ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ В ИССЛЕДОВАНИИ КОНДЕНСИРОВАННОГО СОСТОЯНИЯ

МОДУЛЬ 3. МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТВЕРДЫХ ТЕЛ

Лекция 15.

Наноиндентирование. Принцип работы прибора. Влияние твердости подложки на механические характеристики тонких пленок, определяемых методом наноиндентирования. Определение параметров индентирования методом Оливера – Фарра. Метод определения истинной твердости.

Наноиндентор

Nanotest 600

TI Premier

Принцип измерения

Измерительное устройство опускается до тех пор, пока опорное кольцо не будет в контакте с образцом.

Нагрузка прилагается приводом смещения, состоящим из электромагнитной катушки.

Вертикальное перемещение индентора контролируется емкостным датчиком, расположенным около конца индентора.

Figure A.1: Schematic of the Nanoindenter set up

Nanotest 600

Наноиндентор Nanotest 600 позволяет проводить измерения в трех режимах: индентирование, удар, царапание при температуре до 500°С.

NanoTest оснащен антивибрационным столом, набором индентеров, устройством, 4 позволяющим соблюдать точную температуру в камере.

Индентирование производится вдавливанием в изучаемый образец индентора, обладающего известными механическими свойствами (формой, модулем упругости и т.д.), с заданным усилием.

При индентировании используются:

- конический индентор
- кубический индентор, имеющий форму трехгранной пирамиды с углом 90° между ребрами
- индентор Берковича трехгранная пирамидка с с углом 65,03° между осью и гранью
- индентор Виккерса четырехгранная пирамидка с квадратным основанием и углом при вершине между противолежащими ребрами 136°

cube corner 90°	 Ultra-thin coatings less than 100 nm thick Micro/nano-composites Fracture of samples Higher resolution in-situ imaging 	
Berkovich	 Bulk ceramics, glasses and metals Thin, hard films and coatings greater than 100nm thick Hard, smooth biomaterials (polished bone) Hard polymers (modulus greater than 1GPa) <i>in situ</i> imaging 	
conical, 3 µm 90°	 Harder polymers (modulus greater than 0.5 GPa) Hard biomaterials Nanoscratch testing Measuring coefficient of friction <i>in-situ</i> imaging of tested region 	
conical, 100 µm 90°	 Soft polymers (modulus less than 0.5 GPa) Soft biomaterials (tissue, skin, contact lenses, etc.) Nanoscratch testing Measuring coefficient of friction 	

Кривая индентирования

Р_{тах} - максимальная приложенная нагрузка, h_{тах} – максимальная глубина проникновения индентора,

h_f - остаточная глубина отпечатка.

АСМ-изображения и профилограммы поверхности пленки Ag до (а) и после отжига при температурах 150 (б) и 200°С (в). Размер изображений 1.8×1.8 мкм²

Кривые наноиндентирования пленок Ag c различным размером зерна, полученные при максимальной нагрузке 1.0 мН

Определение твердости методом Оливера-Фарра

W. Oliver, G. Pharr. J. Mater. Res. 7, 6, 1564 (1992)

где *P*_{max} – максимальная приложенная нагрузка, *А* – площадь контакта индентора с образцом:

$$A = k_1 h_c^2 + k_2 h_c$$

Здесь *k*₁ и *k*₂ – константы, зависящие от геометрии индентора,

$$h_c = h_{\max} - 0.75 P_{\max} \left(\frac{dh}{dP}\right)_{P_{\max}}$$

– глубина контакта индентора с образцом,
 *h*_{max} – максимальная глубина проникновения индентора.

Для идеально острого индентора Берковича $k_1 = 24.5$ и $k_2 = 0$. В случае реального индентора второй член, описывающий отклонения от идеальной геометрии из-за закругления острия пирамидки, не равен нулю.

$$A = 24.5h_c^2 + 1.65 \times 10^{-6}h_c$$

Определение твердости методом работы индентирования

J.R. Tuck, A.M. Korsunsky, S.J. Bull, R.I. Davidson. Surf. Coat. Technol. **137**, 217 (2001).

$$W_{total} = W_{plastic} + W_{telastic}$$

$$H = \frac{kP_{\max}^3}{9W_t^2}$$

где k — постоянная, зависящая от геометрии индентора (для пирамидки Берковича k = 0.0408),

W_t – работа, которая совершается в процессе индентирования.

В данном методе не используется величина площади контакта между индентором и образцом, что должно приводить к снижению погрешностей в материала результатах, возникающих из-за выдавливания пленки вокруг индентора. 10

Оценить твердость материала можно путем непосредственного измерения площади контакта индентора с образцом по **АСМ-изображения** отпечатков индентора.

При этом измеренная площадь отпечатка должн включать в себя площадь контакта межд индентором и выдавленным материалом.

АСМ-изображение и профилограмма отпечатка индентора на поверхности пленки Ag. P_{max} = 200 мН.

$$H = \frac{P_{\max}}{A}$$

Схема выдавливания (pile-up) (a) и вдавливания (sink-in) (б) материала вокруг индентора

Независимо от метода твердость пленок Ag на подложках Si непрерывно растет с глубиной проникновения!

Indentation depth/Film thickness

Зависимость твердости пленки Ag со средним размером зерна 250 нм от глубины относительной проникновения индентора. Оливера-Фарра, определенная методом твердость, работы индентирования, твердость, вычисленная методом – твердость, полученная с помощью АСМ-измерений отпечатка. 3 13

Определение модуля упругости методом Оливера-Фарра

DISPLACEMENT, h

Модуль упругости пленки на подложке определяется по углу наклона кривой разгрузки с помощью следующих соотношений:

$$E^{*} = \frac{\sqrt{\pi}}{2\sqrt{A}} \left(\frac{dh}{dP}\right)_{P_{\text{max}}}^{-1} \qquad E^{*} = \left(\frac{1-\nu^{2}}{E} + \frac{1-\nu_{\text{ind}}^{2}}{E_{\text{ind}}}\right)^{-1}$$

где E^* – приведенный модуль упругости системы пленка-индентор, E и E_{ind} , v и v_{ind} – модули упругости и коэффициенты Пуассона материалов пленки и индентора соответственно.

$$A = 24.5h_c^2 + 1.65 \times 10^{-6}h_c$$
 14

LOAD, P

Модуль упругости пленок Ag на подложках Si непрерывно растет с глубиной проникновения!

Зависимость модуля упругости пленок Ag на подложках Si с различным размером зерна от относительной глубины проникновения индентора.

Определение истинной твердости пленок Ад

$$H_{\rm c} = H_{\rm s} + \frac{H_{\rm f} - H_{\rm s}}{1 + \frac{h^2}{\alpha t}}$$
, (1)

где H_c, H_s и H_f – значения твердости композиции, подложки и пленки, соответственно,

h – глубина проникновения индентора, *t* – толщина пленки,

α - параметр, зависящий от толщины пленки.

Indentation depth/Film thickness Зависимость твердости пленки Ag (d = 250 нм), определенной

- методом Оливера-Фарра (1),
- работы индентирования (2)
- с помощью ACM-измерений отпечатка (3) от относительной глубины проникновения индентора. Линиями показана аппроксимация выражения (1) к экспериментальным данным.

Особенности определения твердости и модуля упругости тонких пленок в случае "мягкой" пленки на "твердой" подложке и в случае "твердой" пленки на "мягкой" подложке

Зависимость твердости пленок Си на различных подложках от относительной глубины проникновения индентора. Сплошной линией показана аппроксимация, проведенная с помощью методики определения истинной твердости.

Зависимость модуля упругости пленок Си на различных подложках от относительной глубины проникновения индентора. Пунктирными линиями показаны значения модулей упругости подложек.

Можно ли измерить наноиндентированием толщину упрочненного поверхностного слоя?

Светлопольные ПЭМ-изображения и картины микродифракции слоев ZrYO (a) и SiAlN (б) в покрытиях, состоящих из 34 слоев. Толщина каждого слоя 300 нм.

Кривые индентирования (а, б) и скорость деформации (в) 2- (1) и 34-слойного (2) покрытий на основе SiAlN/ZrYO при максимальной нагрузке 5 (а) и 50 мН (б, в)

Вклад от слоя SiAlN возникает лишь при глубине проникновения индентора около 300 нм и проявляется в резком увеличении угла наклона кривой наноиндентирования, а также замедлении скорости деформации покрытий !

Кривые индентирования (а) и скорость деформации (б) 2- (1) и 34-слойного (2) покрытий на основе SiAlN/ZrYO при максимальной нагрузке 50 мН

Толщина покрытия ZrYO как раз составляет 300 нм.

Но такое совпадение возможно лишь в случае мягких пленках на твердых подложках!

кно ли измерить наноиндентированием толщину упрочненного поверхностного слоя?

 $0 \,\mu m$ 10 µm 10 µm

Зависимость твердости поверхностного слоя от глубины проникновения индентора в глубь образцов титана ВТ1-0, находящихся в исходном состоянии (1) и подвергнутых обработке электронным пучком с плотностью энергии 12 (2), 18(3), 24 Дж/см² (4)

Оптические изображения микроструктуры поперечных шлифов образцов титана ВТ1-0 после обработки электронным пучком с плотностью энергии 12 (a), 18(б), 24 Дж/см² (в)

Можно ли измерить наноиндентированием толщину упрочненного поверхностного слоя?

Зависимость твердости поверхностного слоя образцов стали ЭК-181, подвергнутых обработке пучками ионов Zr⁺ в течение 6 минут, от глубины проникновения индентора. Измерения проведены на лицевой (а) и обратной (б) поверхности образца

Оптические изображения боковой грани образцов стали ЭК-181, подвергнутых обработке пучками Zr⁺ в течение 6 минут. Измерения получены вблизи лицевой (а) и обратной (б) поверхности образца

Распределение микротвердости по боковой грани образцов стали ЭК-181, подвергнутых облучению пучками циркония в течение 6 минут 2121

Влияние температуры испытаний на твердость пленок

