component of the vector E, however, are disrupted when passing 

through the interface. 

 Equations (2.48), (2.50), (2.52), and (2.54) determine the conditions which the 

vector E and D must comply with on the interface between two dielectrics (if there are 

no extraneous charges on this interface). We have obtained these equations for an 

electrostatic field. They also hold, however, for fields varying in time. 

 Using these equations, it is rather easy to get the law of displacement line 

refraction (see Figure 2.10): 

2

1

2

1

tan

tan









.                                              (2.55) 

 

 

When displacement lines pass into a dielectric with a lower permittivity, the angle made 

by them with a normal decreases, the lines are spaced farther apart; when the lines pass 

into a dielectric with a higher permittivity, on the contrary, they become closer together. 

 
2.8  Forces Acting on a Charge in a Dielectric 
 

If we put into an electric field in a vacuum a charged body of such small 

dimensions that the external field within the body can be considered homogeneous, then 

the body will experience the force 

F = qE.                                                   (2.56) 

To place a charged body in a field set up in a dielectric, a cavity must be made in the 

latter. In a fluid dielectric, the body itself forms the cavity by displacing the dielectric 

from the volume it occupies. The field inside the cavity Ecav will differ from that in a 

continuous dielectric. Thus, we cannot calculate the force exerted on a charged body 

placed in a cavity as the product of the charge q and the field strength E in the dielectric 

before the body was placed into it. 
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Figure 2.10 
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 When calculating the force acting on a charged body in a fluid dielectric, the 

mechanical tension Ften set up on the boundary with the body must be taken into 

account. 

 Thus, the force acting on a charged body in a dielectric, generally speaking, 

cannot be determined by equation (2.56), and it is usually a very complicated task to 

calculate it. These calculations give an interesting result for a fluid dielectric. The 

resultant of the electric force qEcav and the mechanical force Ften is found to be exactly 

equal to qE, where E is the field strength in the continuous dielectric 

EFEF qq  tencav .                                     (2.57) 

The strength of the field produced in a homogeneous infinitely extending 

dielectric by a point charge is determined by equation (2.44). Hence, we get the 

following expression for the force of interaction of two point charges immersed in a 

homogeneous infinitely extending fluid dielectric 

2
21

04

1

r

qq
F





 .                                        (2.58) 

Some authors characterize equation (2.58) as “the most general expression of 

Coulomb’s law”. In this connection, we are going to cite Richard P. Feynman: “Many 

older books on electricity start with the “fundamental” law that the force between two 

charges is …[equation (2.58) is given]…, a point of view is thoroughly unsatisfactory. 

For one thing, it is not true in general; it is true only for a world filled with a liquid. 

Secondly, it depends on the fact that  is a constant which is only approximately true for 

most real materials”. 

In this textbook, we are not going to discuss problems relating to the forces 

acting on a charge inside a cavity made in a solid dielectric. 

 

Examples 

 
Problem 1 
          A parallel-plate capacitor  has a capacitance C0 in the absence of dielectric. A slab 

of dielectric material of dielectric constant  

and  thickness d/3 is inserted between the 

plates (Fig.15). What is the new capacitance 

when the dielectric is present? 

 

Reasoning: This capacitor is equivalent of 

two parallel-plate capacitors of the same area 

A connected in series, one (C1) with a plate separation d/3 (dielectric filled) and the 

other (C2) with a plate separation 2d/3 and air  between the plates (Figure 15) The two 

capacitances are  

                                 
3

0
1

d

A
C


              and                 

32

0
1

d

A
C


 . 

 

Solution Using the equation for two capacitors combined in series, we get 

Figure 15 

A parallel-plate capacitor of plate separation d 

partially filled with a dielectric of thickness 

d/3 
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Since the capacitance without the dielectric is C0 = 0A/d, we see that 

0
12

3
CC 











 . 

 

Problem 2 
 A coaxial cable consists of two cylindrical conductors. The gap between the 

conductors is completely filled with silicon as in Fig.16a. The radius of the inner 

conductor is a = 0.5 cm, the radius of the outer one is b = 1.75 cm, and their length is L 

= 15.0 cm. Calculate the total resistance of the silicon when measured between the inner 

and outer conductors. 

Reasoning: In this type of problem, we must divide the object whose resistance we are 

calculating into elements of infinitesimal thickness over which the area may be 

considered constant.  We start by using the differential form of equation for resistance 

which is dR = dl/A, where dR is the resistance of a section of silicon of thickness dl 

and area A. In this example, we take as our element a hollow cylinder of thickness dr 

and length L as in Fig.16b. Any current that passes between the inner and outer 

conductors must pass radially through such elements, and the area through which this 

current passes is 

A = 2rL. (This is the 

surface area of our hollow 

cylinder, neglecting the 

area of its ends.) Hence, 

we can write the 

resistance of our hollow 

cylinder as  

                

dr
rL

dR





2
. 

 
                                         Figure 16. 

Solution: Since we wish to know the total resistance of the silicon, we must integrate 

this expression over dr from r = a to r = b: 

)ln(
22 a

b

Lr

dr

L
dRR

b

a

b

a 







  . 

Substituting in the values given, and using  = 640 m for silicon, we get  

 





  851)

cm 500.0

cm 75.1
ln(

 m)150.0(2

m 640
R . 

Exercise: If a potential difference of 12.0 V is applied between the inner and outer 

conductors, calculate the total current that passes between them. Answer: 14.1 mA. 
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Problem 3. 
A solid ball made of an insulator (= 1) has been drilled along the diameter and air has 

been removed from the cavity. An electron is placed in the cavity. What is the 

magnitude of the positive charge that should be imparted to the ball if we want the ball 

to perform harmonic oscillations in the cavity with a given frequency 0 (the charge is 

assumed to be evenly distributed over the ball’s volume)? Assume that the cross-

sectional area A of the cavity is considerably smaller than R
2
, with R the radius of the 

ball. 

Solution: We must calculate the electric field strength inside the ball. Let us apply 

Gauss’ law. Suppose that the volume density of the charge, , is equal to 3Q/4R
3
. We 

take an arbitrary point x distant from the center of the ball and draw a sphere of radius x 

centered at the ball’s center O and passing through that point (Figure 17). 

 
Figure 17. 

The flux of vector E out of the sphere is, in view of the symmetry of the field, 
24 xEE  . 

By Gauss’ law, 

0

3
2

3

4
4






x
xE , 

whence  

xE
03


 . 

Thus, the force acting on the electron is 

x
e

F
03ε

ρ
 . 

From Newton’s second law we get the differential equation of the electron’s harmonic 

oscillations: 

x
e

xm
0

e
3


 . 

Consequently, the angular frequency 0 is equal to ./3ερ e0me  Since 0=2, we can 

find the sought volume charge density, 

em /ε12πρ e
2
00

2  , 

and the charge on the ball, 

ρπ
3

4 3RQ  . 

xR

X

o 
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For 


Hz = 1 Mhz and R = 10
-1 

m we have  610
-9

 C/m
3
 and Q  2.410

-11 
C. 

 

Problem 4. 
A sufficiently long, round cylinder made from a homogeneous and isotropic insulator 

with a known dielectric constant  is placed in a homogeneous electric field E0 in such a 

manner that the cylinder’s axis coincides with the direction of E0 (Figure 18). 

Determine the electric field strength near the cylinder (inside and outside). 

Figure 18. 

Solution: Clearly, Gauss’ method is useless here. Applying Gauss’ law, we arrive at the 

trivial identity D1 = D2 expressing the continuity of the normal components of the 

electric displacement vector. Let us apply the superposition method. By E1 we denote 

the electric field strength inside the cylinder and by E2 the electric field strength outside. 

Owing to the polarization of the insulator, bound charges –Q` and +Q` gather on the 

bases of the cylinder with a density `. The resulting electric fields E1 and E2 are the 

vector sums of E0 and the electric fields generated by the bound charges –Q` and +Q`. 

Let us now discuss the meaning of the words “sufficiently long cylinder”. The cylinder 

considered here is so long that the field generated, say, by charge +Q` is week in the 

vicinity of charge –Q` and can be neglected in comparison to the field generated by –Q` 

in that vicinity. The same is true of the field generated by –Q` in the vicinity of charge 

+Q`. Thus, 

E ,̀EE  E ,̀EE
0201
  

where E` is the electric field strength generated by –Q` (or +Q`). Let us find E`. 

E` is the field of a uniformly charged disk. The projection of the elementary electric 

field vector on the disk’s axis generated by a thin ring (the X axis is directed along the 

axis of the disk): 

3/222
0

3/222
0

x
)(4

d`2

)(4

dQ
d

xr

rxr

xr

x
E







 . 

Integration with respect to r from zero to R (the radius of the disk) yields the electric 

field strength generated by the disk (or the field of the bound charge –Q`): 

]1[
2ε

σ`

)(2

dσ`
`

2200
3/222

0

x

Rx

x
-

xrε

rxr
EE

R






  . 

From this it follows, for one, that E` is roughly zero when x is very large. This 

completes the justification for using the term “sufficiently long cylinder”. 

Near the base of the cylinder x  0 and  

)2ε`/(σ` 0E . 

We obtain 

 
0

100
01

2

1)-(






E
EE  

and, hence, 

EE

-Q̀ +Q̀

E

2 1

0


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01
1

2
EE


 . 

Then, it yields 

00
1

1-
2` E




 . 

We obtain 

0
1

1-
` EE




 . 

 

Hence,  

02
ε1

2ε
EE


 . 

 

Problem 6. 
Determine the capacitance of a section of unit length of a two-wire line. 

Solution: The formulation of the problem is incomplete. Let us idealize the problem. 

We assume that the linear charge density (charge per unit length) on one wire is - and 

on the other, +. We also assume that all other bodies are so far from the line that their 

effect on the electric field in the space between the wires can be ignored. Finally, we 

assume that the wires have the same radius r << l, where l is the distance between the 

wires. Thus, the physical system consists of three objects: two infinitely long thin, 

straight parallel wires uniformly charged with linear charge densities -and + and the 

electric field generated by these charges. We wish to find the capacitance of a segment 

of unit length of such a system. 

The problem is linked to the basic problem of field theory. Let us calculate the field 

strength between the wires at an arbitrary point A that is positioned at a distance x from 

the left wire (Figure 19).  

 

Figure 19. 

Employing the superposition principle and the formula for the strength of the field 

generated by an infinitely long straight, uniformly charged string, we get  

)-(l22 00 xx
E









 . 

Allowing for the relationship between field strength and potential, we get 

c)](lln[ln
2

d
0





  xxxE , 

where c is an arbitrary constant. This gives us the potentials of the left and right wires: 

c)](lln[ln
2 0

1 



 rr , 

c]ln)-l[ln(
2 0

2 



 rr . 

Next we find the potential difference between the wires: 

._ +

l

x X

 +
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r

r-l
ln

0
21




 . 

Since r<<l by hypothesis, we have 

      .
l

ln
0 r


  

Employing relationship C = Q/, we can determine the capacitance of a section of unit 

length of a two-wire line: 

    .
)ln(l/

C 0

r







  

 
3. Steady Electric Current 
 
3.1 Electric Current 
 

If a total charge other than zero is carried through a surface, an electric current 

(or simply current) is said to flow through this surface. For a current to flow, the given 

medium must contain charged particles that can move in the limits of the medium. Such 

particles are called current carriers (electrons, ions, or even macroscopic particles). A 

current is produced if there is an electric field inside the body. The mean value of the 

velocity of thermal motion is zero, thus when the electric field acts upon the current 

carriers, they acquire the additional velocity U coinciding for the positive carriers with 

the field direction and opposite to that for the negative carriers. If the charge dq is 

carried through a surface during the time dt, it is said the current strength (or simply 

the current) 

dt

dq
I                                                        (3.1) 

is established. The transfer of a negative charge in one direction is equivalent to the 

transfer of a positive charge of the same magnitude in the opposite direction. Thus, if a 

current is produced by carriers of both signs, we can write 

dt

dq

dt

dq
I



 .        (3.2) 

The direction of motion of the positive carriers has been historically assumed to be the 

direction of a current. 

 A current (I) is a scalar quantity and it can be distributed non-uniformly over the 

relevant surface. In order to characterize this distribution, a vector quantity j, called the 

current density is introduced 

Sj ddI  .                       (3.3) 

Thus, the current flowing through the elementary surface characterized by the surface 

vector dS can be expressed as a scalar product of j and dS. 

 Let us assume that the space densities of positive and negative charges are, 

correspondingly, n
+
 and n

-
. If the carriers acquire the average velocities U

+
 and U

-
, then 

the current density can be expressed as: 
  UUj nene .    (3.4) 

In equation (3.4) both addends are of the same direction: the vector U
-
 is directed 

oppositely to the vector j, when it is multiplied by the negative scalar e
-
, we get a vector 



40 

 

of the same direction as j. The products e
+
n

+
 and e

-
n

-
 give the charge densities of 

positive (
+
) and negative   (

-
) carriers. Hence, equation (3.4) can be written in the 

form 
  UUj .           (3.5) 

 A current that does not change with time is called steady (do not confuse with a 

direct current whose direction is constant, but whose magnitude may vary). For a steady 

current 

t

q
I  .      (3.6) 

where q is the charge carried through the surface being considered during the finite time 

t. In the SI, the unit of current is the ampere (A). The unit of charge, the Coulomb (C), 

is defined as the charge carried in one second through the cross section of a conductor at 

a current of one ampere. 

 
3.2 Continuity Equation 
 

Let us consider a closed surface S (see Figure 3.1) 

in a conductive medium. 

The integral 
S

Sjd  is a charge emerging in a unit 

time from the volume V enclosed by the surface 

S. According to the charge conservation law, this 

quantity must equal to the rate of diminishing of 

the charge q contained in the given volume 

       
          Figure 3.1 

 
S dt

dq
Sjd .                                              (3.7) 

The surface integral in the left-hand part of equation (3.7) can be transformed in the 

integral from divj over the volume V, and on the other hand, obviously  dVq . So, 

we have  

 




VV

dV
t

dVdivj                                      (3.8) 

(the space coordinates and time are independent quantities). Equation (3.8) hold for an 

arbitrary volume. Thus, it follows: 

t
div




j             (3.9) 

Equation (3.9) is known to be the continuity equation. It expresses the charge 

conservation law in the differential form. For a steady current, all the quantities do not 

depend on time. Hence, for a steady current we have 

divj = 0.         (3.10) 

Thus, for a steady current, the vector j has no sources. Hence, the lines of steady current 

are always closed. Accordingly, 
S

Sjd equals zero. 

 

 

V

S

dq__
dt

<0
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3.3 Electromotive Force 
 

In order to maintain an electric current in a closed circuit, it is necessary to have 

(in addition to sections on which the positive carriers travel in the direction of a 

decrease in the potential ) the sections on which the positive charges are carried in the 

direction of a growth in , i.e. against the forces of the electrostatic field (see Figure 

3.2) 

Figure 3.2 

Motion of the carriers on these sections can be produced only by the forces of a non-

electrostatic origin, called extraneous forces. These forces may be due to chemical 

processes, the diffusion of the current carriers in a non-uniform medium, to electric (but 

not electrostatic) fields set up by magnetic fields varying with time, and so on. The 

quantity equal to the work done by the extraneous forces on a unit positive charge (q) is 

called the electromotive force (e.m.f.) E, i.e. 

q

A
           (3.11) 

(E is measured in the same units as ). The extraneous force Fextr acting on the charge q 

can be written as follows: 

q*

extr EF  .             (3.12) 

The vector quantity E
*
 is called the strength of the extraneous force field. The integral 

from the scalar product E
*
dl calculated for a closed circuit gives the e.m.f. acting in the 

circuit. Thus, 

 ldE
*E .                                               (3.13) 

In other words, the e.m.f. acting in a closed circuit can be determined as the circulation 

of the strength vector of the extraneous forces. In addition to extraneous forces, a charge 

experiences the forces produced by an electrostatic field FE = qE. Hence, the resultant 

force acting at each point of a circuit on the charge q is  

)( *

extr EEFFF E  q                                   (3.14) 

The work done by this force on the charge q on circuit section 1-2 is determined by the 

expression 

1221

2

1

*
2

1

12 E)( qqdqdqA   lElE ,                 (3.15) 

where E12 is the e.m.f. acting on the given section. The quantity numerically equal to 

the work done by electrostatic and extraneous forces in moving a unit positive charge is 

defined as the voltage drop or simply the voltage U on the given section of the circuit. 

In accordance with equation (3.15) we can write: 

122112 EU .                                         (3.16) 

A section of a circuit on which no extraneous forces act is called homogeneous. A 

section on which the current carriers experience extraneous forces is called 

inhomogeneous. For a homogeneous circuit 

+

+ + +

+

+

 
1 2
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U12 =  ,              (3.17) 

i.e. the voltage coincides with the potential difference across the ends of the section. 

 
3.4 Ohm’s Law. Resistance of Conductors 
 

This experimentally established law can be formulated as follows: the current 

flowing in a homogeneous metal conductor is proportional to the voltage drop in the 

conductor 

R

U
I  .      (3.18) 

The scalar quantity R is called the electrical resistance of a conductor. The SI unit of 

resistance is the ohm () equal to the resistance of a conductor in which a current of 1A 

flows at a voltage of 1V. Experiments show that for a homogeneous cylindrical 

conductor 

S

l
R  ,      (3.19) 

where l is the length of the conductor, S is the cross section of the conductor,  is the 

coefficient depending on the properties of the material and called the resistivity of the 

substance. It is easy to see that  is measured in ohm-meters (m). It should be noted 

that  depends also on the temperature of a conductor: 

)1(
0

t ,            (3.20) 

where  is a temperature resistance coefficient. 

 To establish the relation between the vector j and E, let us mentally separate an 

elementary cylindrical volume with generatrices parallel to the vector j and E (see 

Figure 3.3) 

 
Figure 3.3 

Obviously, Ej

dS

dl

Edl
jdS







1
or  , . Having in mind that the vectors j and E are 

collinear, we get  

Ej 


 E
1

.     (3.21) 

The Equation (3.21) expresses Ohm’s law in the differential form. The quantity  is 

called the conductivity of a substance and is measured in siemens per meter (S/m). (The 

unit that is reciprocal of the ohm is called the siemens). 

 

 

 

dS

dl

E

j
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3.5 Ohm’s Law for an Inhomogeneous Circuit Section 
 

The extraneous forces act on the current carriers in the same way as the 

electrostatic ones. So, in the case of an inhomogeneous circuit section, the strength of 

the extraneous force field must be added in equation (3.21) 

)( *
EEj      (3.22) 

This equation expresses Ohm’s law for an inhomogeneous section of a circuit in the 

differential form. In order to pass over from Ohm’s law in the differential form to its  

Figure 3.4 

 

integral one, let us consider an inhomogeneous section of a circuit (see Figure 3.4). 

According to equation (3.22) we can write 

)(
*

ll
EEjl  .                                              (3.23) 

substituting I/S for jl and 1/ for  we get: 

*

ll
EE

S
I 


 .                                            (3.24) 

Multiplication of this equation by dl and integration along the length of the section 

yield: 

 
2

1

*

2

1

2

1

dlEdlE
S

dl
I

ll
.     (3.25) 

The quantity 
S

dl
  is the resistance of the section of the length dl, hence the integral of 

this quantity is the resistance R of the total circuit section. The first integral in the right-

hand side gives , and the second integral equals e.m.f. E12 acting on the section. 

Thus, we get 

1221 EIR      (3.26) 

 The e.m.f. E12, like the current I, is a scalar quantity. When the e.m.f. facilitates 

the motion of the positive current carriers in the selected direction (in Figure 3.4, it is 

direction 1-2), we have E12>0. If the e.m.f. inhibits the motion of the positive carriers in 

the given direction, E12<0. 

 Equation (3.26) written in the form 

R
I 1221 E
         (3.27) 

is known to be called Ohm’s law for an inhomogeneous circuit section. Assuming that 

, we get the equation of Ohm’s law for a closed circuit: 

R
I

E
 ,                                                       (3.28) 

where E is the e.m.f. acting in the circuit, R is the total resistance of the entire circuit. 

 

 

l

E E*

1 2

S
dl
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3.6 Kirchhoff’s Rules 
 

The calculation of multi-loop circuits is considerably simplified if two 

Kirchhoff’s rules are used. The first of them relates to the circuit junctions. A junction 

is defined as a point where three or more conductors meet (see Figure 3.5). 

 

Figure 3.5 

 

A current flowing toward a junction is considered to have one sign (plus or minus), and 

a current flowing out of a junction is considered to have the opposite sign (minus or 

plus). 

Kirchhoff’s first rule, also called the junction rule, is formulated as follows: the 

algebraic sum of all the currents coming into a junction equals zero:  

 0
)(


k

k
I .                                                 (3.29) 

This rule follows from the continuity equation, i.e. from the charge conservation law.  

 

Figure 3.6 

 

Equation (3.29) can be written for each of the N junctions of a circuit. Only N-1 

equations will be independent, however, whereas the N-th one will be a corollary of 

them. 

  The second rule relates to any closed loop separated from a multiloop circuit 

(see Figure (3.6). For a loop 1-2-3-4-1 we can write according with Ohm’s law for an 

inhomogeneous branches of the loop, the following equations: 
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E
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RI
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When these expressions are summed, the potentials are cancelled, and we get 

 
k

E
kk

RI                                            (3.30) 

Equation (3.30) expresses Kirchhoff’s second rule, also called the loop rule. Equation 

(3.30) can be written for all the closed loops that can be separated mentally in a given 

multiloop circuit. Only the equations for the loop that cannot be obtained by the 

superposition of the loops on one another will be independent, however. 

 
3.7 Power of a Current 
 

The electrostatic and extraneous forces acting on the given section of an electric 

circuit do the work 

UItUqA  .                                                 (3.31) 

Dividing equation (3.31) by the time t during which it is done we get the power of the 

current  

IIUIP
1221

)( E .         (3.32) 

 The ratio of the power P developed by a current in the volume V of a 

conductor to the magnitude of this volume is called the unit power of the current PU 

corresponding to the given point of the conductor 

V

P
P

U



 .                 (3.33) 

 An expression for the unit power can be obtained from the following 

considerations. The force e(E+E
*
) develops a power of  

UEE )( * eP ,                                              (3.34) 

where U is the average velocity of the carriers (the thermal velocity must be taken into 

consideration!). 

 Obviously, the power P developed in the volume V can be obtained by 

multiplying P'  by the number of current carriers in this volume, i.e. by nV (n is the 

number of carriers per unit volume). Thus, 

VVneP *  )()( *
EEjUEE .    (3.35) 

Hence,  

)( *
EEj 

U
P .                                           (3.36) 

This expression is a differential form of the integral equation (3.32). 

 
3.8 The Joule-Lenz Law 
 

When a conductor is stationary and no chemical transformations occur in it, the 

work done by current increases the internal energy of the conductor, and as a result the 

latter gets heated, i.e. the heat  

UItQ                                                      (3.37) 
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is liberated. Substituting RI for U, we get 

tRIQ 2 .                                                   (3.38) 

This Equation is known to be called the Joule-Lenz Law. Equation (3.38) can be 

transformed in a differential form (see Figure 3.3). For an elementary cylindrical 

volume, we can write 

dVdtjdtjdS
dS

dl
dtRIdQ 222 )( 


 .      (3.39) 

Dividing equation (3.39) by dV and dt, we amount of heat liberated in unit volume per 

unit time: 
2jQ

U
 .                                                 (3.40) 

The quantity QU is called the unit thermal power of a current. 

 Equation (3.40) is a differential form of the Joule-Lenz law. It can also be 

obtained from equation (3.36). Substituting jj  /  for E+E
*
 in Equation (3.36) we 

arrive at the expression  

2jPU                                                           (3.41) 

that coincides with equation (3.40). 

 It must be noted that Joule and Lenz established their law for a homogeneous 

circuit section. As follows from what has been said in the present section, however, 

Equations (3.37) and (3.40) also hold for an inhomogeneous section provided that the 

extraneous forces acting in it have a non-chemical origin. 

 

Examples 
 
Problem 9 
 Find the currents I1, I2 and I3 in the circuit shown in Figure 9. 

Reasoning We choose the directions of the currents 

as in Fig.9. Applying Kirchhoff’s first rule to 

junction c gives 

I1 + I2 = I3 .                       (1) 

There are three loops in the circuit, abcda, befcb, and 

aefda (the outer loop). Therefore, we need only two 

loop equations to determine the unknown currents. 

The third loop equation would give no new 

information. Applying Kirchhoff’s second rule to 

loops abcda and befcb and traversing these loops in 

the clockwise direction, we obtain the expressions 

         Loop abcda: 

 0)2()6(V10
31
 II                              (2) 

         Loop befcb:  

0)4()6(V10V14
21
 II                          (3) 

Note that in loop befcb, a positive sign is obtained when traversing the 6-resistor 

because the direction of the path is opposite the direction of I1. A third loop equation for 

aefda gives 14 = 2I3 + 4I2, which is just the sum of (2) and (3). 

Solution Expressions (1), (2), and (3) represent three independent equations with three 

unknowns. We can solve the problem as follows: Substituting (1) into (2) gives 

Figure 9. A circuit 

containing three loops. 
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         10  6I1  2(I1  I2) = 0; 

10 = 8I1 + 2I2.            (4) 

Dividing each term in (3) by 2 and rearranging the equation gives 

12 = 3I1 + 2I2.             (5) 

Subtracting (5) from (4) eliminates I2, giving 

22 = 11I1; 

I1 = 2A. 

Using this value of I1 in (5) gives a value for I2: 

2I2 = 3I1  12 = 3(2)  12 = 6; 

I2 = 3A. 

Finally, I3 = I1 + I2 = 1A. Hence, the currents have the values 

I1 = 2A I2 = -3A I3 = -1A 

The fact that I2 and I3 are both negative indicates only that we chose the wrong direction 

for these currents. However, the numerical values are correct. 

 

Exercise: Find the potential difference between points b and c. 

Answer: Vb  Vc = 2V. 
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4. Magnetic Field 
 

4.1. Biot-Savart’s law. Ampere’s law. 
 

In beginning of 19
th

 century, H.Oersted, the Danish scientist, discovered 

experimentally that if a conductor carries an electric current I


, it influences the 

magnetic pointer situated near it in a similar way as an ordinary magnet. Further 

experiments showed that two long straight conductors carrying the currents are attracted 

if the directions of the currents coincide, and are repulsed if the directions of the 

currents are opposite (see, Figure 5.1[a]).  
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It is well known from experiments that two permanent magnets are attracted or 

repulsed if they are directed to each other by similar or opposite poles (northern or 

southern ones). Two solenoids carrying the currents are interacting in the same way as 

two permanent magnets, and are attracted or repulsed depending on the currents mutual 

directions (Figure 5.1[a] and Figure 5.1[b]). One says that an interaction of the 

conductors occurs due to magnetic media, which is called the magnetic field. Thus, the 

magnetic field causes the force, which influences the conductor carrying a current and 

magnetizes the bodies. Since the current is the directed motion of charged particles, the 

magnetic field causes the force, which influences the motion of charged particles and 

bodies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In order to describe the (magnetic) interaction of conductors carrying the 

currents, consider the electric current element lId


, which is a vector and is defined as 

the product of the electric current strength I  and the length element ld


of a conductor. 

Here, ld


is directed along a current. Let the elements of two currents be situated in a 

space as shown in Figure 5.2. 

In this case the elemental force 12Fd


, which experiences in a vacuum the current 

element 2dl  due to magnetic field produced by the current element 1dl , can be written 

(in the SI system) in a form: 

 

  12123

12

210

12
4

rldld
r

II
Fd







  .                                 (5.1a) 
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The modulus of this force is 

   
2

12

2122110

12

sinsin

4 r

dlIdlI
Fd









 .                              (5.1b) 

 

Here, 12r  is a vector directed from the current element 11 ldI


 to the current 

element 22 ldI


 and n


 is the unit vector directed perpendicular to the plane in which the 

element 11 ldI


 lies, and 27

0 /104 AH   is the magnetic constant. Equations (5.1a – 

5.1.b) are two mathematical forms of Ampere’s law of magnetic interaction in a vacuum 

between the conductors carrying the currents. The force characteristic of the magnetic 

field is the vector of magnetic induction B


. Its numerical value equals to the limit of 

relation of the elemental force Fd


, which is experienced by an elemental current due to 

magnetic field, to the absolute value of elemental current lId


: 

 

lId

Fd
B dl 




0lim     . 

 

The vector B


 is directed perpendicularly to the conductor element and to the 

direction of the force by which the magnetic field influences this element. The magnetic 

induction is measured in SI system in Teslas,   )/( mANTB  . In the Gauss’s 

system a magnetic induction is measured in Gausses:   TGB 410 . 
For the graphic representation of the magnetic field it is convenient to use the 

force lines of magnetic induction B


. The tangent to this line in every point coincides 

with the direction of the B


 vector in that point. The force lines of magnetic induction 

B


 are always closed. For example, the force lines of rectilinear conductor carrying a 

current are the circles in a plane perpendicular to a current. The B


 force lines inside a 

solenoid (or inside a long cylindrical coil) are parallel to each other (see, Figure 5.3).  
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The magnetic field is called uniform if the B


 vector is the same in every point 

of the field, i.e. these vectors are parallel and are drawn with the same density. An 

example of the uniform magnetic field is the field inside a long solenoid (Figure 5.3). 

The magnetic field is non-uniform if the field B


 taken at different points of the field is 

different, i.e. the force lines are not parallel and are drawn with different density. An 

example of a non-uniform magnetic field is the magnetic field of the rectilinear 

conductor carrying a current (Fig.5.3b).  

The direction of the force line of magnetic induction B


 is easy to determine by 

the use of the so called right-hand screw rule which reads: if one rotates the screw in a 

current direction, the direction of a screw handle rotation shows the directions of the 

magnetic induction force lines. 

The magnitude and direction of the magnetic induction vector Bd


 at arbitrary 

point O  of magnetic field, generated in a vacuum by the current element lId


, is 

determined by Biot and Savart law: 

 

 

.
sin

4

;
4

2

0

3

0

r

Idl
dB

r

rldI
Bd

















                                       (5.3) 

 

Here, r


 is the radius-vector drawn from an element of a current to the point 

where the magnetic field is measured, and   is an angle between the vectors ld


and r


. 

The B


 vector is perpendicular to a plane formed by the vectors ld


and r


, and its 

direction in a space is determined by the right-hand screw rule: the screw handle rotates 

from ld


 to r


by passing the minimal angle, while the screw body indicates the Bd


 

direction (see, Figure 5.4). 
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If there are few conductors carrying different electric currents, then the resulting 

magnetic field generated by the system of currents is determined according to the fields 

superposition principle. As a result, the magnetic field B


 generated by electric currents 

nIII ,...., 21  equals to a vector sum of magnetic fields generated by each current kI  

separately, i.e. 



n

i

iBB
1


. 

The superposition principle of magnetic fields allows to find the magnetic field 

induction B


 generated by a conductor of finite length carrying a current I , at arbitrary 

point of a magnetic field: 

  
I I

dIBdB 



sin

4

0


  .                                (5.4) 

 
Using this equation, one obtains easily the magnetic field generated by a conductor of 

specific shape carrying a current I . 

a) Straight current (wire) carrying conductor  (Figure 5.5[a]) 

 21

0 coscos
4







r

I
B ;                                   (5.5) 

Here, r  is the length of the perpendicular drawn from an observation point to a straight 

line, which coincides with a current. 

 

b) Infinite straight current carrying conductor  (Figure 5.5[b]): 

r

I

r

I
B 









2

2

4

00  .                                    (5.6)  

  
Here, r  is the distance between a wire and observation pint. 

 
c) In a center of a circular current loop (Figure 5.5[c]): 

;
2

0

R

I
B


                                              (5.7) 

Here, R  is a radius of the loop. 

 
d) On the axis of the circular current loop (Figure 5.5[d]) 

 

 
;

2 2/322

2
0

rR

IR
B





                                        (5.8) 

Here, R  is a radius of the loop while r is a distance between a loop center and 

observation point. 

 

e) In a center of the square current loop (Figure 5.5[e]):  

 

.
8

4

22

0

ab

ba
B







                                       (5.9) 
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If the conductor (wire) carrying a current is a closed contour (loop) (e.g., circle 

or rectangle), one introduces the vector nISSIPm


 , which is called the vector of 

magnetic moment of a current. Its magnitude equals a product of the current I and a 

surface S , closed by a contour. The vector mP


 is directed parallel to the normal vector 

n


 to a contour plane, so that if seeing from the end of the vector mP


, the current flows 

counter-wise. Using the definition of a magnetic moment vector, the Equation (5.7) and 

Equation (5.8) can be rewritten in a form:  

 

;
2 3

0

R

P
B m








   

  2/322

0

2 rR

P
B m










.                       (5.10) 

 
Thus, a conductor carrying a current produces the magnetic field around itself. 

Similarly, one can suppose that a moving charge produces the magnetic field around 

itself. Indeed, the charge q  moving with a velocity V


( cvV 


) in a vacuum, 

generates the magnetic induction B


 

 

 rV
r

q
B


3

0

4





 .                                 (5.11) 

 

Here, r


is the radius-vector drawn from the charge position to the observation point A 

(Figure 5.6). 
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The magnetic field of a moving charge is variable (time-dependent), since both 

direction and magnitude of r


 are changing upon a charge motion, even if its velocity 

constV 


. During a charge motion, its electric field 34/ rrqE 


  moves too, therefore 

the equation (5.11) can be rewritten in a form: 

 

 EVB E


0  .                                                (5.12) 

 

The Equation (5.12) allows the conclusion that any electric field moving at velocity EV


 

produces a magnetic field described by equation (5.12). 

If one places the conductor (wire) of the length dl  carrying a current I into a 

magnetic field characterized by magnetic induction B


, there arises a force AFd


, which 

acts on the conductor. This force is caleld Ampere’s force and is determined by the 

following equations which are Ampere’s law: 

 

 
 .sin

;

BldBIdldF

BIdIFd

A

A







 

 

In particular, if Bld


 , the direction of Ampere’s force is defined by the left-

hand  rule which reads: the palm of the left hand is situated so that the magnetic 

induction vector B


comes into the palm, the four fingers indicate the direction of the 

current, and the direction of the thumb  (perpendicular to the other four fingers) shows 

the direction of Ampere’s force. In general, the direction of Ampere’s force is defined 

by the ordinary vector product of ld


and B


. 

Since Ampere’s force is perpendicular to the magnetic induction strength lines, 

it is not a central force in comparison to electrostatic force, which is the central one. 

As it follows from Ampere’s law, a force AFd


 is maximal, if a conductor 

element dl carrying a current is situated perpendicular to the lines of magnetic 

induction. 

The magnetic field aligns in a specific way a closed conducting loop carrying a 

steady current. For example, a square current loop placed into a uniform magnetic field 

rotates until its plane is perpendicular to the vector of magnetic induction B


.  The 

reason of this rotation is connected with an appearance of the torque applied to the 

opposite pair of a square loop wires. The resulting pair of Ampere’s forces, which are 

directed oppositely, rotates a loop.  

Ampere’s forces which act on a closed current loop placed into a magnetic field 

can be the reason of the conductor mechanical deformation or break, if a magnetic field 

is very strong and a current is very large.  

If a current loop is placed into a non-uniform magnetic field, there appear both a 

torque and a resulting force exerted on a closed current loop. As a result, a closed 

current loop placed into a non-uniform magnetic field does not only rotate but even 

moves along a gradient of magnetic field. In that sense one says that a behavior of a 

closed current loop in a non-uniform magnetic field is similar to that of electric dipole 

in a non-uniform electrostatic field. 
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4.2 The Flux and Circulation of Magnetic Field 
 

Since the conductor carrying a current when placed into a magnetic field is 

influenced by Ampere’s force, during its displacement to a distance rd


 the work 

 rdFdA A


  is done. Let the conductor of the length l  and carrying a current I  is 

placed into a uniform magnetic field characterized by magnetic the induction vector B


 

directed perpendicularly to the Fig.5.7 plane (“from us”). The conductor is influenced 

by Ampere’s force IlBFA  and, therefore, is shifted parallel to itself by the distance 

rd


. Then  

  IBdSIBldrdA  ,                                            (5.13) 

 

where IdrdS  is the surface covered by the conductor upon its motion. As it is seen 

from Fig.5.7, in this situation the B


 vectors flow through the dS . It is convenient to 

introduce the new quantity, the flux of magnetic induction vector (magnetic flux) 

through dS .  

 

 

 

 

 

 

 

 

 

 

     
 

Figure 5.7     
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The elementary magnetic flux of the vector B


 through elemental surface dS  is 

the scalar quantity defined as 

 

     nBdSBndSBSdBd


cos  ,                             (5.14) 

 

where n


 is a unit vector of the outer normal to a surface dS . The total magnetic flux 

through a surface is determined then as 

 

 dSnBB
S




cos .                                                (5.15) 

It is obvious that in a case of a uniform magnetic field    SBBSSB


cos . 

The unity of magnetic flux is   Wb , 2/11 mTeslaWb  . The magnetic charges do 

not exist in nature, therefore the strength lines of magnetic induction are closed and the 

magnetic flux through an arbitrary closed surface equals zero: 

 

 
S

SdB 0


.                                                          (5.16) 

 

The Equation (5.16) is in fact Gauss’ theorem for magnetic induction in the 

integral form. The differential form of this theorem reads:  

 

0Bdiv


.                                                         (5.17) 

 

Using the definition of a magnetic flux, we can rewrite Equation (5.13) for a 

work necessary for displacement in a magnetic field of a conductor carrying a current: 

 

 IddA .                                                        (5.18) 

 

Therefore, the work necessary for displacement of a closed current loop in a magnetic 

field is  

 

 12  ddIdA .                                              (5.19) 

 

Here,  12  dd  is a change of a magnetic flux through a surface limited by a closed 

current loop. 

The magnetic field characterized by the closed strength lines is the vortex field. 

The circulation of a vector B


along a closed contour is defined as the integral like 

 

    
ll

BdlldB cos


.    

 

Here, dl - is an element of a contour length taken in the direction of motion along a 

contour;   - is an angle between the vectors B


 and ld


. In order to calculate the 

magnetic field caused by a direct (steady) current in a vacuum, one has to use the law of 

a total current, which reads: the circulation of a vector of magnetic induction along an 
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arbitrary closed contour is proportional to an algebraic sum of the currents closed by 

this contour: 

 

  



N

i

i

l

IldB
1

0


.                                               (5.20) 

 

Here, N is the total number of conductors (currents) inside a contour l .  In this sum a 

current is taken as positive one if seeing from the end of a vector, the motion along a 

contour is counter-wise, in opposite case a current is taken as negative one. The 

currents, which are not inside a closed contour l , do not contribute to the circulation of 

B


 and every current in Equation (5.20) is taken the same times as it appears inside a 

contour. For example, in the case of a system of currents shown in Figure 5.8 one 

obtains: 
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Applying the law of total current to the coil (circle-like coil placed on the circle-

like core, see Figure 5.9[a]) and to the long solenoid (cylindrical coil consisting of a 

large number of twists forming a screw-like line, see, Figure 5.9[b]) we get:   

 

 

,
2

0

r

NI
Bt




         

l

NI
Bsol

0   .                                 (5.21) 

 

Here, N is the number of twists in a toroid or solenoid, r is the radius-vector of a point 

inside a toroid,  and l  is the length of a solenoid. The generalization of the total current 

I1 I2 

I3 

I4 

I5 

Figure 5.8 
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law for the case when there exist the displacement current and molecular currents inside 

a material will be given below. 
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4.3 Lorentz’s force. Hall’s effect 
 

Any electric charge q moving at a velocity V


 in a magnetic field B


 experiences the 

force which is called the Lorentz force:  

 

 
 .sin

,





qVBFF

BVqF

LL

L




                                   (5.22) 

 

Here,   - is the angle between the charge velocity V


and the magnetic induction vector 

B


.  

Figure 5.10(a) shows mutual arrangement of the vectors VBFL


,,  for the case 

0q , while Figure 5.10(b) shows it for the case 0q . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since Lorentz’s force LF


 is perpendicular to the velocity vector V


, it changes 

only the direction of V


but not its value, and, therefore, does not do any work. 

Therefore, the kinetic energy of a charged particle during its motion in a magnetic field 

does not change. 

In a uniform ( B


 does not depend on a coordinate) magnetic field when the 

vectors B


 and V


 are perpendicular, i.e. VB


 , Lorentz’s force acts as a centripetal 

force: 
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CenterL FF  ,  or  rmvqvB 2 . 

 

 

 Upon action of this force, a charged particle of a mass m moves in a circle of a constant 

radius qmvBrB   in a plane being perpendicular to the vector B


 (see Figure 5.11). 

Therefore, a rotation period T of a charged particle in a uniform magnetic field, 

qBmT 2 , does not depend on the particle velocity. This conclusion serves as a 

basis to design cyclic accelerators of charged particles. 

If the charged particle moves in a uniform magnetic field, so that the velocity 

vector V


makes an angle 2   with magnetic field vector B


(see Figure 5.11), then 

the particle trajectory is a spiral line characterized by a curvature radius R  and a spiral 

step h : 

 

   
.

cos2
;

sin

qB

mv
h

Bq

mv
R


        

 

If the magnetic field is non-uniform (see, Fig.5.11), the charged particle moves 

along a spiral with a changing curvature radius and changing spiral step.  E.g., 

following an increase of the magnetic induction B , the radius R and step h  of the 

spiral line decrease.  

In modern devices many of considered above features of a motion in a magnetic 

field are used. For example, for a measurement of a specific particle charge mq , the 

deviation of the charged particle caused by Lorentz’s force in a magnetic field is used, 

and the formula Bqmvr   is applied. For the determination of the mq  value in the 

case of heavy ions, the joint action of both magnetic and electric fields is used. In this 

case the generalized Lorentz’s force determines the ion motion: 

 

 BVqEqFL


 . 

 

This force depends both on an ion charge q  and ion velocity V


and allows the 

ions separation according to their mass and charge. The device for the measurements of 

relative atomic masses of the ions and isotopes of chemical elements is called the mass -

spectrograph or mass-spectrometer. The devices to obtain the charged particles of high 

kinetic energy are called accelerators.  

In the linear accelerator a particle moves through an electric field having a great 

voltage created by electrostatic generator, and leaves this field receiving the energy 

 2  qW , which can be up to 10 MeV. In the linear resonance accelerators, the 

particles are accelerated by an alternating electric field of a very high frequency, which 

is changing synchronously with a particle motion. These linear accelerators allow the 

energy of the particles up to tens or hundreds of GeV (1GeV=10
9
 eV). 

  In the betatrons, specially suited for acceleration of electrons, the vortex electric 

field is used, which is produced by alternating magnetic field of an electromagnet. The 

electron trajectories in a betatron are the circles coinciding with the strength lines of a 

vortex electric field.  
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To accelerate the heavy charged particles (ions, protons), the cyclic resonant 

accelerators – cyclotrons - are used. The joint action of alternating accelerating electric 

field and magnetic field, which enforces the particle motion along the spiral of 

increasing radius leads to a possibility of acceleration up to high energy (tens of MeV). 

To obtain the beams of very high-energy electrons (so called ultrarelativistic 

electrons with an energy up to 10 GeV), the other type of cyclic accelerator – a 

synchrotron is used. In a synchrotron, the electrons move in circle of a large (up to 10 

m) radius. Unfortunately, the electron synchrotron has serious disadvantage. It is known 

from electrodynamics, that any charged and accelerated particle radiates 

electromagnetic waves. In a case of the ions one can neglect this radiation due to a large 

mass of the ion. In a case of electrons moving in a uniform magnetic field in a circle this 

radiation is called the synchrotron radiation. Due to radiation, the relativistic electron 

looses per every revolution an amount of energy 
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R

E
constWrad

4

 . 

Here, RE,  are the energy of relativistic electron and an orbit radius, respectively. 

Therefore, this radiation energy loss must be compensated by additional acceleration in 

order to keep the electron energy constant. The advantage is that the synchrotron 

radiation is widely used through the world as the bright source of soft X-rays, which are 

used in lithography and in biological and medical research. 

In electronic optics one studies the properties of charged particle beams 

(electrons, protons) interacting with electric and magnetic fields. In particular, the 

diffraction phenomena are studied, which are connected with the wave properties of the 

particles.  

Hall’s effect is called a phenomenon when the voltage   and transverse 

electric field arises in a metal or semiconductor carrying an electric current I , if they 

are placed into a magnetic field, which is perpendicular to the current direction. Let the 

metal conductor be placed into magnetic field characterized by the magnetic induction 

B


, as shown in Figure 5.12.  

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

 

 

Under the action of Lorentz’s force LF , the conductivity electrons are deflected 

to the upper surface of the conductor. Therefore, the enhanced concentration of positive 

charges arises near the lower surface. These two oppositely charged surfaces causes the 

transverse electric field E


. When it reaches a definite value, the stationary distribution 

of charges is established and the voltage can be found using the equation  

 

h

IB
R ,                                                  (5.24) 

 

with qnR 1  being Hall’s constant ( nq,  are the charge of particle causing the current 

and their concentration, respectively). The vector E


 is defined by the equation 

Figure 5.12 
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 jBRE


  , 

 

Here, j


- is the vector of the current density. Hall’s effect allows to determine the 

concentration of the current carriers and to make conclusions on the type of 

conductivity (e.g., in the case of semiconductors to conclude on hole, electronic or 

mixed – n and p type - conductance). 

Indeed, the sign of Hall’s constant coincides with a sign of the charge of the 

particles, which are responsible for a conductance of a material. Therefore, if one 

measures Hall’s constant R for a semiconductor, one can say that a conductance is 

electronic one if R<0 and is hole-type if R<0.   

 From the other side, if Hall’s constant and charge of current carriers and their 

nature are known one can determine their concentration. E.g., for metals 

 

 qnn 1 , 

 

which coincides with atomic concentration. 

 In a case of electronic conductance, one can use the R value to estimate the mean 

free path of electrons   in a conductor. Indeed, the specific electric conductance  is 

defined as 

um

ne

2

2 
  . 

Here, m,  and u  are the mass of electron, its mean free path and mean velocity of 

thermal motion, respectively. Therefore, the mean free path of electrons is defined by 

following equation: 

e

Rum

ne

um 


22
2

 . 

 

An estimation according this formula reads that the mean free path of electrons in a 

conductor is hundreds of interatomic distances, i.e. m810 . 
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4.4 Electromagnetic induction 
 

The phenomenon of electromagnetic induction discovered by the great English 

physicist M.Faraday (1831) is the appearance of electric induction i  in a conducting 

contour placed into an alternating magnetic field. If the contour is closed, there appears 

an inductive electric current inside it. The law of electromagnetic induction ( Faraday’s 

law) reads: the electric induction in a contour is equal and has an opposite sign to the 

rapidity of a change of magnetic flux through the surface closed by this contour: 

 

dt

d
i


 .                                                    (5.25) 

 

The direction of the path along a contour is selected in the following way:  if 

seeing from the end of a normal external vector n


 to the contour surface, this path is 

counter-clockwise. If a closed contour consists of N  connected coils, then   is the 

total magnetic flux through the surfaces limited by all N coils, namely 

 





N

i

i

1

, 

 

Here, -  is the contour coupling flux. Therefore, 

 

dt

d
i


 . 

 

The minus sign in Equation (5.25) is determined by Lentz’s rule: an induction 

current I  in a contour has always the same direction as  the magnetic field created by it, 

and the magnetic flux through the surface limited by a contour prevents the change of 

magnetic flux, which causes this induction current.  

 The magnetic flux   in Equation (5.25) can be different due to a change of the 

contour size (e.g., its deformation), or due to the movement of the contour (e.g., 

rotation) in an external magnetic field, or due to a change of the magnetic field in time. 

For example, under rotation of a frame in uniform magnetic field constB   at a 

constant angular velocity  , the magnetic flux is  tBS cos , and therefore there 

appears an alternating electric induction  tBSi  sin . This effect is used in the 

alternating current generators.  

The induction currents, which appear in the bulk of the conductors are named 

the vortex currents or Foucault’s currents. Foucault’s currents obey Lentz’s law: their 

magnetic field is directed in the way in order to prevent a change of the magnetic flux  

which induces the vortex currents. These currents cause the heating of the conductors: 

the amount of the heat generated by vortex currents per time unit is directly proportional 

to the frequency squared of the magnetic flux change. 

 The appearance of an electric induction in a circuit during a change of a current 

in this circuit is named the self-induction. The self magnetic field of a current in a 

contour creates the magnetic flux   through the surface S  closed by the contour. One 

says that the magnetic flux  is coupled with a contour,  
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LI   .                                                    (5.26) 

 

Here, L - is the inductivity of a contour. The inductivity L  is measured in Henrey: 

1Hn=Vsec/A. The inductivity L  depends on the geometric form of a contour, its size, 

and on the properties of a media where this contour is placed. For example, the 

inductivity of a solenoid of a length l  and a surface of cross-section S  and the number 

of twists N is: 

 

l

SN
L

2

0   .                                                (5.27) 

 

By substituting of Equation (5.26) into Equation (5.25) one obtains: 

 

dt

dI
Li   .                                               (5.28) 

 

That means, the contour inductivity is a measure of its inertia with respect to the 

current change. 

  If there are two contours 1 and 2 near each other, and the current strength 

changes in one of them, in the second one appears an electromagnetic induction. The 

law of mutual induction is written in the form: 

 

dt

dI
L

dt

dI
L 2

121
1

212 ;     .                                 (5.29) 

 

The coefficients constLL  2112  are named the coefficients of mutual 

inductivity of contours 1 and 2. In particular, the principle of the work of transformers, 

which are used to increase or decrease the voltage of alternating current,  is based on the 

phenomenon of mutual induction: the alternating magnetic field of the current I   in  the 

primary winding causes an appearance of mutual electric induction  in the secondary 

winding. The core provides a sufficient mutual inductivity 12L  of the transformer. 

The magnetic field of an electric current has an energy which can be expressed 

as: 

 

2

2

1
LIWm     .                                             (5.30) 

 

For example, the energy of magnetic field of a long solenoid in a vacuum is: 

 

VInWm

22

0
2

1
 ,                                          (5.31) 

 

Here, V - is the volume of a solenoid, n  - is the number of the twists per its 

length unit. In order to obtain the amount of energy closed in a unit volume of a field, 

one introduces the definition of the volume density of the energy m : 
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BHH
B

dV

dW
m

2

1

2

1

2

1 2

0

0

2

 


 ,                           (5.32) 

 

Here, 0BH   is named the strength of a magnetic field in a vacuum. 

 

Problems to Chapter 4 (Magnetic field) 
 

Problem 1 
Calculate the magnitude of the magnetic field at a distance 100 cm from a long, thin 

conductor carrying a current of 1.0 A. 

Problem 2 
A long, thin conductor carries a current of 10.0 A. At what distance from the conductor 

the magnitude of the resulting magnetic field equals 1.0010
-4

 T ? 

Problem 3 
A wire in which there is a current of 5.0 A is to be formed into a circular loop of one 

turn. If the required value of the magnetic field at the center of the loop is 10.0 T, what 

is the required radius of the loop? 

Problem 4 
In Bohr's model of the hydrogen atom (1913), an electron circles the proton at a 

distance of 5.310
-11

 m with a speed of 2.210
6
 m/s. Compute the magnetic field strength 

which produces this motion at the location of the proton. 

Problem 5 

A 12-cm  16-cm rectangular loop of superconducting wire carries a current of 30 A. 

What is the magnetic field at the center of the loop? 

Problem 6 
A long, straight wire lies on a horizontal table and carries a current of 1.2 A. A proton 

moves parallel to the wire (opposite the current) with a constant speed of 2.310
4
 m/s at 

a distance d above the wire. Determine the value of d. You may ignore the magnetic 

field due to the Earth. 

Problem 7 
The magnetic coil of a tokamak fusion reactor is in the shape of a toroid having an inner 

radius of 0.70 m and outer radius of 1.30 m. If the toroid has 900 turns of large-diameter 

wire, each of which carries a current of 14 kA, find the magnetic field strength along (a) 

the inner radius and (b) the outer radius. 

Problem 8 
A packed bundle of 100 long straight, insulated wires forms a cylinder of radius 

R = 0.5 cm. (a) If each wire carries a current of 2.0 A, what are the magnitude and 

direction of the magnetic force per unit length acting on a wire located 0.2 cm from the 

center of the bundle? (b) Would a wire on the outer edge of the bundle experience a 

force greater or smaller than the value calculated in part (a)? 
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5. MAGNETIC FIELD IN MATTER 
 

5.1. Magnetic moments of atoms 
 

The magnets are those materials, which can be magnetized in a magnetic field, 

i.e. can create their own magnetic field. The molecule (atom, ion) is a dynamic system 

consisting of charged particles and has its own magnetic field. The molecules can create 

inside a substance the resulting magnetic field intB


, which is called the internal 

magnetic field. This magnetic field arises due to existence of magnetic moments mp


 of 

molecules, atoms or ions. E.g., the electron motion along a closed orbit around a 

nucleus can be considered as the circle current loop eI   (where e - is the electron 

charge,   - is the rotation frequency around nucleus). Therefore, one can associate with 

the current I  the magnetic moment 

 

  nSeP
orbm


 .  

 

Here S  - is the orbit surface and n


 is a unit vector normal to S . This magnetic moment 

is called the orbital magnetic moment of electron.  The mutual arrangement of the 

vectors of electron orbital angular momentum L


, orbital magnetic moment mP


 and 

electron velocity v


 is shown in Figure 6.1 
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Figure 6.1 

  

It follows from relativistic quantum mechanics that the electron has 

intrinsic angular momentum S


, which is named the spin. As a sequence, an 
electron has also its  spin magnetic moment  
 

m

e
gSSgP SzSmS  ,

2

1
, 


  . 
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Here zS  - is the projection of electron own angular momentum (or spin) onto a chosen 

axis and Sg  - is the gyro-magnetic ratio for a spin angular momentum,  - is Planck’s 

constant and me,  are the mass and charge of electron. 

Thus, the magnetic moment of an electron in an atom meP


 is a sum of orbital and 

spin magnetic moments:   mSorbmme PPP


 .  As a sequence, the magnetic moment of an 

atom is the sum of magnetic moments of all electrons of an atom and the magnetic 

moment of atomic nucleus  
nuclmP


 which is sufficiently less (up to thousands times) as 

compared to magnetic moment of an electron meP


.  

Therefore, the magnetic moment of an atom  
atmP


 (or of a molecule) equals to a 

vector sum of orbital and spin magnetic moments of all electrons from which an atom (a 

molecule) consists: 

 

     



Z

i
imS

Z

i
imatm PPP

11


,                                      (6.1) 

 

Here, Z - is the number of electrons of an atom (molecule). 

 If one places a magnet in a magnetic field B


, this magnetic field acts on the 

magnetic moments of the atoms of the magnet. Let the electron orbit be oriented with 

respect to the vector B


 in the way that the vector of the magnetic moment of the 

electron mP


 makes a certain angle   with B


 (see Figure 6.2). 

Due to the interaction of the electron magnetic moment mP


 with the magnetic 

field B


, there arises a rotation of the electron orbit and connected with this orbit vector 

mP


 around the B


 vector, with an angular velocity L . This kind of rotation is called 

precession and is characterized by Larmor’s theorem. Larmor’s theorem reads: the 

magnetic field influences an electronic orbit in such a way that the orbit makes a 

precession while the vector mP


 rotates around the axis transmitting through the center of 

an orbit parallel to magnetic induction vector B


 (or parallel to a vector of magnetic 

field strength H


) with an angular frequency L  which is named Larmor’s frequency: 

 

m

eH

m

eB
L

22
0    .                                        (6.2) 

 

Thus, an electron makes a complicated motion in a magnetic field: it moves 

along its orbit, and the orbit makes precession around B


.  This complicated motion 

causes additional  (induced by magnetic field) orbital magnetic moment of the electron 

mP


 , which is directed opposite to B


 (or to H


) vector (see Figure 6.1). Then, the total 

induced orbital magnetic moment of an atom is:  

 

   



Z

i
imatm PP

1


.                                             (6.3) 
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5.2 Magnetic properties of matter 
 

The magnetic field created by the molecules (atoms, ions) of a magnetic material 

due to the existence of their own magnetic moments is called the internal (own, 

intrinsic) magnetic field.  The resulting magnetic field in a magnetic material is thus the 

sum of the vector of magnetic induction of external (primary, or magnetizing) field B


 

(which is created by macroscopic currents, e.g. conductivity current, convection current) 

and internal magnetic field intB


 (which is created by molecular currents in the magnetic 

material): 

 

int0 BBB


    .                                                 (6.4) 

 

When a uniform and isotropic magnetic material fully occupies the space, then 

in the magnetic material 0BB


 , where HB


0  - is the magnetic induction in 

vacuum. The physical quantity   of magnetic material is called the relative magnetic 

permeability of magnetic material, and it shows how many times the magnetic induction 

at a given point of the given material is greater than that in vacuum, for the given 

distribution of macroscopic currents.  

In order to characterize the degree of magnetizing of a material one introduces 

the magnetizing vector J


, which is a vector sum of magnetic moments of molecules 

(atoms) per unit volume of magnetic material: 

 

  







 





N

i
imV P

V
J

1

0

1
lim


 .                                            (6.5) 

 

Here, N - is the number of molecules (atoms) in the volume V of magnetic 

material and  
imP


 - is the magnetic moment of i

th
 molecule (atom). When the magnetic 

material is inside a weak magnetic field, then 

 

HJJB


  ,0int .                                           (6.6) 

 

Here,  - is the magnetic permeability of a material. Combining Equation (6.4) 

and Equation (6.6) one finds the connection between magnetic induction B


 , magnetic 

field strength H


 and magnetizing vector J


: 

 

JH
B 



0

.                                                    (6.7) 

Rewriting Equation (6.7) in a form 

              000000 11 BHHHJHB


  ,  

 

and then using by definition 0BB , one gets easily the connection between 

magnetic permeability  and receptivity of an isotropic magnetic material, i.e. 

 1 .                                                        (6.8) 
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Taking into account Equations (6.4) and (6.7), the total current law for a case of 

magnetic field in a material now has the form: 

 

  



l

N

i
imoli IIldB

1

0


;                                        (6.9) 

 

















l

N

i

iIldJ
B

10





.  

 

Here, iI  - are the macro-currents (conductivity currents) and  
imolI  - are the micro-

currents (molecular currents). 

 

5.3 Classification of Magnetic Materials (Substances) 
 

According to the magnetic properties, the magnetic materials are divided into 

three groups: diamagnets, paramagnets and ferromagnets.  

The diamagnets (e.g., zinc Zn, gold Au, bismuth Bi) are the magnets the 

molecules (atoms, ions) of which do not have the resulting magnetic moment mP


. That 

means, the magnetic moment mP


  induced by the external magnetic field in the 

electronic shell of a molecule is much greater than mP


, mm PP


 . This feature results 

in a vector  

   mP
V

J
 1

,      

which is directed opposite to the vector of the magnetic field strength H


 ( HJ


 ), 

and, therefore, in accordance with Equation (6.6) 0  (or HJ


 ). For majority of 

diamagnets, the magnitude of  is very small ( 64 1010   ), while 1 , but is 

close to unity. These facts testify that the magnetic field of molecular currents is much 

less than the magnetizing field. 

The paramagnets (e.g. salts of Cobalt Co, Nickel Ni, Platinum Pt) are the 

magnets the molecules (atoms, ions) of which have a permanent magnetic moment mP


, 

which does not depend on the external magnetic field. If the external field is absent, the 

thermal motion does not allow the primary orientation of mP


 vectors with respect to the 

field direction. When the paramagnet is placed into a magnetic field, the orientation of 

the mP


 vectors occurs and this leads to a magnetizing of the material, i.e. the vector J


 

appears. Since in this case the induced magnetic moments mP


  are less than mP


, the 

resulting vector J


 is directed along the field (i.e., HJ


 ) and therefore HJ


 , with 

0  and 1 . For paramagnets the value of  is small ( 64 1010   ), as in the 

case of diamagnets, and   only slightly differs from unity. For many paramagnets the 

 value depends on the temperature, and this dependence is Curie’s law: 

T

C
  .                                                        (6.10) 

Here, C  - is Curie’s constant. There are paramagnets, too, for which the  value does 

not depend on the temperature.  
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The ferromagnets (e.g., Lithium Li, Sodium Na, Potassium K, Rubidium Rb) are 

the magnetics for which the magnetizing depends on the strength of a magnetic field. 

The magnetic permeability of ferromagnet depends on the magnetic field, )(Hf


 , 

and its magnitude is large, 53 1010   (see Figure 6.3[b]). The dependence of the 

magnetic induction B


 on the magnetic field strength H


is called the magnetizing curve 

(see Figure 6.3c). The dependence  H  is named Stoletov’s curve. Since HB 0  , 

using the magnetizing curve one can determine the magnetic permeability of a material 

for every given value of the field strength.  

A large value of ferromagnet magnetizing is explained by a strong interaction of 

the electronic magnetic spin moments with the magnetic field which results in the 

primary orientation (alignment) of the magnetic spin moments of atoms in the 

ferromagnet lattice. As a sequence, the whole ferromagnet is divided into the regions 

characterized by their own spontaneous magnetizing (up to a total saturation). These 

regions are called the domains (see Figure 6.3 [d]). 
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In the absence of external magnetic field the directions of the magnetizing 

vectors of different domains do not coincide and as a sequence, the resulting 

magnetizing of a whole ferromagnet equals zero. The linear dimensions of the domains 

are of order of cm210 . Their shape and dimensions are determined by the condition of 

minimal free energy (enthalpy) of a whole ferromagnet. The regions with parallel 

alignment of the spin magnetic moments of neighbor atoms (within a domain volume) 

determine the ferromagnet properties (e.g., Fe, Co, Ni), while the regions with anti-

parallel alignment of the spin magnetic moments determine the anti-ferromagnet 

properties (iron Fe and Chromium Cr salts). The specific properties of ferromagnet and 

anti-ferromagnet are displayed only at temperatures less than Curie temperature ( CT ) 

and Neel’s temperature ( NT ), respectively. The dependence of the Curie constant  on 

the temperature for ferromagnet and anti-ferromagnet is determined by the Curie-Weiss 

law: 

NC TT

C

TT

C





  ; .                                           (6.11) 

 

When the ferromagnet is placed into an external magnetic field, the process of 

its magnetizing is going on due to: a) the change of directions of spontaneous 

magnetizing of separate domains and of the magnet as a whole following the alignment 

of the vectors mP


 parallel to the external magnetic field direction; b) displacements of 

the domains frontiers which lead to an increase of the domains volumes having the 

direction of magnetizing most close to a direction of an external magnetic field, due to 

decrease of the neighboring domains volumes.  

These processes result in a magnetizing curve (see Figure 6.3 [e]), which goes 

first from the point 0H up to the point A along 0A line until saturation (until SB ). 

After that, decreasing the field up to zero, we arrive at the point lB which is called the 

residual induction: that means that the ferromagnet remains magnetized after its 

removal from an external magnetic field. In order to remove the magnetizing, it is 

necessary to place it into the magnetic field of the opposite direction. Then 0J  at 

CHH   and the value CH  of magnetic field strength at which the magnetic induction 

0B  is called the coercitive force. The ferromagnet characterizing by the small 

coercitive force are called soft-magnets while those characterizing by large coercitive 

force are called hard-magnets.  

A further increase of the magnetic field strength H leads to the re-magnetizing 

of the ferromagnet (the point C corresponds to a new saturation of a magnet). The curve 

CDAHAB Cl  (see Figure 6.3[e]) characterizing the change of magnetic induction of a 

ferromagnet placed into an external magnetic field is called the magnetic hysteresis 

loop.  The magnetic hysteresis is a sequence of non-reverse changes occurring during 

magnetizing and re-magnetizing of a ferromagnet, namely a sequence of non-reverse 

processes of displacements of frontiers between domains and processes of magnetizing 

vectors alignments inside the domains. The surface of the hysteresis loop S  is directly 

proportional to the work done under re-magnetizing, i.e.  HdBS . This work 

determines the energy loss during hysteresis. 

Since in a magnetic field inside the ferromagnet there appears a change 

(reconstruction) of the magnet structure (e.g. the displacement and rotation of the 

domains frontiers), the ferromagnet dimensions change.  The magnetostriction 
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phenomenon is the change of the shape and dimensions of a ferromagnet under its 

magnetizing. When a ferromagnet is placed into a periodically changing magnetic field, 

the mechanical oscillations appear in a ferromagnet, which are called magnetostriction 

oscillations. I the case of ferromagnets, there exists also the phenomenon, which is 

reverse with respect to magnetostriction, the change of a ferromagnet magnetizing 

following its deformation. 

 

6. Maxwell’s Equations 
 

6.1 Maxwell’s Equations in an Integral Form 
 

As it was shown in Section 4, the phenomenon of electromagnetic induction in a 

motionless conducting contour is caused by an alternating magnetic field which excites 

the electromotive force and the induction current. In a closed contour a current of this 

nature can appear, if in the contour acts the vortex electric field, i.e. the electric field, 

which has closed force lines. Thus the phenomenon of electromagnetic induction 

(following Faraday) is connected with the excitation of the vortex electric field by an 

alternating magnetic field. The circulation of a vortex electric field taken along a closed 

contour l  equals  

 

 



l

dt

d
ldE


.                                          (7.1) 

 

James C. Maxwell in 1881 proposed the generalization of (7.1) and formulated 

the law of electromagnetic induction: any alternating magnetic field generates the 

vortex electric field at any point of space. 

In other words, he suggested that Equation (7.1) is true for any (not only 

conducting) contour which is arbitrary chosen in an alternating magnetic field. Since 

 
S

SdB


, Equation (7.1) is rewritten in a form: 

 

   














l S

Sd
dt

Bd
ldE





.                                   (7.2) 

 

Equation (7.2) is the 1
st
 Maxwell’s equation written in an integral form or is Faraday’s 

law of induction.  

 The law of total current (Ampere’s law), written in a form 

 

     



N

i S

condcondi SdjIIldH
1


,  

 

leads to the conclusion that the vortex magnetic field is created by the conductivity 

currents, with condj


 being the density of conductivity currents. Maxwell suggested in 

addition that a vortex magnetic field could be generated by an alternating electric field. 

According to this suggestion, the alternating electric field causes so called displacement 

current, the density of which is 
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dt

Dd
jd




 , 

 

where D


 - is the vector of electric displacement. For example, the density of 

displacement current in a dielectric is 

 

dt

Pd

dt

Ed
jd




 0 . 

 

Here, the first term is the density of displacement current in vacuum and the second one 

is the density of polarization current ( P


). Taking into account the displacement current, 

we rewrite the law of the total current in the form:  

 

  Sd
dt

Dd
jldH

l S

cond





  













  .                                (7.3) 

 

Equation (7.3) is the 2
nd

 Maxwell’s equation written in an integral form. This law 

reads that the magnetic field can be excited both by conductivity currents and 

alternating electric field. 

Taking into account Gauss’ theorem for an electrostatic field, 

 

 
S V

dVSdD 


, 

 

where  -  is the volume density of electric charges inside a volume V closed by a 

surface S ,   and Gauss’ theorem for steady magnetic field, 

 

 
S

SdB 0


   , 

 

finally we can rewrite the integral Maxwell’s equations in the form: 

 

;  














l S

Sd
dt

Bd
ldE





       

Sd
dt

Dd
jldH

l S

cond





  













    ; 

 

 
S V

dVSdD 


  ; 

 
S

SdB 0


.                                                       (7.4) 

 

This set of equations describes the fields generated by macroscopic charges and 

currents, concentrated in a volume V , which is much greater than the volume of a 
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separate molecule, and at the distances much greater than the linear dimensions of the 

molecules. In this sense, Maxwell’s theory is the macroscopic theory of electromagnetic 

currents. 

 

6.2. Maxwell’s Equations in the Differential Form 
 

Maxwell’s equations in an integral form (see Equation 7.4) can be 
rewritten in another (differential) form. In order to do it, we should apply 
Stokes’s theorem for the circulation of the vector, 
 

   
l S

SdArotldA


 ,  

 

to the two first equations of (7.4.), and Gauss’ theorem for divergence of a vector, 

 

 
VS

dVAdivSdA


, 

 

to the last two equations of (7.4.). By means of this operation one can 

rewrite the set of equations (7.4) in the following form: 
 

;
dt

Bd
Erot




               Ddiv


, 

 

     
dt

Dd
jHrot cond




 ;          0Bdiv


.                                 (7.5) 

 

The set of Equations (7.5) is the set of Maxwell’s equations in the 
differential form. These equations tell us that in a media, which is at rest the 
alternating magnetic field creates the vortex electric field, and vice versa the 
alternating electric field creates the magnetic field. The important property of 
these equations is their invariance respective to Lorentz’s relativistic 
transformations.  

The vectors E


 and H


of the electromagnetic field can be expressed through the 

scalar   and vector 


potentials:  

 

t
gradE









   ,    


rotH
0

1


. 

 

 

These potentials satisfy the following equations: 
 

2

2

2

1

tV 





   ;  

2

2

2

1

tV 







 ,                                  (7.6) 

 



78 

 

where  - is Laplace’s operator. These equations are used for the analysis of 

electromagnetic waves propagation in the medium. Here, V  is the velocity of a wave 

propagation in a medium, which in the vacuum is cV  , where c - is the light velocity. 

The energy of the electromagnetic field is characterized by the 

volume energy density W: 

 .
2

1 2

0

2

0 HEW                                      (7.7) 

 

The amount of energy transferred through the unity surface which is 

perpendicular to the direction of electromagnetic wave propagation, and per time unity 

is determined by  Poynting’s vector P


: 

 

 HEP


  .                                             (7.8) 

 

The vectors HEP


,, are mutually perpendicular. The magnitude of Poynting’s 

vector determines the density of the energy flux of an electromagnetic wave. 

The law of energy conservation of an electromagnetic field connects the 

divergence of the P


 vector and the time derivative of the volume density W of the 

energy: 

 

.0
dt

dW
Pdiv


                                         (7.9) 

 

The properties of an electromagnetic field are different in various inertial 

frames. For example, let the inertial frame K be at rest, while another inertial frame K’ 

moves uniformly and rectilinearly relative to the frame K, at a constant velocity v . If in 

the K’ frame the magnetic field is absent ( 0'H


) and the electric field is 'E


, in the K 

frame appear both electric and magnetic fields, and what’s more the magnetic field 

 'EvH


 . If in the K’ frame the electric field is absent ( 0'E


) and the magnetic field 

is 'H


, in the K frame appears an electric field  'HvE


 .  

Thus, the relativity of electric and magnetic fields manifests itself in a way that 

if one of the fields (electric or magnetic one) is absent in one inertial frame, it exists in 

another inertial frame moving respective to the first one. 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

7. ELECTROMAGNETIC OSCILLATIONS AND WAVES 
 

7.1 Electromagnetic oscillations 
 

  Electromagnetic oscillations appear in an oscillatory circuit which consists of a 

capacitor C and an inductivity coil L (see Figure 8.1[a]).  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If one brings a charge q to a capacitor C , the capacitor begins to discharge 

through the inductivity coil. The discharge current creates a magnetic field in the coil. 

At the time moment 4Tt   (T – is the period of electromagnetic oscillations), the 
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energy of the electromagnetic field equals zero while the energy of the magnetic field 

reaches its maximum value. At a greater time the magnetic field in the coil decreases 

and the electric current in the coil is induced. This current again charges the capacitor, 

but now its polarity is opposite.  At a time moment 2Tt   the energy of magnetic field 

equals zero, while the energy of electric field reaches its maximal value. At greater 

times these processes go on in reverse direction, and at the time moment Tt   the 

oscillatory circuit returns to its initial state. 

 Thus, in a circuit exist the oscillations of electric charge at the capacitors plates 

(with a period T), the oscillations of the current in a circuit (with a period T) and the 

oscillations of the energy of electric and magnetic fields. At the time moments 

TTt ,2,0  the energy of the electric field is maximal while the energy of magnetic 

field equals zero. At the time moments 43,4 TTt   the energy of the magnetic field is 

maximal while the energy of the electric field equals zero. 

The differential equation describing the free non-damping oscillations in an 

oscillatory circuit consisting of an inductivity coil L and a capacitor C (assuming a 

resistance R=0) has the form: 

 

02

02

2

 q
dt

qd
 ,                                                   (8.1) 

 

where LC10   - is the self-frequency of undamped oscillations. As a sequence, the 

period of oscillations is determined by Thompson’s formula: LCT  22 00  . 

The solution of Equation (8.1) is 

 

 00sin)(   tqtq m ,                                    (8.2) 

 

where mq - is the maximal value of a charge on the capacitor’s plate and 0  - is the 

initial phase. Using this solution, the current in the oscillatory circuit is defined by the 

equation 

 

 2/sin
)(

)( 00   tI
dt

tdq
tI m , 

 

with mm qI 0  being the current amplitude (current maximal value). Using these 

solutions for q(t) and I(t), the energy of electric and magnetic fields in the oscillatory 

circuit can be written in the following form: 
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            (8.3) 

 

As it follows from Equation (8.3) the values of elW (t) and mW (t) are changing 

with the frequency 02 , which is twice as the self-frequency 0  of self-oscillations.  
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If the active resistance R is included into the oscillatory circuit (see Figure 

8.1[b]), the damped oscillations of a charge on the capacitor’s plates and damped 

oscillations of a current in a circuit occur. In this case the differential equation for the 

charge oscillations is as follows: 

 

02 2

02

2

 q
dt

dq

dt

qd
 .                                      (8.4) 

 

Equation (8.4) has the solution 

 

 0sin)(    teqtq t

m ,                             (8.5) 

 

where LR 2 - is the damping coefficient. The frequency   and period T of damped 

oscillations are determined by the following relations : 

 

22

0   ;   
22

0

2






T .                       (8.6) 

 

As it follows from Equation (8.6), the frequency of damped oscillations is less 

than the frequency of free oscillations: 0  , while the period of damped oscillations 

is greater than the period of free oscillations, 0TT  . When CLR 2 , the process of 

a change of the charge at the capacitor’s plates is not the periodic one. Therefore, the 

discharge of a capacitor in this case is called non-periodic one. In comparison to free 

oscillations, now the maximal values of a charge at capacitor’s plates exponentially 

decrease in time, i.e.  tqq mm  exp , see Figure 8.1(e). The time dependence of the 

current in the contour consisting of an active resistance R is described now by equation: 

 

)sin( 0    teII t

m , 

 

where  2 .  

The quantity  

 

 
 

T
Ttq

tq
 


 ln  

 

is called the logarithmic decrement of the damped oscillations. Its physical meaning is 

that  determines the number of oscillations during the time when the maximal value of 

the charge at the capacitor’s plate is decreased by ...71.2e  times. Another quantity, 

which is often used to characterize the damped oscillations, is the quality factor (Q-

factor) of a circuit. It is defined as 

 

C

L

R
Q

1





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In order to obtain the continuous (or self-sustained) oscillations in a dissipative 

system, one uses the external energy source in a special way, when the system itself 

operates the income of the energy from external source at the necessary time moment. 

These oscillations are called the continuous oscillations (self-sustained oscillations). For 

example, in order to support the continuous oscillations in an electrical circuit, it can be 

linked in a special way to anode circuit of the electronic lamp, see Figure 8.2. Here, the 

voltage from a circuit is directed through the connecting coil (CC) to the lamp grid G in 

order to operate an anode current. The basis of this method using for getting the elf-

sustained oscillations is the principle, which is called the principle of reverse coupling. 

The same principle governs the work of transistor-based systems for the generation of 

continuous oscillations. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another way to generate continuous oscillations is the inclusion into a circuit of 

the electromotive force, which is characterized by its own frequency, i.e. 

 tm  sin , see Figure 8.1(g). The oscillations in this circuit are governed by the 
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differential equation of forced (induced) electromagnetic oscillations, which has the 

form: 

 

 tq
dt

dq

dt

qd
m  sin2 2

02

2

  .                       (8.7) 

 

The solution of Equation (8.7) is  

 

       tqteqtq m

t

m sinsin  .                   (8.8) 

 

Figure 8.1(g) shows the dependence  tq . The second term in Equation (8.8) 

determines the change of the charge q  at the capacitor plates under established forced 

oscillations, i.e. at 1t . 

Under a regime of steady-state oscillations the current in a circuit is  

 

  tII m sin ,                                          (8.9) 

 

with 
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The formulae (8.10) determine the maximal value of the current strength mI in a 

circuit and the phase shift between the current strength and applied electromotive force 

 tm  sin . The value  
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2 1
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








C
LRZ  

 

is named the total resistance (or impedance) of an oscillatory circuit. Here, R  is the 

active (ohmic or DC) resistance,  LRL  - is the inductive reactance and CRC 1  

is the capacitive reactance. If the total resistance or impedance is only the inductive 

reactance, it shifts the phase of applied alternating current in an oscillatory circuit by the 

value 2/  compared to the phase of applied electromotive force  tm  sin . 

If the total resistance (impedance) is only the capacitive reactance, it shifts the same 

phase of applied alternating current by the value 2/   compared to the phase of 

applied electromotive force.  
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In accordance with the first of two Equations (8.10), the amplitude of the current 

strength mI  in an oscillatory circuit strongly depends on the forcing frequency   (see 

Figure 8.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curves presenting   mm II  are called the resonance curves. The maximal 

value of the current strength in an oscillatory circuit RI m /max   is achieved at the 

forcing frequency LCres 1 . The value res  is called the resonant frequency 

of forced oscillations. The rapid increase of the current strength amplitude in a circuit at 

res  is called the resonance. At resonance, the amplitudes of voltage decrease 

mLU  at the inductivity L  and mCU  at the capacity C  are equal, but their phases are 

opposite: mLU  overtakes mCU  in phase by  . Under the resonance the total voltage 

drop in a circuit equals the voltage drop at the active resistance (this case is named the 

case of the resistances resonance). If in a circuit the inductivity L and capacity C are 

connected in parallel, then the resonance of the currents occurs which results in a drastic 

decrease of the current strength in an external circuit at res .  
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7.2. Electromagnetic Waves 
 

As it was shown in Section 8.1, the self-frequency of electromagnetic 

oscillations in an oscillatory circuit equals LC10  . As a sequence, by decreasing 

of the capacity C , e.g. increasing the distance between a capacitor plates (see Figure 

8.4[a]) the 0  value increases. Increasing this distance, one can obtain an open 

oscillatory circuit (see Figure 8.4[b]). In this case the electromagnetic oscillations can 

propagate in a space. The alternating electromagnetic fields propagating in a space are 

called the electromagnetic waves.  

 

 

 
 

H.Hertz was the first who experimentally studied the electromagnetic waves.  In 

an experiment he used an open oscillatory circuit, which consisted of two rods with 

equal concentrated capacity (made as a ball) placed at the end of each rod, and the balls 

were divided by a spark gap in the middle. The alternating voltage was applied to this 

gap. This setup is named Hertz’s vibrator. Hertz’s vibrator generates the 

electromagnetic waves of frequencies in the range Hz105 1010   (radio-waves), which 

penetrate through the optical medium similarly to light waves. H.Hertz proved that both 

reflection and refraction of these electromagnetic waves obey the same laws as for those 

light waves, which are in the range of frequencies Hz1513 1010  .  

The connection between vectors HE


,  in the electromagnetic wave penetrating 

through the non-conductive medium is defined by Maxwell’s Equations (7.5), where we 

have to take 0,0  condj


 . Consider the plane electromagnetic wave propagating 

along the OX axis ( 0,0  zz HE ). Using Equations (7.5), one easily obtains a set of 

equations, which connect the space and time partial derivatives of different components 

of E


 and H


: 
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From the set of Equations (8.11) one obtains the wave equations for the 

components of the vectors E


 and H


 of the plane electromagnetic wave: 
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The comparison of Equations (8.12) and (7.6) leads to the conclusion that the 

plane electromagnetic wave can be completely defined using only the vector potential 




. 

Indeed,  

 krotE


,
1

00




  , 

 

here k


- is the unit vector directed along the propagation of electromagnetic wave. The 

velocity of this wave is 

 

 00

1
v  .                                               (8.13) 

 

Here, scmc /1031 9

00   is the speed of light in a vacuum. Therefore, the 

velocity of electromagnetic wave given by Equation (8.13) is rewritten now in the form: 

 

n

cc
v 


 ,                                                (8.14) 

 

where n - is the refractive index of a medium through which an electromagnetic wave 

propagates. The coincidence of Equation (8.14) with similar equation in the optics let us 

make a conclusion (J.C.Maxwell): the light waves are the electromagnetic waves.  From 

Equations (8.12) it follows also that the vectors E


 and H


are mutually perpendicular 

and are perpendicular to the velocity vector v


of a wave, see Figure 8.5. Therefore, the 

light is the electromagnetic transverse waves. In these waves the vectors E


, H


 always 

oscillate in the same phases, and their values at the arbitrary point of a space are 

connected through equation 
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HE  00  . 

 

The energy of an electromagnetic wave is a sum of energies of alternating 

electric and magnetic fields. The volume energy density W of the electromagnetic wave 

is determined by an equation 

 

HE
v

HEHEW 
1

2

1

2

1
00

2

0

2

0    .                 (8.15) 

 

The vector  HEWvS


  determines the direction of electromagnetic energy 

flux density and is named the Poynting’s vector. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The spectrum of electromagnetic waves is very broad. It consists of the 

following ranges: radio waves (the frequencies Hz115 1010  ), light waves 

including infrared, visible and ultraviolet ones ( Hz1711 1010  ), X-rays 

( Hz1917 1010  ), and  - radiation ( Hz1910 ). This conventional division into the 

ranges is called the scale of electromagnetic waves. The Table 1 presents the scale of 

Polarization plane (x, y) 

H


 

E


 

v


 

x 

y 

z 

Figure 

8.5 
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electromagnetic waves. Each range is characterized both by a wavelength, by a 

frequency   and by an energy   of the photon. The concept of a photon is necessary 

in quantum optics and is considered in details in the Physics–III. In quantum optics, the 

electromagnetic wave is associated with a flux of the specific particles, which have zero 

mass and are moving with the light velocity.  

 

Table 1 
 

 Radio 

waves 

Light waves X-Rays  - 

radiation Infrared Visible Ultraviolet 

Wavelength, 

m 

5105   
26 1010    

6

6

1077.0

1038.0









 
6

8

1038.0

10








 

107 1010  

 

1010  

Frequency 

 , Hz 

12106   
115 1010   115 1010 

 

115 1010   115 1010 

 

115 1010   

Photon energy 

 , eV 

24 1010  

 

12 1010   21 1010 

 

32 1010   53 1010 

 

95 1010   

 

 

The radio waves are usually generated by the open oscillatory circuits (antennas) 

and these electromagnetic waves are widely applied in science and technology, e.g. in 

radio connection, television, radiolocation and radio astronomy.  

The light waves are connected with emission of electromagnetic waves by the 

excited atoms. In particular, the infrared electromagnetic waves (infrared radiation) are 

a long-wave part of the broad spectrum of electromagnetic waves emitted by the heated 

bodies. The modern physics uses the powerful sources of coherent and monochromatic 

light sources, which are named lasers. The lasers are widely applied in science and 

industry, in modern electronics and computers. 

The X-Rays (discovered by the German physicist W.K.Roentgen in 1895) are 

connected with the emission of the short-wavelength electromagnetic waves by atomic 

nuclei during radioactive decays and are also generated by relativistic electrons 

(positrons) passing through a matter or moving in a circle in a synchrotron (see, Sec.5.3) 

or through periodic electric or magnetic fields. The X-Rays are widely used in medicine 

and in material research.  

The  - radiation occurs during nuclear reactions, particles decays and also 

during passage of relativistic electrons through a matter. This kind of electromagnetic 

radiation is used in nuclear physics to study the properties of atomic nuclei and to 

investigate so-called photonuclear reactions (reactions induced by gamma-rays 

interacting with atomic nuclei). 

 
 


