МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

СПЕЦИАЛЬНЫЕ ТЕХНОЛОГИИ ТЕРМООБРАБОТКИ В МАШИНОСТРОЕНИИ

профессор, д.т.н. Сизова О.В.

Кафедра физики высоких технологий в машиностроении

Содержание лекций

- 1. Введение в курс.
- 2. Теория термической обработки стали. Основные превращения при нагреве и охлаждении.
- 3. Современная классификация сталей. Стали специального назначения.
- 4. Особенности термической обработки специальных сталей.
- 5. Высокоскоростная и лазерная закалка.
- 6. Закалка в вакууме и защитных средах.
- 7. Химико-термическая обработка специальных сталей.
- 8. Применение высококонцентрированных источников для поверхностной обработки стали.
- 9. Комплексная термическая и химико-термическая обработка деталей ответственного назначения.
- 10. Обработка стали давлением.

Стали. Производство и назначение

Сталь – сплав железа с углеродом, являются наиболее распространенным материалом. Достоинством стали является возможность получения заданного комплекса свойств путем изменения состава стали и вида обработки. Стали подразделяют на углеродистые и легированные. Производство стали по объему превосходит производство всех других металлов вместе взятых более чем в десять раз. Из стали изготавливают различные детали машин и механизмов машиностроительного производства.

Производство стали. Доменный процесс.

Стали. Производство и назначение

Объем производства стали - важнейший показатель технической и экономической мощи страны. Без обеспечения в необходимом количестве сталью не может развиваться ни одна отрасль промышленности.

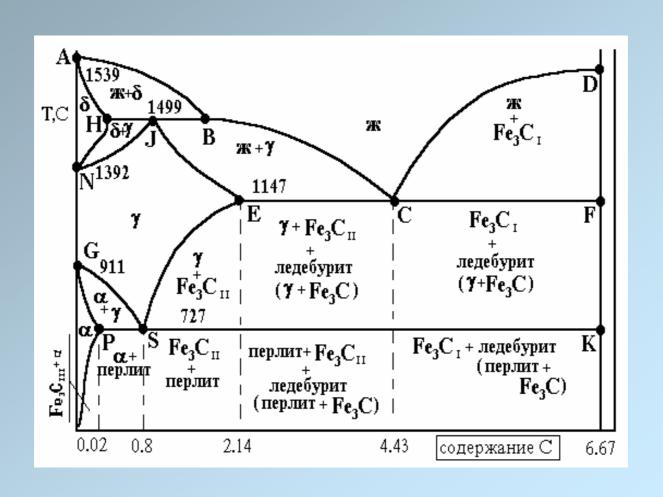
	ī			
	2005 г.	2006 г.	2007 г.	2008 г., І квартал
Bcero	19568	20065	20404	5440
Конструкционная сталь	8432	8573	9008	2412
Углеродистая	4818	4875	5118	1364
Легированная	3613	3698	3890	1048
Высокопрочная сталь	4363	4837	4778	1025
Нержавеющая сталь	2842	2954	3123	712
Автоматная сталь	1104	1032	986	587
Подшипниковая сталь	910	872	901	260
Сталь для струнной				
проволоки	760	710	721	211
Пружинная сталь	483	482	506	139
Инструментальная сталь	285	253	268	67
Жаропрочная сталь	323	309	-	-
Сталь с высоким				
содержанием марганца	65	44	-	-
Прочие сорта стали	-	-	112	28

ХАРАКТЕРИСТИКИ

СТАЛИ

- Плотность: 7700—7900 кг/м³,
- <u>Удельный вес</u>: 75537—77499 н/м³ (7700-7900 кгс/м³ в системе <u>МКГСС</u>),
- <u>Удельная теплоемкость</u> при 20 °C: 462 Дж/(кг·°С) (110 кал/(кг·°С)),
- <u>Температура плавления</u>: 1450—1520 °C,
- Удельная теплота плавления: 84 кДж/кг (20 ккал/кг),
- <u>Коэффициент теплопроводности</u>: 39 ккал/(м·час·°С) (45,5 Вт/(м·К).
- <u>Коэффициент линейного теплового расширения</u> при температуре около 20 °C:
 - сталь Ст3 (марка 20): (1/град);
 - сталь нержавеющая: (1/град).
- <u>Предел прочности</u> стали при растяжении:
 - » сталь для конструкций: $38-42 \, (\kappa \Gamma/\text{мм}^2)$;
 - сталь кремнехромомарганцовистая: 155 (кГ/мм²);
 - сталь машиностроительная (углеродистая): 32-80 (кГ/мм²);
 - сталь рельсовая: 70-80 (к Γ /мм²).

производство стали в россии



ОСНОВНЫЕ ПРОИЗВОДИТЕЛИ СТАЛИ В РОССИИ

•		2007 год_	2006 год
•	Северсталь	16,75	17,60
•	<u>Евраз</u>	16,30	16,10
•	<u>MMK</u>	13,30	12,45
•	<u>НЛМК</u>	9,06	9,13
•	Металлинвест	6,43	6,28
•	<u>Мечел</u>	6,09	5,95
•	<u>TMK</u>	2,19	2,15

Диаграмма состояния железо - углерод

Диаграмма состояния железо-углерод дает представление о строении железоуглеродистых сплавов — сталей и чугунов, а также позволяет классифицировать стали по содержанию углерода. Для сталей принято использовать стальную часть диаграммы Fe — C.

Фазы в системе железо-углерод

- <u>Жидкая фаза</u>. В жидком состоянии железо растворяет углерод в любых пропорциях.
- <u>Феррит (Ф)</u> твердый раствор углерода в α -Fe. Максимальная растворимость 0,02% при температуре 727 $^{\circ}$ С (т. Р). Кристаллическая решетка объемно центрированный куб с периодом 0,28606 нм. Свойства феррита твердость 130 НВ, предел прочности σ в 300 МПа, δ 30%.
- Аустенит (А) твердый раствор углерода в Υ Fe. Кристаллическая решетка гранецентрированный куб с периодом 0,3645 нм. Минимальная растворимость С 0,8% при температуре 727 °C (т. S), максимальная 2,14 % (т. E) при температуре 11470C. Твердость аустенита 200-250 HB, δ 40- 50%.
- <u> Цементит (Ц)</u> химическое соединение железа с углеродом (Fe3C), содержит 6, 67% углерода. Твердость более 800 НВ, пластичность близка к нулю. В железоуглеродистых сплавах цементит присутствует в трех видах: цементит первичный (Ц1), цементит вторичный (Ц2) и цементит третичный (Ц3). Они выделяются при кристаллизации соответственно из жидкой фазы, аустенита и феррита. Химические и физические свойства их одинаковы.
- <u>Графит (Г)</u> гексагональная слоистая решетка, расстояние между плоскостями 0,340 нм. Обладает низкой прочностью.