МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

<u>« НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ</u>

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ПРИРОДНЫХ РЕСУРСОВ

Методы биоиндикации и **биотестирования**

Лекция №6 по дисциплине «Биоразнообразие»

Особенности использования мхов в биомониторинговых исследованиях

Биомониторинг загрязнений атмосферного воздуха химическими элементами с использованием мхов является в последнее десятилетие одним из перспективных из эффективных, популярных, простых в исполнении и менее затратных методов и оценки изменений и контроля качества воздуха.

Мох «впитывает» большой объем микропримесей из атмосферы, накапливая и удерживая их в себе в течение всего времени

жизни.

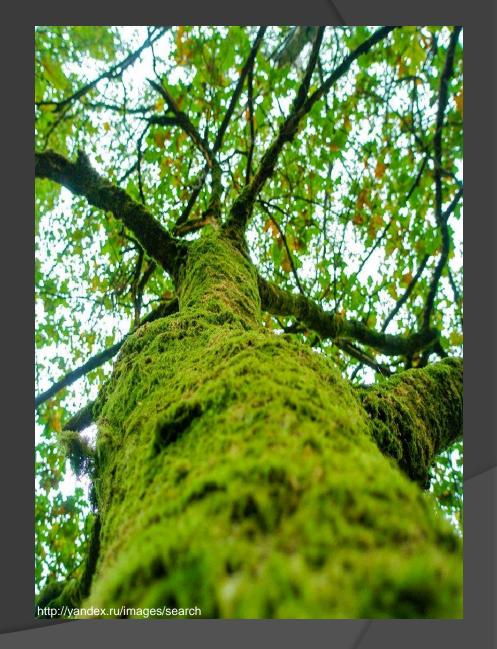
Мхи не имеют корневой системы, что делает их оптимальными сорбентами для атмосферных выпадений. В сравнении с традиционными методами исследования загрязнителей атмосферного воздуха, использование мхов в качестве монитороватмосферного загрязнения имеет весьма ощутимые преимущества.

Благодаря особому строению поверхности моховой покров является прекрасным сорбентом, а низкий уровень метаболизма способствует накоплению в биомассе веществ широкого спектра.

http://yandex.ru/images/search

Выделяют некоторые виды мхов, которые являются самыми оптимальными биологическими аккумуляторами загрязнений атмосферного воздуха. Это такие виды как: мох сфагнум (Sphagnopsida), мох плеурозий (PleuroziumSreberi),пилезия многоцветковая (Pylaisiapolyantha), листостебельные мхи семейства политриховые (Polytrichaceae).

Таблица 1. Результаты экспериментального исследования по насыщению листостебельных мхов парами керосина [8]


Место отбора проб		нефтепродукт ание нефтепр э, мг/м3)	Коэффициент разделения содержания нефтепродуктов в сухом мхе (тв. фаза)/в паровой фазе		
	2011 г.		2012 г.	2011 г.	2012 г.
	верхняя (зеленая) часть мха	нижняя (отмершая) часть мха	суммарная проба мха		
Хр. Еловая грива	0,214 (21)	0,235 (21)	0,222 (22)	0,0107	0,0109
Р. Улс	0,281 (25)	0,264 (25)	0,294 (23)	0,0109	0,0128
Хр. Кваркуш склон	0,228 (23)	0,234 (23)	0,213 (21)	0,0100	0,0101
Хр. Кваркуш плато 1	0,198 (20)	0,201 (20)	0,256 (22)	0,0099	0,0116
Г. Сенной камень	0,205 (22)	0,211 (22)	0,199 (23)	0,0095	0,0087

Не стоит забывать и о других видах. Например, листостебельный мох - PleuroziumSreberi произрастает на сухой лесной подстилке, что в сравнении с мхом сфагнумом значительно упрощает пробоотбор, а также расширяет территорию проведения

биомониторинга.

Эпифитные MXUспособны аккумулировать различные химические элементы. Но эпифиты, в отличие от сфагнума, произрастают в сухом лесном климате на деревьях (тополь, осина), поднимаясь на высоту от поверхности почвы на 10-20 см.

Наибольшей удерживающей способностью по отношению к загрязнителям обладают сфагновые мхи. Они распространены на увлажненных заболоченных территориях. Это многолетние растения с сильно ветвящимся стеблем, высотой 10-20 см. Сфагнум, благодаря особым «воздушным клеткам», способен накапливать в себе различные химические элементы.

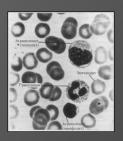
Таблица 2. Значения удельных активностей Ra226, Th232, K 40, C137 в различных видах рода Sphagnum, Бк/кг [9]

Вид мха	Ra226	Th232	K 40	C137	
S. aongstroemii	20,5±3	16±2,0 168±17		1	
S. angustifolium	17±4,0	5±1,0	280±29	43±5	
S. balticum	9±1,3	5±0,6	129±13	86±8,7	
S. centrale	60±7,3	17±2,0	150±15,2	18±2,1	
S. compaktum	36±4,0	19±2,0	304±30	71±7,2	
S. capillifolium	21±2,7	19±2	260±26	83±8	
S. russowii	48±6,0	20±2,4	452±46	55±6	

самый оптимальный мха-биомонитора сфагнум. Данный вид имеет наибольшую способность накапливать и удерживать широкий спектр химических элементов u_3 атмосферных выпадений

Опыт разработки методов определения токсичности отходов горнодобывающих предприятий методами биотестирования

Метод биотестирования давно и широко используется для определения наличия токсического (мутагенного) эффекта. При оценке мутагенной активности (токсичности) загрязнителей среды разными исследователями используются разные тест-системы – от бактерий до млекопитающих..


Показателем токсического воздействия служит степень изменения определенных параметров живых систем, которая фиксируется различными методами

рачки *Daphnia magna*

Для более полной оценки ситуации по загрязнению и токсичности нужно проводить параллельно несколько биотестметодов, причем, с разными тестобъектами в каждом случае. В наших исследованиях были применены 4 тестобъекта для оценки токсичности отходов горно-добывающих предприятий Республики Хакасия.

Два тест-объекта использованы согласно методическим рекомендациям (Критерии ..., 2001): рачки *Daphnia magna* и инфузории Paramecium caudatum, а также в порядке постановки эксперимента мушки *Dros* melanogaster и цитологический анали: культурах клеток крови человека, отражающий мутационное действие изучаемых проб.

культуры клеток крови человека

РЕЗУЛЬТАТЫ БИОТЕСТИРОВАНИЯ ОТХОДОВ ГОРНОДОБЫВАЮЩИХ ПРЕДПРИЯТИЙ РЕСПУБЛИКИ ХАКАСИЯ

· · ·				Тест-объекты			
	(специфические элементы)	1	2	3	4		
цное	Породы отвала «Северный» (Se ₁₀ , B _{4,3} , As _{1,82})	+			-		
Тейское железорудное	Шлам хвостохранилища (As _{25,7,} B _{17,} Se ₁₀)	-	-	4	-		
Тежеле	Шлам отстойника (B _{29,2} , As _{22,24} , Se ₁₀)	+	-		+		
ОАО «Саянмрамор»	Отвал № 1 «Грязный» (Se _{10,} Li _{2,85,} Cd _{2,46})	-	н.о.		+		
	Отвал № 1 Гранитный (Ga _{1,05,} B _{1,04} , Zr ₁)	+	н.о.	4	+		
	Шлам отстойника (Se _{10,} Ga _{1,05,} B _{1,05})	-	н.о.	+	-		
	Золошлаковые отходы (Cd _{15,38,} B _{10,17,} Se ₁₀)	+	н.о.	+	-		
Угольный разрез Чалпан	Отвал (Mn ₃₂₇ , Ba ₂₃₀ , V ₁₀₀)	+	н.о.	+	-		
	Золошлаковые отходы (В _{14,6,} Se _{10,} Cr _{3,59})	-	н.о.	+	+		

Примечание: 1 - Цитогенетический анализ, 2 - Daphnia magna Straus, 3 - Paramecium caudatum, 4 - Drosophila melanogaster, н.о. – не определялось.

В стадии разработки находится метод **Allium test** — растительная тест система для оценки мутагенного,

митозомодифицирующего и токсического эффектов ри и е растения *Allium се*

Два микроядра в меристеме *Allium сера*, образованные ацентрическими фрагментами

Использование речного окуня в качестве тест-объекта

Бассейн р. Оби - основной источник питьевой воды и промысловых видов рыб для населения Западной Сибири. Потребляемая в пищу рыба с местных водоемов может послужить угрозой для человека. Поэтому необходимы сведения о геохимии одного из основных промысловых видов рыб — речного окуня Обского бассейна.

Цель работы

- изучение геохимических особенностей речного окуня бассейна р. Оби.

Использование речного окуня в качестве тест объекта позволяет:

- сравнить содержание металлов в тканях окуня с предельно-допустимыми концентрациями этих веществ в соответствующих продуктах питания;
- определить районы опробования, для которых характерны наибольшие концентрации химических веществ в организме исследуемой рыбы;
- построить ряды ранжирования содержания металлов в мышечной ткани речного окуня Обского бассейна;
- изучить и сравнить содержание ртути в мышечной и костной ткани речного окуня;
- провести сравнение концентрации веществ в мышцах окуня бассейна р. Оби и оз. Байкала
- посчитать коэффициенты концентрирования для речной рыбы и выявить элементы, которые преимущественно накапливаются в ее тканях.

Причины выбора речного окуня в качестве тест-объекта

- 1) Накапливает токсикант в существенно больших концентрациях по сравнению со средой обитания;
- 2) Седентарен (обладает низкой миграционной активностью км);
- 3) Имеет сравнительно большую численность;
- 4) Имеет относительно продолжительный жизненный цикл;
- 5) Обладает сравнительно крупными размерами, что обеспечивает отбор проб в необходимом количестве;
- б) Достаточно удобен для вылова и отбора проб органов и тканей;
- 7) Репрезентативен с точки зрения отражения степени загрязнения по тем или иным морфофизиологическим и экологическим параметрам.

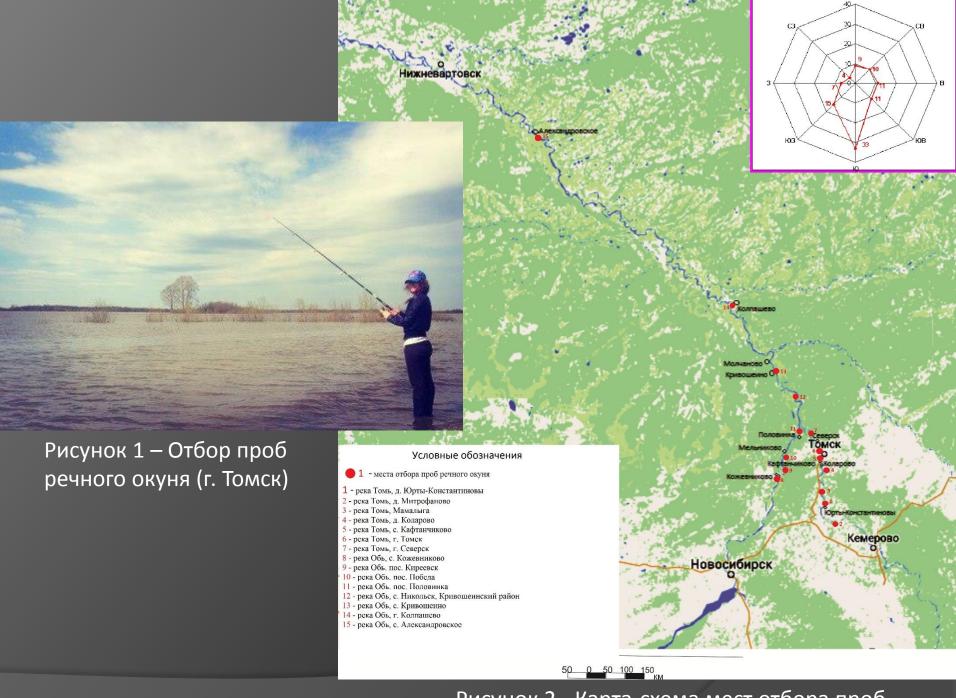
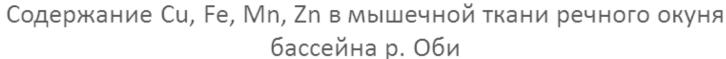


Рисунок 2 - Карта-схема мест отбора проб

Общая масса одной пробы составляла <u>500-700 г</u>, в нее входило не менее <u>7-10 рыб</u>.

Количественный анализ образцов мышечной ткани речного окуня

Ag, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sn, W, Zn



Метод атомно-эмиссионной спектрометрии (АЭС) с индуктивно-связанной плазмой (ИСП) (Центр коллективного пользования НИ ТПУ)

Hg, As, I, Se, Zn, Cd, Pb, Cu

Метод инверсионной вольтамперометрии (Научно-исследовательская лаборатория микропримесей ИПР НИ ТПУ)

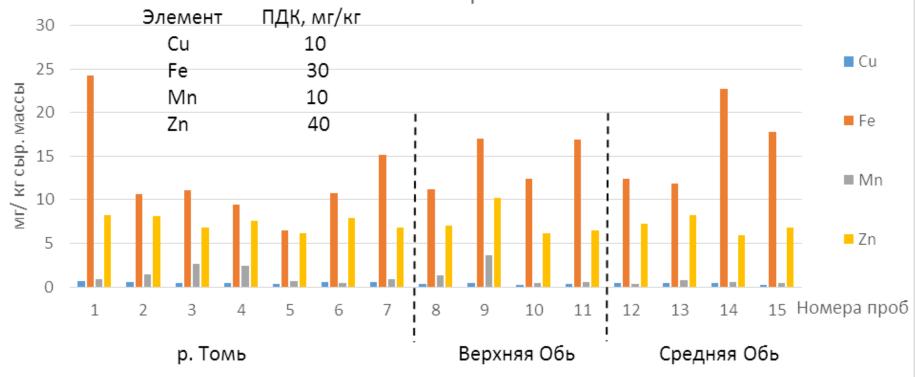


Рисунок 3 - Содержание металлов в мышечной ткани речного окуня бассейна р. Оби по результатам атомно-эмиссионной спектрометрии

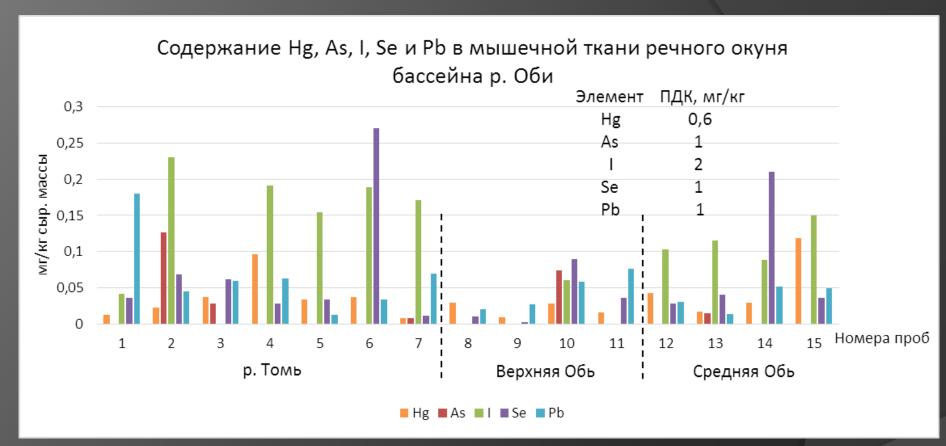


Рисунок 4 - Содержание металлов в мышечной ткани речного окуня бассейна р. Оби по результатам инверсионной вольтамперометрии

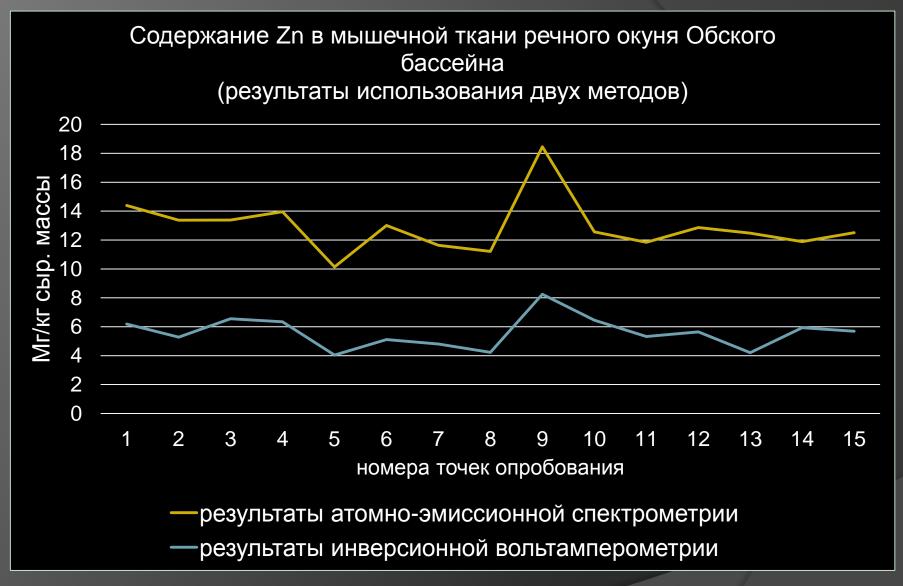


Рисунок 5 - Сопоставление результатов метода атомно-эмиссионной спектрометрии и метода инверсионной вольтамперометрии

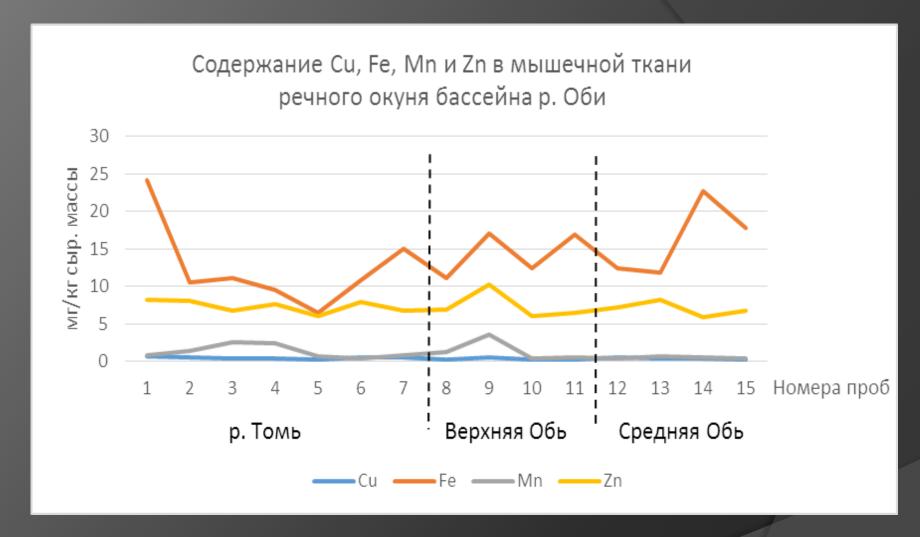
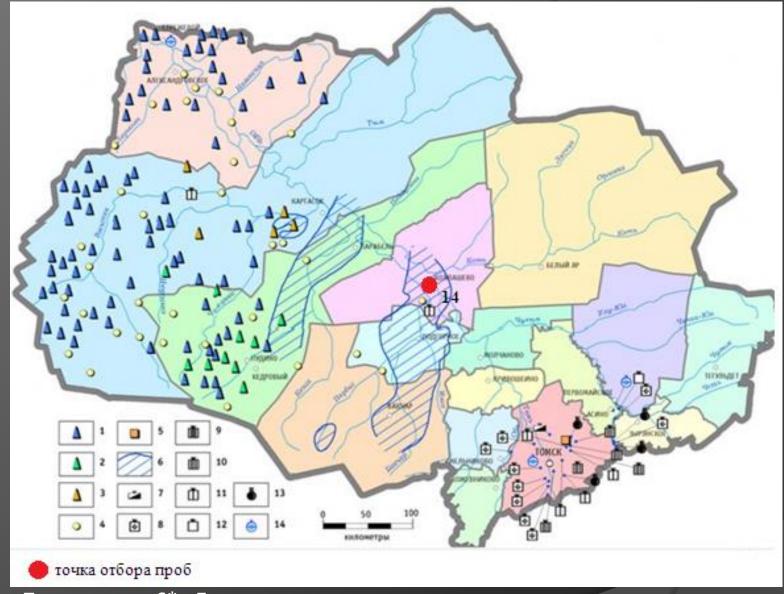



Рисунок 6 — Содержание металлов (Cu, Fe, Mn и Zn) в мышечной ткани речного окуня Обского бассейна по результатам атомно-эмиссионной спектрометрии

Примечание. 6* - Бакчарское железорудное месторождение

Рисунок 7 - Карта-схема месторождений полезных ископаемых Томской области [2]

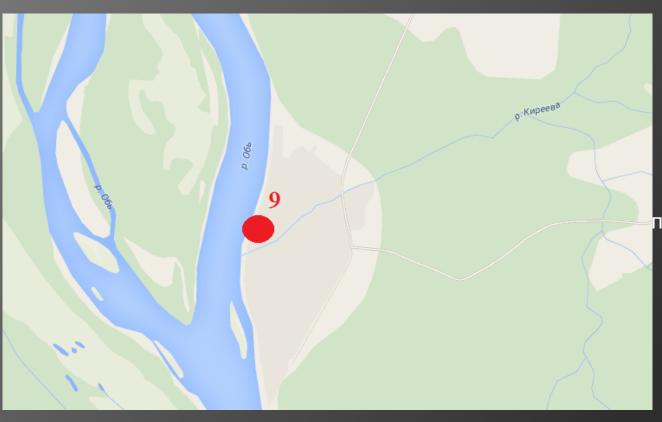


Рисунок 8 - Расположение пункта отбора речного окуня в районе с. Киреевска

Источником железных руд являются континентальные проявления болотных руд на правом берегу р. Оби. Среди наиболее известных проявлений — Киреевское (точка опробования №9). Здесь в песках прослеживается пласт сидеритовой руды, в состав которой кроме Fe, часто входит Мn и Zn [Асочакова Е.М., 2010].

Таблица 1 - Сравнение среднего содержания металлов в мышечной ткани речного окуня р. Томи в 1990, 1991, 2000 и 2014 гг., мг/кг сыр. массы [Попов П.А., Трифонова О.В., 2007 г.]

Год	Элементы						
	Co	Ni	Cu	Zn	Cd	Hg	Pb
1990	0, 592	0,21	0,73	14	0,23	0,76	3,92
1991	-	0,38	2,52	6,3	0,15	0,09	0,79
2000	0,083	0,10	0,20		0,01	0,11	0,08
2014	<0,1	<0,1	0,50	7,4	<0,005	0,03	0,07

Примечание* данные получены методом инверсионной вольтамперометрии

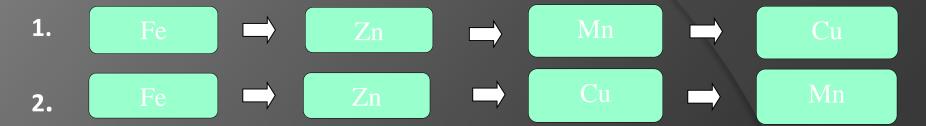


Рисунок 9 - Ранжирование металлов в мышцах речного окуня Обского бассейна (данные атомно-эмиссионной спектрометрии)

Примечание*

- 1. (образцы № 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15)
- 2. (образцы № 6, 12)

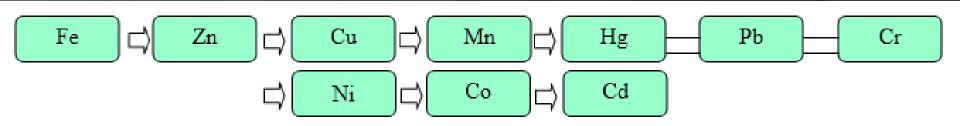


Рисунок 10 - Ранжирование металлов в мышцах рыб Сибири [Попов П.А., 2002 г.]

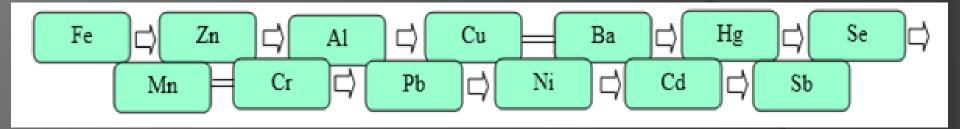


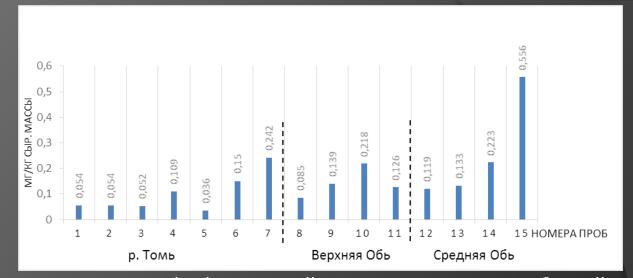
Рисунок 11 - Ранжирование металлов в мягких тканях окуня оз. Байкала [Попов П.А., 2002 г.]

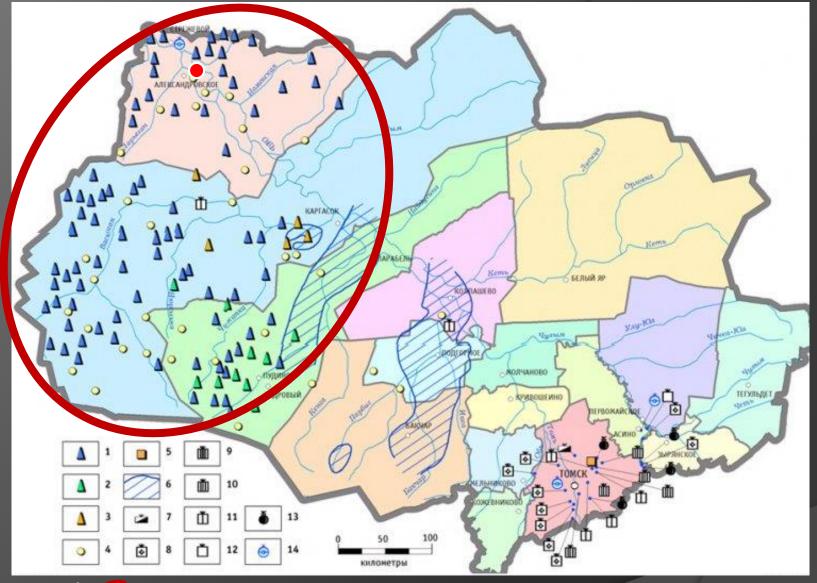
Таблица 2 - Ранжирование металлов в мышцах речного окуня р. Томи [Попов П.А., 2002 г.]

Год	Ранжированные ряды	
1990	Zn>Pb>Mn>Hg>Cu>Cd>Ni	
1991	Zn>Cu>Mn>Pb>Co>Ni>Cd>Hg	

Рисунок 12 - Измельчение костной ткани речного окуня в агатовой ступке

Рисунок 13 - Ртутный анализатор РА-915+ с приставкой ПИРО-915




Рисунок 14 - Содержание ртути (Hg) в костной ткани речного окуня бассейна р. Оби

Примечание. Мыше

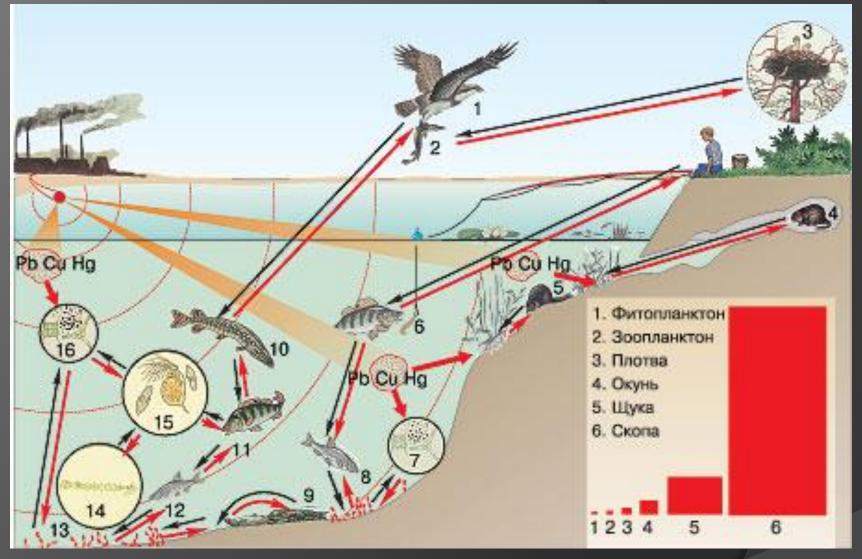

костная ткань исследовалась методом АЭС с ИСП

Рисунок 15 - Сравнение содержания Нg в мышечной и костной ткани окуня бассейна р. Оби

Примечание* район нефте- и газодобычи Томской области

Рисунок 16 - Карта-схема месторождений полезных ископаемых Томской области [2]

Примечание* 1 — скопа; 2, 10 — щука; 3 — гнездо скопы; 4, 5 — ондатра; 6, 11 — окунь; 7, 16 — бактерии и фитопланктон; 8, 12 — плотва; 9 — речной рак; 14 — мотыль; 15 — зоопланктон

Рисунок 17 — Накопление тяжелых металлов (Hg) по цепям питания в пресноводном биоценозе [5]

Предел допустимого суточного поглощения человеком общей ртути составляет <u>0,04 мг/кг</u> [6]. Регулярное потребление содержащей ртуть на уровне национального значения ПДК рыбы <u>(0,5 мг/кг)</u> не должно превышать в среднем <u>100 г в день</u>.

Рисунок 18 - Муфельная печь

W (влага) в речном окуне = $\binom{79}{\%}$

Пересчет содержания элементов в мышцах речного окуня на сухое вещество [7]

$$X = G * \frac{100}{100 - W,\%}$$
 Macca навески

Содержание вещества в сырой массе

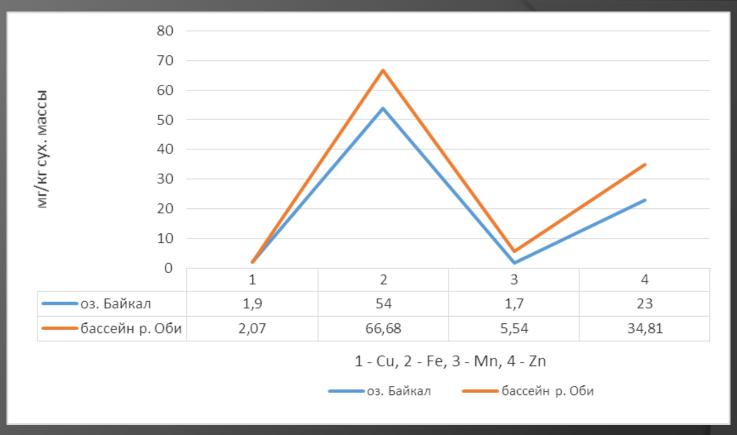


Рисунок 19— Среднее содержание металлов (Cu, Fe, Mn, Zn) в мышечной ткани окуня бассейна р. Оби (по данным ICP-AES) и оз. Байкала

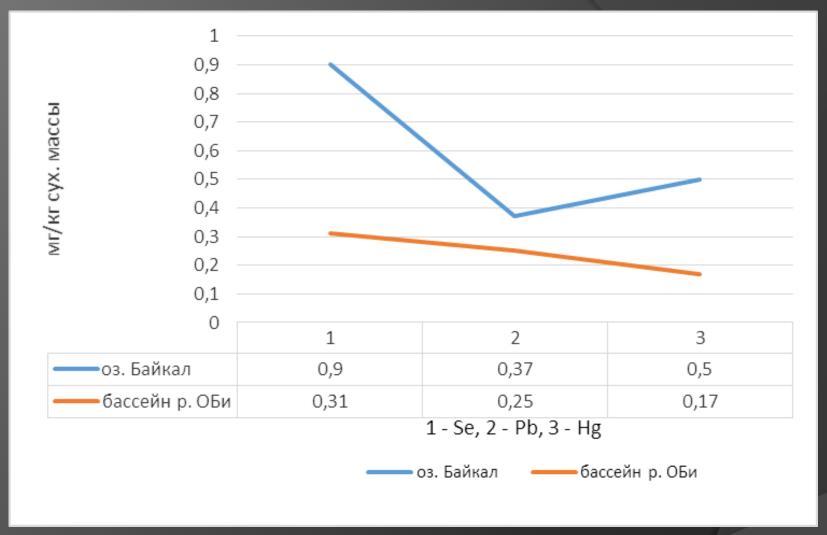
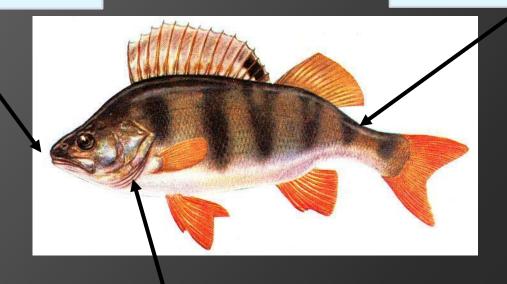
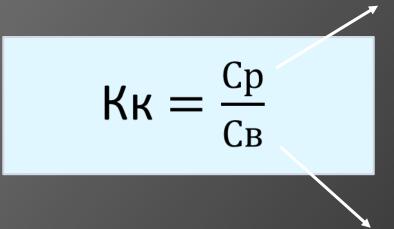



Рисунок 20 - Среднее содержание металлов (Se, Pb, Hg) в мышечной ткани окуня бассейна р. Оби (по данным ИВ) и оз. Байкала

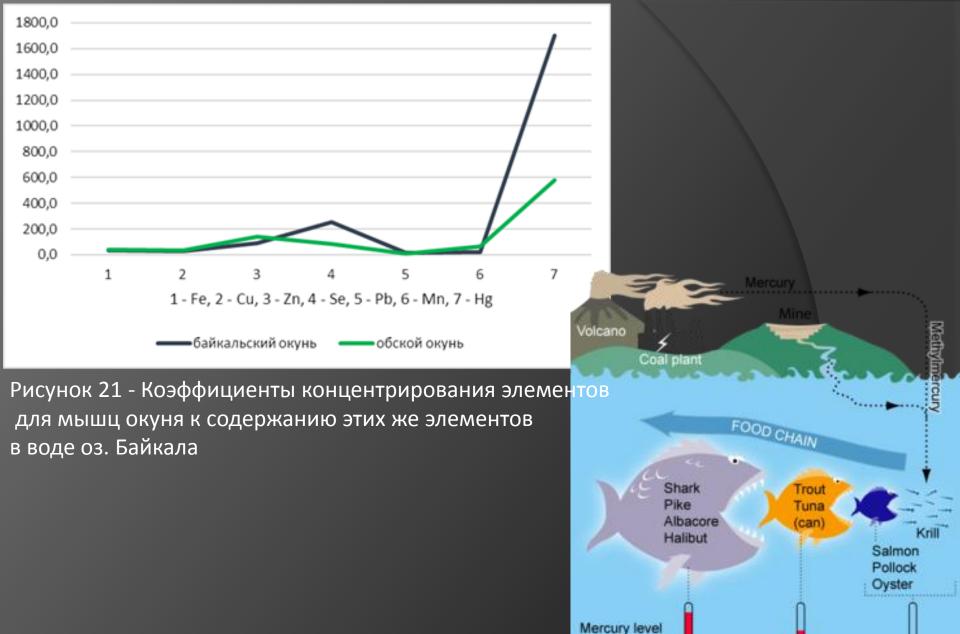
Пути поступления микроэлементов в организм рыбы


2) Пищеварение

3) Кожные покровь

1) Дыхание

Коэффициент концентрирования (Кк) - это отношение содержания элемента в веществе к содержании элемента в исходном водном растворе.



Содержание металла в ткани рыбы (мг/кг)

Содержание металла в воде (мг/л)

Обской окунь: $Hg_{578,0} > Zn_{137,6} > Se_{85,0} > Mn_{62,3} > Fe_{37,8} > Cu_{32,5} > Pb_{9,4}$

Байкальский окунь: $Hg_{1700,0} > Se_{255,0} > Zn_{90,9} > Fe_{30,6} > Cu_{29,4} > Mn_{19,3} > Pb_{14,0}$

(EPA advice for consumption)

Eat only a few

times per month

Eat a few

times per week

Unlimited

Выводы

- В мышечной ткани речного окуня бассейна р. Оби выделяется содержание Сu, Fe, Mn, Zn, при этом превышений ПДК не обнаружено.
- В точке опробования в с. Александровском содержание Hg в костной ткани рыбы находится на грани с ПДК (0,56 мг/кг), что может быть связано с приуроченностью пункта отбора проб к району нефтедобычи.
- По сравнению с мышечной тканью, во всех пробах содержание Hg выше в костной, что можно объяснить характером накопления ртути как токсичного вещества.
- Полученные ряды ранжирования металлов (Fe>Zn>Mn>Cu, Fe>Zn>Cu>Mn) в мышечной ткани речного окуня соответствуют рыбам из незагрязненных или малозагрязненных водоемов. Лидирующее положение Fe и Zn можно объяснить интенсивной аккумуляцией в организме микроэлементов, которые принимают активное участие в протекании физиологических процессов.
- Расчет коэффициентов концентрирования показал, что мышечная ткань окуня в большей степени концентрирует Hg. Самый низкий уровень концентрирования отмечен для Pb.
- По сравнению с химическим составом мышечной ткани байкальского окуня, содержание Cu, Fe, Mn и Zn выше в рыбе Обского бассейна. Однако концентрация Se, Pb и Hg хотя и незначительно, но выше в мышцах окуня озера Байкал.
- Таким образом, химический состав тканей речного окуня отражает факторы как природного (свойства природных вод и подстилающих пород), так и антропогенного (разработка и эксплуатация месторождений полезных

Благодарю за внимание!