МЕТАЛЛЫ И ПОЛУПРОВОДНИКИ: ТЕХНОЛОГИИ И ПРОЦЕССЫ

МОДУЛЬ 3. Тонкие пленки и покрытия

Лекция 16

Деформация и разрушение тонких пленок при термическом нагружении. Влияние податливой подложки на характер упругой деформации пленок.

Деформация и разрушение тонких пленок при механическом нагружении. Закономерности растрескивания и скалывания покрытий. Скрэтч-тест. Растяжение. Сжатие. Знакопеременный изгиб. Испытания на износ. Деформация и разрушения тонких металлических пленок и керамических покрытий при термическом и механическом нагружении носят общий характер и обусловлены наличием границ раздела между пленкой и подложкой, а также между отдельными слоями в многослойных структурах.

a – unstrained film and substrate; b – film and substrate are strained differently; c – film is stretched to correspond substrate dimensions; d – film is rigidly bound with substrate, therefore "film-substrate system bends to attain equilibrium of moments and forces

Different modes of deformation in the film-substrates system subjected to tensile stresses

$$\lambda_{\min} = 2\pi h \frac{\sigma_{\mathrm{f}}}{\tau_{\mathrm{f}}}$$

 λ_{min} - минимальное расстояние между соседними трещинами,

h – толщина покрытия,

 σ_f – предел прочности покрытия,

 τ_f - предельная сдвиговая прочность границы раздела

Разрушение покрытий Al-Si-N на исходной подложке

50 µm

5

20 µm

Different modes of deformation in the film-substrates system subjected to **compressive** stresses

- a initial state;
- *b* buckling of a film on stiff substrate;
- c wrinkling of a film on compliant substrate;
- *d* plastic deformation of a film.

Freestanding film: Euler buckling

Critical compressive stress for buckling:

- Buckling relaxes compressive stress
- Critical buckling stress is independent of substrate properties and is determined by elastic characteristics of the film and dimension of debonded area
- Bending energy favors long wavelength

$$\sigma_c = \frac{\pi^2 E_f}{12(1+\nu)} \left(\frac{h}{b}\right)^2$$

Film on substrate: *delamination*

and buckling

Different patterns of film buckling

Buckling patterns of Cu thin films deposited at room temperature on Si substrate

Different patterns of film buckling

Buckling of Ti films on AI (a) and Ti (b) substrates after alternating bending tests. a - 200 cycles; b - 9000 cycles. Observed areas are 600×450 mm².

Wrinkling of elastic film on elastic substrate

Energy minimization select an intermediate wavelength (independent of stress) and an amplitude:

$$\lambda = 2\pi h \left(\frac{\overline{E}_f}{3\overline{E}_s}\right)^{1/3} \quad A = h \sqrt{\frac{\sigma}{\sigma_w} - 1}$$

Equilibrium Wrinkle Patterns

Different patterns of wrinkles on the surface of a thin film (simulation)

АСМ-изображения деформационного рельефа на поверхности пленок Al/PS после отжига при температурах 110 (а-в) и 150 °С (г-е) в течение 15 с (г), 1,5 мин (а), 3 мин (б, д) и 40 часов (в, е) 12

25 мкм B 100 мкм 50 мкм Различные механизмы релаксации внутренних напряжений в системе РЭМ-изображения поверхности оксидная пленка - металлическая алюминиевого сплава АМГ2 в состоянии подложка В процессе а – гофрирование оксидной пленки; б

б

после оксидирования поставки при температуре 580 °С в течение 10 (а, б), 30 минут (в) и 2 часов (г)

искривление поверхности зерен

подложки

отжига:

a

б

Surface instability of a stressed solid

Main processes of mass transfer:

- Surface diffusion;
- Grain boundary diffusion;
- Grain boundary motion

Competition between surface energy and strain energy leads to a critical wavelength:

 λ_m

Instability of epitaxial films

AFM-images of GeSi film on Si (111) substrate (a) and Ge nanoislands on Si (111) (b) and Si (211) (b) substrates. Observed areas are 2.0x2.0 and 1.0 x 1.0 μm^2 (b,c)

РЭМ-изображения поверхности алюминиевого сплава 1570 в состоянии поставки после оксидирования при температуре 550 °С в течение 30 минут (а) и алюминиевого сплава АМГ 2 в состоянии поставки после оксидирования при температуре 610 °С в течение 5 часов (г) и карты распределения химических элементов на данном участке: Al – б,д, Mg – в,е 16

Образование силицидов в пленках Cu

Образование силицидов меди на поверхности пленок Cu/Cr (a-в) и Cu/Ag (e-з) после отжига в течение 1 часа при 550 (a-в) 450 °C (e-з). На рисунках г и д приведены ACM-изображения и профилограммы поверхности пленок Cr и Cu/Cr соответственно 17

РЭМ-изображения поверхности покрытий $Al_{0,86}Si_{0,14}N$ после 20 (а) и 25 циклов (б, в) отжига при температуре 1000 °С в течение 1 минуты, а также карты распределения химических элементов (г-е) на участке, показанном на рисунке (б) 18

РЭМ-изображение дорожки трения на поверхности покрытия Au-Ni (a) после трибологических испытаний в течение 2 500 с и карты распределения Au (б) и Ni (в) на данном участке

Схемы адгезионного и когезионного отслоения пленок

Светлопольные ПЭМ-изображения и картины микродифракции слоев Si-Al-N (а) и Zr-Y-O (б), а также РЭМ-изображение поверхности трения двухслойного покрытия Zr-Y-O/Si-Al-N после трибологических испытаний в течение 16 минут (в)

Поверхности трения и профили 12- (а) и 34-слойных (б) покрытий Zr–Y–O/Si–Al–N после трибологических испытаний в течение 30 (а) и 16 минут (б)

