
doi: 10.1016/j.procs.2015.11.062 

Hardware-Software Complex Prototyping for the Pulse

Power Supply Control System of Tokamak T-15

Pavel Anistratov, Yuriy Golobokov and Vadim Pavlov

National Research Tomsk Polytechnic University, Lenina Avenue 30, 634050 Tomsk, Russia
pavel903@gmail.com

Abstract
A new hardware-software complex for digital control of a pulse power supply system was de-
veloped for the tokamak T-15 upgrade. Special controller software provides implementation
of flexible digital control of semiconductor converters. For most functions it is required that
the software should keep control loop timing accurately. The complex software runs under the
Linux operating system. To turn it into a real-time system open-source Xenomai framework
was used. To test the framework applicability for the tasks of power sources control a research
of a test system executing the basic functions of a real system was conducted. The required
cycle was accomplished by separation of important tasks into real-time threads while using
previously developed program code and libraries, which were already tested in the real system
for non-real-time task without significant changes.

Keywords: real-time control, tokamak, power supply control, control system

1 Introduction

Provision of reliable electricity supply for tokamak is a complex technical problem even for
relatively small systems. It is related to a large quantity of stationary and pulse loads. Sig-
nificant power and energy reserves are transferred in each pulse to a tokamak electromagnetic
system and then returned to the power network. Also it is essential to generate complex form
pulses in numerous interconnected control coils. It requires consistent control of multichannel
semiconducting power transforming system operating in a deep adjustment mode.

To solve this problem a hardware-software complex for digital control of Tokamak pulse
power supply system was developed. The package was used to control the thyristor rectifier
system with total power of 60 megawatts, loaded on the toroidal field coil of the tokamak T-
10 (Kurchatov Institute, Moscow), during a power test experiment. Conditions being created
during operation of powerful electricity converters form a number of requirements limiting
the possibility of application in a control system of the industrial base. The need of flexible
configuration of control system equipment and embedded software according to the features
of the transformation complex structure; accurate synchronization between the distributed

Procedia Computer Science

Volume 66, 2015, Pages 546–555

YSC 2015. 4th International Young Scientists Conference on
Computational Science

546 Selection and peer-review under responsibility of the Scientific Programme Committee of YSC 2015
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.11.062&domain=pdf


complex of field devices and power supply network; standard control algorithms as well as
custom one refer to such requirements.

1.1 Hardware Structure of the Complex

The developed complex consists of intelligent functional modules, built on the basis of modern
digital electronics components. The simplified structure of the complex is shown in Figure 1.
The main component forming the core of the complex is the CompactPCI automated system
controller under the single-board computer control. Also special and general purpose modules
are used in the system. For communication with power transformers and adjoining systems
two interface converters are used: the control and synchronization multiplexer (CSMUX), the
multipurpose interface adapter (MPIA). Both provides electric-optic signals conversion, the
CSMUX also allows to control 2 or 4 output groups of synchronized rectifiers.

Figure 1: The complex structure

The converter control module (CCM) forms control time diagrams, synchronizes with power
supply network and gets telemetry information. The discrete input/output module (DIOM)
is an subsidiary module for interaction with adjoining systems. Tokamak T-10 control system
uses the CCM and the DIOM based on a IC-102-DIO programmable discrete input/output
module with different firmware. The module was developed by TomICS-Project company in
PMC format and has 32 LVDS lines with flexible configuration based on Altera Cyclon 3 FPGA.
Adlink cPCI-8602 PMC Slots Carrier Board is used to connect modules to CompactPCI bus.
The TomICS IC-301-LS control and synchronization multiplexer has 24 channels and provides
LVDS pulse signals group multiplexing and conversion to pulse optic signals by maximum time
of 25 ns. The single-board computer cPCI-6615 has Intel Atom D525 1.8GHz processor and
2GB DDR3-800 memory.

For most functions, including currents and voltages regulation at the output of the converter,
it is required for the complex software to bind to control loop accurately and keep time intervals,
which is especially important for a PID-controller components calculation. The experimental
test showed that without program system switching to a real-time mode its cycle could change
in a wide range. Since the complex software already runs under Linux operating system the

Hardware-Software Complex Prototyping . . . of Tokamak T-15 Anistratov, Golobokov and Pavlov

547



open-source Xenomai framework was used to turn it into a real-time system. It allowed general-
purpose system to perform real-time tasks.

The automated system controller is a CompactPCI crate intended for installation into elec-
trotechnical 19 ′′ cabinet. Special controller software provides implementation of flexible digital
control of semiconductors and converters group with varying phasing, pulsing and binding to
supply network and load. The complex has an ability to adapt to changes in the transformation
complex structure, as well as changes of load parameters.

The complex carries out the following functions:

• Sets up device under programme on a digital interface;

• Controls parameters of load and protects electrotechnological equipment from emergency;

• Manages the power of electric energy converter scheme (thyristor rectifier, inverter voltage
or other) for the purpose of current input/output into the load by a specified dependence;

• Regulates load parameters with voltage or current feedback loop;

• Operates autonomously for a given algorithm and operates under higher level control
systems.

1.2 Test System Description

For simplification the test system was made on basis of a personal computer. Xenomai frame-
work was used to provide real-time performance. It uses Adeos microkernel to provide a hard-
ware abstraction level (HAL) between the hardware and an operating system. The microkernel
is applied as a patch to the Linux kernel. Then it is necessary to compile the kernel and install
it into the system in accordance with the official documentation [2]. Since real-time driver for
the CCM and the DIOM are not developed yet, a parallel port of the PC was used instead as
the faster and the simplest port to use.

Xenomai framework was installed on a computer with Intel 700MHz Celeron processor and
512MB of RAM with Debian 6.0.1 distributive with linux-3.18 kernel. Configuration with
clearly weak characteristics is used to test the program in critical conditions, as well as provide
work in existing systems with low performance.

1.3 Previous Results

Xenomai performance testing on such system was conducted earlier [1]. A signal generator
was used to form impulses for the parallel port, which generated interrupts in the program.
Interrupt handler configuration was made by Xenomai Native Skin [5]. For 1 kHz input signal
frequency the mean deviation of registrated periods was 9.5 μs, the maximum deviation was
117 μs. In addition, deviation for 95% of periods was less than 10 μs. For response time testing
in severe conditions Stressful Application Test [6] program was used. The program generated a
high load on the test computer subsystems, accessing to the hard drive and RAM, which gave
full CPU load. This program was executed together with the user interrupt handling program.
Under load the maximum deviation of the period was around 450 μs that was why the maximum
reached input pulses frequency without interrupt loss was about 2 kHz.

Hardware-Software Complex Prototyping . . . of Tokamak T-15 Anistratov, Golobokov and Pavlov

548



2 Hardware-Software Prototype

In a new program, instead of Native Xenomai API, POSIX skin is used. It allows parallel
execution of real-time tasks and non-real-time tasks, and also provides an information exchange
mechanism between them. Real-Time Driver Model (RTDM) approach was used to implement
interrupt handling, which presupposes the use of a special driver to control interrupts and
allows synchronizing information with the user environment by ad hoc ioctl rt() handler. This
approach is also recommended by the user community [3].

To test the framework applicability for the tasks of power sources control a research of a test
system executing the basic functions of a real system was conducted. The developed program
implements a real-time thread for user interrupt handling and non-real-time threads to write
information about events to a data base and a file log, as well to as provide information about
the number of registrated interrupts over Modbus TCP protocol. For information exchange
between real-time and non-real-time threads the Cross-Domain Datagram Protocol (XDDP) is
used, which allows exchanging information between threads in a way that does not require the
former to leave the real-time domain.

2.1 Software Implementation

The irqbench [4] test program is used as the basis for the developed program prototype. It is
supplied together with Xenomai framework to test interrupt functioning.

The program implements RDTM approach by processing interrupts initially at a kernel
layer with the possibility of further processing at kernel level, as well as at the user level. Thus
the program consists of two modules. Irqbench.ko is responsible for interrupt handling at the
kernel level. And irqloop program produces a kernel module configuration, user-level interrupt
handling and execution of non-real-time threads, records statistical data in a text file for further
analysis. The structure is shown in Figure 2.

Figure 2: Software structure of the complex

Small changes were made in the driver module. A time variable (irqs time) was added to
a synchronization context of the driver to store monotonic time of an interrupt registration
in nanoseconds which is returned to the user level task in response to the interrupt waiting
command. Unused checks of the parallel port signals were disabled, because the signal generator
was used instead of the second computer. The driver requires exclusive access to the parallel
port; therefore for its work the system parport pc module should be unloaded. The irqloop

Hardware-Software Complex Prototyping . . . of Tokamak T-15 Anistratov, Golobokov and Pavlov

549



program underwent significant changes to realize the user threads. Small changes were made
to make compatible code for g++ compiler, since previously developed libraries for the user
threads were written in C++, but the original code for irqloop was in C.

The program consist of four POSIX threads, one of which is for the real-time thread for the
user interrupt handling, and three non-real-time threads perform information processing. The
real-time thread sends to the driver the request interrupt command and expects an interrupt
registration time (irqs time) in response. When the response is received, the current time on
the user lever is registrated in the statistic array for future delay calculation. After that the
real-time thread transmits an interrupt counter to the non-real-time tasks. When a non-real-
time thread receives a message, the current time is also registrated in the statistic array. The
first non-real-time thread counts interrupts for the Modbus TCP server (the main function of
ModbusTCPServer library is executed for testing period separately). The second one writes to
a remote database an event message using the previously developed library (expcasdb library).
The third thread writes information to a file log (expnewlog library).

Implementation of the threads with such functionality is caused by the need to verify the
use of the libraries which are expected to be used in real system, but for now processing is
simplified due to absence of real data and systems.

3 Testing

The series of tests where the signal generator was connected to the parallel port of the personal
computer executing developed software were made. The time interval of the recorded interrupts
was estimated by experimental data as 1000.1 μs. It was 0.01% larger than the expected interval
for the 1 kHz frequency, which testified to the difference in oscillator frequencies.

3.1 Real-Time Threads

The differences between experimental and estimated time registrations of interrupts were found
using the experimental estimated interval. As the delay between the moment of an interrupt
appearance and execution of the time reading function was not known, and as for analysis
convenience, the time values were decreased by the differences mean value for the test (Figure 3).
One standard deviation in the test was σ = 1.28 μs. The confidence interval for confidence
probability p = 0.95 was ±2.11 μs. The interval defined as the difference between the maximum
and minimum values of deviations was 14.23 μs.

The user interrupt handler is executed with the real-time thread priority. The average delay
between a driver interrupt registration and call of the user interrupt handler (it includes time
for basic driver interrupt handling, the time to transfer information to the user the level and
time to call the user interrupt handler) was 22.77 μs, standard deviation: σ = 2.29 μs, the
confidence interval for confidence probability: p = 0.95 was ±3.78 μs.

3.2 Non-Real-Time Threads

To characterize the information transmission between the real-time thread and non-real-time
threads is more difficult as the last are planned together with the other tasks of the system,
which sometimes can cause an increase in delays. The average delay of the data transfer for
the interrupt counting thread was 124 μs with maximum of 395μs.

For the data base thread the delay in most cases was as the amount of less than 0.5ms, but
there were periodic bursts to the value of 3ms. It was caused by the fact that the recording

Hardware-Software Complex Prototyping . . . of Tokamak T-15 Anistratov, Golobokov and Pavlov

550



0 200 400 600 800 1,000
−5

0

5

10

15

Interrupt

T
im

e
d
ev
ia
ti
o
n
,

s

Figure 3: Deviation of average time delay from the moment of interrupt event and registration
by the driver

0 200 400 600 800 1,000
0

2

4

6

Interrupt

T
h
re
a
d
ex
ec
u
ti
o
n
ti
m
e,

m
s

Figure 4: Database thread execution time

0 200 400 600 800 1,000
0

5

10

15

20

Interrupt

L
o
g
fi
le

th
re
a
d
ca
ll
d
el
ay
,
m
s

Figure 5: Logfile thread call

to the database was made by packages, so the run time varied from around 0.05ms at writing
to the memory case and 5ms during the actual data transfer case (Figure 4). In other words,
it can explain arising delays of the data base thread call. The file log thread also had delays
(Figure 5). By the end of the experiment the transmission delay sharply increased to the
maximum value of 17ms, it might be caused by memory allocation features of the used library,
since new memory was added on the fly. For the first 800 interrupts the average transmission
delay was 0.16ms.

3.3 Buffer Prediction

For data exchange between the threads buffers with defined size should be allocated in advance.
They serve for a temporary data storage until they are read out by the corresponding non-real-
time thread. As the size of buffers is finite and predefined, to avoid data loss it is required to

Hardware-Software Complex Prototyping . . . of Tokamak T-15 Anistratov, Golobokov and Pavlov

551



0 1 2 3 4 5 6 7 8
0

2

4

6

8

Time, ms

In
te
rr
u
p
t

Logfile thread
Database thread
Handler call
ModBus counter call

Figure 6: Time diagram of thread executions and calls

determine necessary amount of allocated memory in advance. On the basis of the conducted
experiment an attempt to predict the required size of buffers was carried out. The graph shows
time intervals of thread execution of the data base thread and log file thread. In the most cases,
as it can be seen from the graph, the threads are executed in short time close to the point of
an interrupt appearance, but at moments of actual writing to a remote database the bigger
execution times (red rectangles) appear. Let us will examine a zoomed fragment close to the
actual writing to a remote database (Figure 6).

In most cases data processing finishes until the next interrupt, but at times of actual writing
to a remote database the delay occurs, which causes the buffer accumulation. Let us estimate
the time required for data processing when the data base thread writes only to a local storage,
without actual writing to a remote database. According to the statistic array, an interrupt
handler call is followed by execution of the interrupt counting thread, then by the log files
thread and by database thread in the last. Thus the average data processing time was estimated
as an interval between the time of the user interrupt call and the database thread processing
completion (without actual writing to a remote database). Figure 7 shows the estimated data
processing time intervals for the whole experimental set. In most cases the processing takes less
than half a millisecond, and visually the data can be divided into two groups by the value of
0.5ms: 85% of the intervals belong to the first group with an average value of 0.25ms and the
upper limit around 0.4ms. An average value of the second group is 2ms with the maximum of
5.7ms. Thus the maximum number of information packages in the buffer query by Equation 1
was estimated.

dmax =
5.7

1.0− 0.4
= 9.5 ≈ 10 (1)

Figure 8 a shows a queue in the buffer for database thread. In 88% of the cases the queue
consists just of only one element. The maximum queue in the experiment had 6 elements.
Figure 8 b shows a queue in the buffer for log file thread. It had only one element for the major
part of the experiment, but a queue up to 18 elements close to the end occurred. It relates
to the increase of information transmission delays between real-time thread and file log thread
that was shown earlier.

Hardware-Software Complex Prototyping . . . of Tokamak T-15 Anistratov, Golobokov and Pavlov

552



0 200 400 600 800 1,000
0

2

4

6

Interrupt

D
a
ta
b
a
se

th
re
a
d
ca
ll
d
el
ay
,
m
s

Figure 7: Execution time of full interrupt routing

0 200 400 600 800 1,000
0

2

4

6

Interrupt

Q
u
eu

e
si
ze

(a)

0 200 400 600 800 1,000
0

5

10

15

20

Interrupt

Q
u
eu

e
si
ze

(b)

Figure 8: Buffer queues: (a) database buffer queue, (b) logfile buffer queue

3.4 The Series of 1 kHz Experiments

The 1 kHz frequency experiment was repeated several times to check the maximum buffer
queue. In the second experiment the maximum queue of the database thread was seven, the
value was close to the previous experiment. But unlike the previous experiment the maximum
log file thread queue had 21 elements (Figure 9 a). On the time diagram of the experiment
part (Figure 9 b) it can be seen that the large delays of log file thread execution occur, but it
does not effect execution of other threads like the database thread or the interrupt counting
thread. The third start of the experiment did not reveal significant deviations in maximum
buffer queues, which had 4 elements for the database thread and 5 elements for the log file
thread.

One more experiment was made also with 1 kHz frequency, but for one hundred thousand
interrupts. The maximum queue of the database thread had 341 elements with local peaks

Hardware-Software Complex Prototyping . . . of Tokamak T-15 Anistratov, Golobokov and Pavlov

553



0 200 400 600 800 1,000
0

10

20

Interrupt

Q
u
eu

e
si
ze

(a)

0 10 20 30 40 50
0

10

20

30

40

Time, ms

In
te
rr
u
p
t

Logfile thread
Database thread
Handler call

(b)

Figure 9: Second experiment: (a) shows logfile thread queue, (b) shows time diagram of thread
executions and calls

0 200 400 600
0

100

200

300

400

Interrupt

Q
u
eu

e
si
ze

Figure 10: Third experiment: database buffer queue

up to 53 elements. On the magnified region it can be seen that for about 300ms no database
thread call occurs, which causes fast buffer queue grow (Figure 10). The similar situation is for
the log file thread, where accumulation of the queue up to 665 elements is observed. It is also
affected by no thread call for a long time, which causes accumulation of a queue in a buffer.

3.5 Results of Buffer Prediction

The emergence of the delays up to 0.7ms makes it difficult to predict necessary size of the buffers
for threads data exchange. Presumably the delays caused by other tasks of the operating system,
elimination of such effects requires analysis and disabling of the operating system tasks that
may cause a significant impact, or allocation of sufficient memory for buffers to store most data
of the experiment.

Hardware-Software Complex Prototyping . . . of Tokamak T-15 Anistratov, Golobokov and Pavlov

554



Therefore on the basis of the testing results it can be concluded that the driver level task
and the user interrupt handler are working as real-time tasks in predictable time and in the
narrow time interval. Interrupts get registered at the kernel level at almost the same time,
the confidence interval is just 2.11 μs, and information transfer to the user environment occurs
within 23 ± 4 μs. During execution of normal flows sometimes delays occur, but during the
whole experiment with 1 kHz frequency is carried out without losses.

4 Conclusion

Based on the test results the choice of such software architecture turned justified. The hardware-
software complex was created for testing purposes in which the signal generator connects to the
parallel port of the computer which runs the developed program under Linux/Xenomai system.
The required control cycle for final system was 3.3ms, but the prototype complex was tested
even with requirement to the control cycle (1ms). The control cycle in the experiment was
maintained with the confidence interval of 2.11 μs. The mean time for interrupt information
transmission to the user environment was 23 ± 4 μs. Sometimes information transfer from
real-time thread to non-real-time threads was delayed because the latter were executed with
the same priority as other system tasks. Consideration of this factor is important to allocate
necessary amount of the memory for exchange buffers.

The results were considered successful because the required cycle was accomplished by sep-
aration of important tasks into real-time threads while using previously developed program
code and libraries which were already tested in the real system for non-real-time task with-
out significant changes. Implementation of a real-time driver for the programmable discrete
input/output module (TomICS IC-102-DIO) to test the system with the project’s hardware is
planned in near future.

References

[1] Pavel Anistratov and Yuriy Golobokov. Analysis of possibilies of creating of a distributed control
system based on real-time OC Linux/Xenomai. XX International Conference of Students and Young
Scientists: modern techniques and technology, National Research Tomsk Polytechnic University,
pages 139–140, 2014. http://portal.tpu.ru/files/conferences/ctt/proceedings/2014/vol2_

2014.pdf.

[2] Gilles Chanteperdrix. Building debian packages. http://xenomai.org/2014/06/

building-debian-packages/, last viewed July 2015, 2014.

[3] Philippe Gerum and Various Contributors. Xenomai-help ext. interrupt with posix skin from user
space. http://www.xenomai.org/pipermail/xenomai/2011-January/022523.html, last viewed
July 2015, 2011.

[4] Jan Kiszka. Irqbench(1) manual page. http://www.xenomai.org/documentation/xenomai-head/

html/irqbench/, last viewed July 2015, 2014.

[5] Harco Kuppens. Real-time linux (xenomai) exercise 9: Interrupt service routines. http://www.cs.
ru.nl/lab/xenomai/exercises/ex09/Exercise-9.html, last viewed July 2015, 2011.

[6] Nick Sandres and Various Contributors. Stressful application test. https://code.google.com/p/

stressapptest/, last viewed July 2015, 2014.

Hardware-Software Complex Prototyping . . . of Tokamak T-15 Anistratov, Golobokov and Pavlov

555


