Раздел: Теория вероятностей и математическая статистика

Тема: Законы распределения случайных величин

Лектор Пахомова Е.Г.

§9. Законы распределения случайных величин

Есть законы распределения, которые встречаются на практике значительно чаще других.

Такими законами распределения являются:

Для ДСВ: 1) биномиальный закон распределения;

2) распределение Пуассона.

Для НСВ: 1) равномерное распределение;

- 2) показательное распределение;
- 3) нормальное распределение.

1. Биномиальный закон распределения (распределение Бернулли)

Пусть ДСВ X принимает значения $\{0, 1, 2, ..., n\}$.

ОПРЕДЕЛЕНИЕ. Говорят, что ДСВ X имеет биномиальное распределение, если $P(X = m) = C_n^m \cdot p^m \cdot q^{n-m}$, где p+q=1.

 \Rightarrow CB, распределенная по биномиальному закону, может появиться только в результате серии испытаний, проходящих по схеме Бернулли, причем при небольших n.

Числовые характеристики СВ X, имеющей биномиальное распределение:

- 1) M[X] = np;
- 2) D[X] = npq.

2. Распределение Пуассона

ОПРЕДЕЛЕНИЕ. Говорят, что ДСВ X имеет распределение Пуассона, если $P(X=m) = \frac{\lambda^m}{m!} \cdot e^{-\lambda} ,$ где $\lambda = n \cdot p$, m = 1, 2, 3, ...

Числовые характеристики СВ X, имеющей распределение Пуассона:

- 1) $M[X] = \lambda$;
- 2) $D[X] = \lambda$.
- Замечание. Распределение Пуассона используется вместо биномиального распределения для случая, когда
 - 1) число n независимых испытаний в схеме Бернулли велико, а вероятность p появления события мала (p < 0,1).
 - 2) $np \approx npq$ (t.e. $D[X_{\Pi vaccoha}] \approx D[X_{\delta uhom.}]$)

3. Равномерное распределение

ОПРЕДЕЛЕНИЕ. НСВ X называется **равномерно распределенной на отрезке** [a;b], если ее плотность вероятностей имеет вид

 $f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a; b]; \\ 0, & x \notin [a; b]. \end{cases}$

Основные характеристики равномерного распределения:

1) Функция распределения:

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a} & a \le x \le b; \\ 1, & x > b. \end{cases}$$

2) Вероятность попадания в интервал [α ; β] \in [a;b]:

$$P(\alpha < X < \beta) = \frac{\beta - \alpha}{b - a}$$

3) Числовые характеристики СВ X, имеющей равномерное распределение:

a)
$$M[X] = \frac{b+a}{2}$$
;

6)
$$D[X] = \frac{(b-a)^2}{12}$$
.

4. Показательное распределение

ОПРЕДЕЛЕНИЕ. НСВ X называется распределенной по **показательному закону**, если ее плотность вероятностей имеет вид

 $f(x) = \begin{cases} \lambda \cdot e^{-\lambda x}, & x \ge 0; \\ 0, & x < 0. \end{cases}$

Число λ называется *параметром* показательного распределения.

Основные характеристики равномерного распределения:

1) Функция распределения:

$$F(x) = \begin{cases} 0, & x < 0; \\ 1 - e^{-\lambda x} & x \ge 0. \end{cases}$$

2) Вероятность попадания в интервал $[\alpha;\beta] \in [0; +\infty]$:

$$P(\alpha < X < \beta) = e^{-\alpha\lambda} - e^{-\beta\lambda}$$

- 3) Числовые характеристики СВ X, имеющей показательное распределение:
 - а) $M[X] = \frac{1}{\lambda}$ вероятностный смысл параметра λ ;
 - 6) $D[X] = \frac{1}{\lambda^2}$.

5. Нормальное распределение

ОПРЕДЕЛЕНИЕ. Говорят, что НСВ X имеет нормальное распределение (распределение Гаусса), если ее плотность вероятностей имеет вид

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-a)^2}{2\sigma^2}},$$

 $\partial e \ a \in \mathbb{R}, \ \sigma > 0.$

Числа а и о называется *параметрами нормального распределения*.

Исследование функции f(x):

- 1. $D(f) = \mathbb{R}$.
- 2. f(x) > 0.
- $3. \lim_{x \to \pm \infty} f(x) = 0$

 \Rightarrow ось Ox – горизонтальная асимптота графика функции.

- 4. Функция f(x) имеет в точке x = a максимум, равный
- $rac{1}{\sigma\sqrt{2\pi}}$
- 5. График f(x) симметричен относительно прямой x = a.
- 6. Нормальная кривая в точках $x = a \pm \sigma$ имеет перегиб,

$$f(a \pm \sigma) = \frac{1}{\sigma\sqrt{2\pi e}}$$

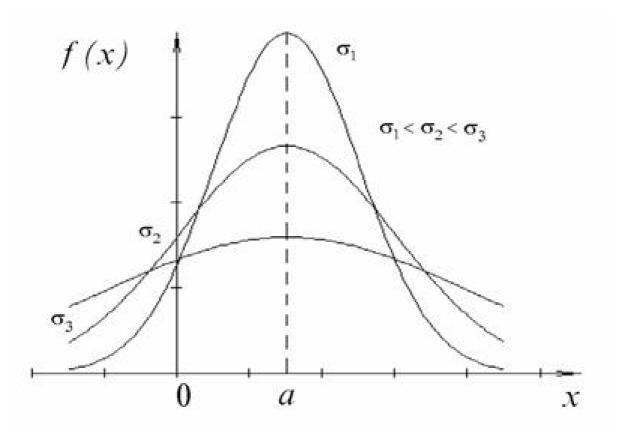


График функции $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-a)^2}{2\sigma^2}}$ называют *нормаль*-*ной кривой (кривой Гаусса)*

Частный случай: a = 0, $\sigma = 1$ — нормированная функция Гаусса.

СВ, распределенная по нормальному закону с параметрами $a=0, \, \sigma=1, \,$ называется *стандартной нормальной* СВ.

Основные характеристики равномерного распределения:

1) Функция распределения:
$$F(x) = \frac{1}{2} + \Phi\left(\frac{x-a}{\sigma}\right),$$
 где
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt - функция Лапласа.$$

2) Вероятность попадания в интервал (α;β):

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right).$$

- 3) Числовые характеристики СВ X, имеющей равномерное распределение:
 - a) M[X] = a;
 - δ) D[X] = σ². ⇒ σ_v = σ.

Таким образом, нормальный закон полностью определен математическим ожиданием и дисперсией.

4) Правило «трех сигм»:

Вероятностью отклонения нормально распределенной СВ от ее МО на величину, большую 3σ, можно пренебречь.

Действительно,

$$P(|X - M[x]| \le 3\sigma_x) = 2\Phi(3) \approx 2 \cdot 0,49865 = 0,9973$$