МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖД	ĮAЮ
Директор (обеспечивающей
Школы ИІ	ЕШ
	А.С. Матвеев
« <u></u> »	2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2020 г. ФОРМА ОБУЧЕНИЯ очная

Теория автоматического управления				
Направление подготовки	13.03.0	1 Теплоэнергети	ка и теплотехника	
Образовательная программа (направленность (профиль))	Инженерия теплоэнергетики и теплотехники			
Специализация	AB	томатизация техн	ологических процессов и	
	производств в теплоэнергетике и теплотехнике			
Уровень образования	высше	е образование – ба	акалавриат	
	1			
Курс	4	семестр	7, 8	
Трудоемкость в кредитах (зачетных единицах)	9			
Виды учебной деятельности		Времен	ной ресурс	
		Лекции	54	
Контактная (аудиторная)	Прак	тические занятия	35	
работа, ч	Лабораторные занятия ВСЕГО		43	
			132	
	Самостоятельная работа, ч 192			
		ИТОГО,	ч 324	

Вид промежуточной аттестации	Зачет (7) Экзамен (8) Диф. зач. (8)	Обеспечивающее подразделение	НОЦ И.Н. Бутакова
Руководитель Центра Руководитель ООП Преподаватель			А.С. Заворин А.М. Антонова П.А. Стрижак

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5.4 Общей характеристики ООП) состава компетенций для подготовки к

профессиональной деятельности. Индикаторы достижения Составляющие результатов освоения компетенций (дескрипторы компетенции) Кол Наименование Наименование компетенции компетенции Кол индикатора Кол Наименование индикатора достижения Владеет математическим аппаратом Способен применять Применяет алгебры и дифференциального соответствующий математический аппарат исчисления функции одной переменной ОПК(У)физикоисследования функций. для проведения теоретического 2.1B1 линейной алгебры, исследования и моделирования математический аппарат, методы дифференциального и физических и химических процессов и явлений, а также, для решения анализа и интегрального И.ОПК(У)исчисления, рядов, ОПК(У)-2 моделирования в профессиональных задач 2.1. теоретических и дифференциальных Владеет математическим аппаратом экспериментальных уравнений, теории дифференциального и интегрального исследованиях при функций комплексного исчисления для проведения ОПК(У)переменного в решении теоретического исследования и 2.1B2 профессиональных инженерной моделирования физических и химических деятельности задач процессов и явлений, а также, для решения профессиональных задач Владеет опытом выполнения расчета ПК(У)переходных процессов и определения 6.1B1 устойчивости простейших систем Способен участвовать автоматического регулирования в управлении процессом Умеет выполнять структурные ПК(У)преобразования простейших схем эксплуатации 6.1У1 оборудования и Демонстрирует знания автоматического регулирования трубопроводов ТЭС, основных положений Умеет выбирать закон регулирования в ПК(У)-6 ПК(У)-6.1 ПК(У)контролировать теории автоматического зависимости от укрупненных статических 6.1У2 параметры управления и динамических характеристик объекта технологических Временных и частотных характеристик ПК(У)процессов и простейших элементов систем 6.131 показатели качества автоматического регулирования рабочего тела Знает законы непрерывного ПК(У)регулирования, их характеристики и 6.132 условия применения Способен выполнять предпроектное обследование объекта Разрабатывает Владеет опытом разработки подсистем автоматизации, проектные решения ПК(У)автоматической системы регулирования И.ПК(У)-7.2 ПК(У)-7 разрабатывать отлепьных частей 7.2B1 параметров технологического процесса проектную и автоматизированной конструкторскую системы управления документацию АСУ ТΠ Владеет опытом выбора структуры подсистем и систем автоматического ПК(У)управления технологическими 8.1B1 процессами Владеет опытом применения Способен применять Применяет ПК(У)инструментов математического анализа и 8.1B2 методы специальных математический аппарат линейной алгебры для исследования автоматических систем регулирования расчетов и и современное ПК(У)-8 И.ПК(У)-8.1 моделирования при программное Умеет выполнять идентификацию построении АСУ ТП и обеспечение для анализа ПК(У)объектов управления для составления их АСУП и синтеза АСУ ТП 8.1У1 передаточных функций в общем цикле

ПК(У)-

8.131

технологического процесса
Знает расчетные и графические методы определения оптимальных параметров

настройки регуляторов, оценок качества

работы автоматических систем регулирования

2. Место дисциплины в структуре ООП

Дисциплина относится к вариативной части Блока 1 учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Планируемые результаты обучения по дисциплине		
Код	Наименование	достижения компетенции
РД 1	Знать основные положения теории автоматического управления, временные и частотные характеристики АСР, законы регулирования, элементарные звенья АСР	И.ПК(У)-6.1 И.ПК(У)-7.2
РД 2	Уметь выполнять преобразования структурных схем, осуществлять идентификацию объектов управления, рассчитывать переходные процессы в линейных системах, применять критерии устойчивости систем при анализе АСР	И.ОПК(У)-2.1 И.ПК(У)-6.1 И.ПК(У)-8.1
РД 3	Владеть опытом использования математического аппарата линейной алгебры, дифференциального и интегрального исчисления при анализе, идентификации, параметрическом синтезе систем автоматического регулирования	И.ОПК(У)-2.1 И.ПК(У)-8.1
РД 4	Владеть опытом применения расчетных и графических методов параметрического синтеза одноконтурной автоматической системы регулирования с заданной структурой	И.ОПК(У)-2.1 И.ПК(У)-6.1 И.ПК(У)-7.2
РД 5	Знать основные виды нелинейных систем, режимы их работы (автоколебания), критерии устойчивости. Уметь выполнять исследования предельных циклов работы систем с учетом ограничений на допустимые частоты и амплитуды колебаний.	И.ПК(У)-6.1 И.ПК(У)-8.1

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.	
		Лекции	10	
Раздел 1. Введение и общие положения	рп 1	Практические занятия	4	
газдел 1. Б ведение и оощие положения	РД 1	Лабораторные занятия	6	
		Самостоятельная работа	30	
Воджат 2 Можемовчичномий оживания		Лекции	12	
Раздел 2. Математический аппарат	РД 1	Практические занятия	10	
исследования систем автоматического	РД 3	Лабораторные занятия	8	
управления		Самостоятельная работа	42	
	РД 1 РД 2	Лекции	8	
Раздел 3. Устойчивость линейных систем		Практические занятия	10	
автоматического управления		Лабораторные занятия	8	
• •		Самостоятельная работа	36	
		Лекции	6	
Раздел 4. Методы оценки качества	рп 2	Практические занятия	2	
регулирования линейных систем	РД 3	Лабораторные занятия	4	
		Самостоятельная работа	18	
В	рпа	Лекции	10	
Раздел 5. Параметрический синтез	РД2	Практические занятия	2	
промышленных систем автоматического	РД 3	Лабораторные занятия	8	
регулирования	РД 4	Самостоятельная работа	30	
		Лекции	8	
Раздел 6. Нелинейные системы	рп 5	Практические занятия	8	
автоматического управления	РД 5	Лабораторные занятия	8	
		Самостоятельная работа	36	

Содержание разделов дисциплины:

Раздел 1. Введение и общие положения

Основные понятия. История возникновения. Фундаментальные принципы и законы регулирования. Математическое описание систем автоматического управления.

Темы лекций:

1. Основные понятия. История возникновения. Фундаментальные принципы и законы регулирования. Математическое описание систем автоматического управления. Линеаризация. Правила записи уравнений.

Темы практических занятий:

- 1. Свойства теплоэнергетических объектов как объектов управления;
- 2. Критерии качества управления теплоэнергетическими объектами.

Названия лабораторных работ:

- 1. Исследование АСР, реализующей принцип разомкнутого управления;
- 2. Исследование АСР, реализующей принцип компенсации возмущений;
- 3. Исследование АСР, реализующей принцип обратной связи.

Раздел	2.	Математический	annapam	исследования	систем	автоматического
управле	ния					

Временные и частотные характеристики систем. Преобразования Лапласа. Передаточные функции систем. Элементарные звенья. Структурные преобразования

Темы лекций:

- 1. Временные и частотные характеристики систем. Преобразования Лапласа. Передаточные функции систем.
- 2. Элементарные звенья (пропорциональное, интегральное, дифференциальное, апериодическое, реальное дифференцирующее, запаздывания, колебательное). Соелинения звеньев

Темы практических занятий:

- 1. Дифференциальные уравнения элементов систем автоматического управления.
- 2. Временные характеристики звеньев и систем.
- 3. Частотные характеристики звеньев и систем.
- 4. Простейшие методы идентификации систем по их переходным характеристикам.
- 5. Передаточные функции и частотные характеристики звеньев и систем.

Названия лабораторных работ:

- 1. Опытная настройка АСР с двумя параметрами.
- 2. Экспериментальное определение частотных характеристик систем.
- 3. Исследование временных характеристик систем.
- 4. Идентификация объектов управления.

Раздел 3. Устойчивость линейных систем автоматического управления

Устойчивость линейных систем. Алгебраические и частотные критерии устойчивости. Построение областей устойчивости в пространстве параметров систем. Д-разбиение. Понятие запаса устойчивости.

Темы лекций:

- 1. Устойчивость линейных систем. Алгебраические критерии устойчивости (Рауса, Гурвица, Льенара-Шипара);
- 2. Частотные критерии устойчивости (Михайлова и Найквиста);
- 3. Построение областей устойчивости в пространстве параметров систем. Дразбиение. Понятие запаса устойчивости.

Темы практических занятий:

- 1. Структурное преобразование и определение устойчивости АСР различных порядков методом Рауса;
- 2. Структурное преобразование и определение устойчивости АСР различных порядков методами Гурвица и Льенара-Шипара;
- 3. Структурное преобразование и определение устойчивости АСР по критерию Михайлова;
- 4. Структурное преобразование и определение устойчивости АСР по критерию Найквиста:
- 5. Построение областей устойчивости. D-разбиение

Названия лабораторных работ:

- 1. Исследование устойчивости систем регулирования во временной области и в плоскости корней характеристического уравнения.
- 2. Исследование устойчивости систем регулирования с помощью алгебраических критериев Рауса, Гурвица, Льенара-Шипара.
- 3. Исследование устойчивости систем регулирования с помощью частотного критерия Михайлова.

4. Исследование устойчивости систем регулирования с помощью частотного критерия Найквиста.

Раздел 4. Методы оценки качества регулирования линейных систем

Оценки качества переходных процессов. Прямые и косвенные оценки. Расчет переходных процессов по ВЧХ. Метод трапеций.

Темы лекций:

- 1. Оценки качества переходных процессов. Прямые и косвенные оценки;
- 2. Расчет переходных процессов по вещественным частотным характеристикам. Метод трапеций.

Темы практических занятий:

1. Построение переходных процессов в линейных системах автоматического управления. Метод трапеций. Прямые оценки качества регулирования.

Названия лабораторных работ:

- 1. Определение переходных процессов в АСР по ее вещественным частотным характеристикам. Метод трапеций.
- 2. Переходные процессы в системах автоматического управления.

Раздел 5. *Параметрический синтез промышленных систем автоматического регулирования*

Параметрический синтез систем автоматического управления. Синтез АСР первого и второго порядка. Корневые и частотные методы параметрического синтеза.

Темы лекций:

- 1. Параметрический синтез систем автоматического управления. Синтез АСР первого и второго порядка;
- 2. Корневые методы параметрического синтеза.

Темы практических занятий:

- 1. Параметрический синтез линейных систем регулирования корневым методом (РАФЧХ);
- 2. Параметрический синтез линейных систем регулирования с оценкой задача устойчивости по максимуму АЧХ замкнутой системы.

Названия лабораторных работ:

- 1. Настройка типовых регуляторов методом расширенных частотных характеристик;
- 2. Настройка типовых регуляторов с оценкой запаса устойчивости по величине максимума АЧХ (метод В.Я. Ротача);
- 3. Исследование автоматических систем регулирования при случайных воздействия;
- 4. Системы с дополнительными информационными каналами. Системы с компенсацией возмущений.

Раздел 6. Нелинейные системы автоматического управления

Нелинейные системы. Фазовые траектории (портреты). Автоколебания. Метод точечных преобразований. Системы с переменной структурой. Метод припасовывания «граничных значений». Приближенное исследование автоколебаний. Метод эквивалентной

линеаризации. Метод гармонического баланса.

Темы лекций:

- 1. Нелинейные системы.
- 2. Фазовые траектории (портреты).
- 3. Случайные процессы в нелинейных системах.
- 4. Синтез оптимальных систем.
- 5. Минимизация дисперсной ошибки. Порядок синтеза оптимальной системы. Предельная динамическая точность систем регулирования.
- 6. Системы с дополнительными информационными каналами.
- 7. Каскадные системы регулирования.
- 8. Системы с компенсацией возмущений.
- 9. Импульсные системы автоматического управления.

Темы практических занятий:

- 1. Автоматические системы регулирования при случайных воздействиях.
- 2. Системы с дополнительными информационными каналами. Системы с компенсацией возмущений.
- 3. Нелинейные системы. Метод гармонического баланса.
- 4. Импульсные системы.

Названия лабораторных работ:

- 1. Исследование свойств нелинейной АСР на основе трехпозиционного реле.
- 2. Исследование свойств нелинейной АСР на основе двухпозиционного реле с зоной возврата.
- 3. Исследование свойств нелинейной АСР с зоной нечувствительности.
- 4. Исследование свойств нелинейной АСР на основе трехпозиционного реле с зоной нечувствительности и зоной возврата.

Курсовой проект

Тема проекта: «Расчет одноконтурной системы автоматического регулирования» Расчетно-пояснительная записка содержит:

- 1. Постановка задачи. Исходные данные.
- 2. Расчет и построение границы заданного запаса устойчивости АСР.
- 3. Определение оптимальных параметров настройки регулятора.
- 4. Расчет, построение и оценка качества переходного процесса в замкнутой АСР при возмущении, идущем по каналу регулирующего воздействия.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Подготовка к лабораторным работам и практическим занятиям;
- Выполнение курсового проекта;
- Анализ научных публикаций по заранее определенной преподавателем теме;

– Подготовка к зачету, экзамену, защитам лабораторных и практических работ.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература

- 1. Теория автоматического управления учебник для вузов: в 2 ч.: / под ред. А. А. Воронова. 3-е изд., стер. Екатеринбург: АТП, Ч. 1: Теория линейных систем автоматического управления. 2015. 367 с.
 - (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/321916)
- 2. Теория автоматического управления учебник для вузов: в 2 ч.: / под ред. А. А. Воронова. 3-е изд., стер. Екатеринбург: АТП, Ч. 2: Теория нелинейных и специальных систем автоматического управления. 2015. 504 с. (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/321854)
- 3. Ягодкина Т.В. Теория автоматического управления: учебник и практикум для бакалавриата и специалитета / Т. В. Ягодкина, В. М. Беседин. Москва: Юрайт, 2018. –470 с.

(http://catalog.lib.tpu.ru/catalogue/advanced/document/RU/TPU/book/369931)

Дополнительная литература

- 1. Ротач, Виталий Яковлевич. Теория автоматического управления: учебник для студентов вузов / В. Я. Ротач. 5-е изд., перераб. и доп. Москва: Изд-во МЭИ, 2008. 394 с.
 - (http://catalog.lib.tpu.ru/catalogue/simple/document/RU/TPU/book/252368)
- 2. Певзнер Л.Д. Теория систем управления. Учебное пособие. 2-е изд., испр., доп. СПб.: Лань, 2014.-424 с.
 - (http://catalog.lib.tpu.ru/catalogue/simple/document/LANBOOK/68469)
- 3. Кулаков Г.Т. Теория автоматического управления теплоэнергетическими процессами: учебное пособие [Электронный ресурс] / Кулаков Г. Т., Кулаков А. Т., Кравченко В. В., Кухоренко А. Н.; Артёменко К.И., Ковриго Ю.М., Голинко И.М., Баган Т.Г., Бунке А.С. Минск: Вышэйшая школа, 2017. 238 с. (http://catalog.lib.tpu.ru/catalogue/advanced/document/97303)
- 4. Гайдук А.Р. Теория автоматического управления в примерах и задачах с решениями в MATLAB: учебное пособие / А. Р. Гайдук, В. Е. Беляев, Т. А. Пьявченко. 2-е изд., испр. СПб.: Лань, 2011. 464 с. (http://catalog.lib.tpu.ru/catalogue/advanced/document/RU/TPU/book/216826)
- 5. Коновалов Б.И. Теория автоматического управления: учебное пособие для вузов / Б. И. Коновалов, Ю. М. Лебедев. 3-е изд., доп. и перераб. СПб.: Лань, 2010. 224 с (http://catalog.lib.tpu.ru/catalogue/advanced/document/RU/TPU/book/193702)

6.2. Информационное и программное обеспечение

Internet-ресурсы (в т.ч. в среде LMS MOODLE и др. образовательные и библиотечные ресурсы):

- 1. Elibrary.ru: научная электронная библиотека [Электронный ресурс]. Режим доступа: http://www.elibrary.ru, свободный. – Загл. с экрана.
- 2. База данных нормативных документов [Электронный ресурс]. Режим доступа: http://kodeks.lib.tpu.ru/docs/ в сети ТПУ свободный. Загл. с экрана.
- 3. Scopus.com крупнейшая единая база данных, содержащая аннотации и информацию о цитируемости рецензируемой научной литературы, со встроенными

- инструментами отслеживания, анализа и визуализации данных. Режим доступа: http://www.scopus.com, свободный. Загл. с экрана.
- 4. Web of Science поисковая интернет-платформа, объединяющая реферативные базы данных публикаций в научных журналах и патентов. Режим доступа: http://webofknowledge.com, свободный. Загл. с экрана.
- 5. Gpntb.ru: Государственная публичная научно-техническая библиотека России [Электронный ресурс]. Режим доступа: http://www.gpntb.ru/ свободный. Загл. с экрана.
- 6. Іргbookshop.ru: Электронно-библиотечная система [Электронный ресурс]: http://www.iprbookshop.ru/ в сети ТПУ свободный. Загл. с экрана.
- 7. Журнал «Automatica». Издательство Elsevier. [Электронный ресурс]. Режим доступа: https://www.journals.elsevier.com/automatica свободный. Загл. с экрана.
- 8. Журнал «Автоматизация в промышленности». [Электронный ресурс]. Режим доступа: http://www.avtprom.ru свободный. Загл. с экрана.

Лицензионное программное обеспечение (в соответствии с **Перечнем лицензионного программного обеспечения ТПУ**):

- 1. MATLAB R2008;
- 2. MATHCAD;
- 3. TAULAB;
- 4. MBТУ;
- 5. Microsoft Office.

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для практических и лабораторных занятий:

№	Наименование специальных помещений	Наименование оборудования
1.	Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (учебная лаборатория) 634034 Томская область, г. Томск, пр. Ленина,	Комплект оборудования для проведения лекционных занятий: – компьютер - 3 шт.; – принтер - 2 шт.; – проектор - 1 шт.; – телевизор - 1 шт.
2.	д. 30а, учебный корпус № 4, аудитория 219 Аудитория для проведения учебных занятий всех типов, курсового проектирования, консультаций, текущего контроля и промежуточной аттестации (компьютерный класс) 634034 Томская область, г. Томск, пр. Ленина, д. 30а, учебный корпус № 4, аудитория 28	Комплект оборудования для проведения лабораторных работ по дисциплине: – компьютер - 13 шт.; – принтер - 4 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по направлению 13.03.01 Теплоэнергетика и теплотехника / Инженерия теплоэнергетики и теплотехники / специализация «Автоматизация технологических процессов и производств в теплоэнергетике и теплотехнике» (приема 2019 г., очная форма обучения).

Разработчик(и):

Должность	Подпись	ФИО
Профессор НОЦ И.Н. Бутакова ИШЭ, д.фм.н., профессор		П.А. Стрижак
Доцент ИШФВП, к.фм.н.		К.Ю. Вершинина

Программа одобрена на заседании 2019 г. № 25).	НОЦ И.Н.	Бутакова	ЕШИ	(протокол	ОТ	« <u>17</u> »	апреля
Руководитель НОЦ И.Н. Бутакова, д.т.н, профессор		ПС	одпись		A.C.	Заворг	ин/