Домашнее задание по теме: «Линейные пространства и подпространства»

- 1. Проверить, образуют ли подпространство линейного пространства \mathbb{R}^n следующие подмножества:
 - a) $M_1 = \{(\alpha_1, \alpha_2, ..., \alpha_9) | \alpha_2 = \alpha_4 = \alpha_6 = \alpha_8 = 0\};$ B) $M_3 = \{(\alpha_1, \alpha_2, ..., \alpha_n) | \alpha_1 = \alpha_n\};$
 - $δ) M₂ = {(α₁,α₂,...,α₉)|α₂ = α₄ = α₆ = α₈}; Γ) M₄ = {(α₁,α₂,...,α_n)|α_i ∈ ℤ, ∀i};$

Ответы: а) да; б) да; в) да; г) нет.

- 2. Проверить, образуют ли подпространство линейного пространства $M(3 \times 3, \mathbb{R})$ следующие подмножества:
 - a) $S(3) = \left\{ \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \right\}$ 6) $S_1 = \left\{ \begin{pmatrix} 1 & b & c \\ b & 1 & e \\ c & e & 1 \end{pmatrix} \right\}$

B)
$$KS(3) = \left\{ \begin{pmatrix} 0 & b & c \\ -b & 0 & e \\ -c & -e & 0 \end{pmatrix} \right\}$$
 Γ) $S_2 = \left\{ \begin{pmatrix} 1 & b & c \\ -b & 1 & e \\ -c & -e & 1 \end{pmatrix} \right\}$

Ответы: а) да; б) нет; в) да; г) нет.

- 3. Доказать, что если некоторая подсистема данной системы векторов линейно зависима, то и сама система линейно зависима.
- 4. Доказать, что если система векторов линейно независима, то и любая ее подсистема линейно независима.
- 5. Выяснить, является ли данная система векторов \mathbb{R}^4 линейно зависимой: $a_1 = (4,-5,2,6)$, $a_2 = (2,-2,1,3)$, $a_3 = (1,-3,3,9)$, $a_4 = (4,-1,5,6)$. **Ответ:** линейно независимая (D = -45)
- 6. Выяснить, является ли данная система векторов $\mathbb{R}[x]$ линейно зависимой: $f_1(x) = x^3 + 2x^2 + 3x + 4$, $f_2(x) = 2x^3 + 3x^2 + 4x + 5$, $f_3(x) = 3x^3 + 4x^2 + 5x + 6$, $f_4(x) = 4x^3 + 5x^2 + 6x + 7$.

Ответ: линейно зависимая.

7. Проверить, что векторы

$$f_1(x) = 2x^2 + 2x - 1$$
, $f_2(x) = 2x^2 - x + 2$, $f_3(x) = -x^2 + 2x + 2$,

образуют базис пространства $\mathbb{R}^3[x]$ и найти координаты вектора

$$g(x) = x^2 + x + 1$$
 в этом базисе. Ответ: $\left\{ \frac{1}{3}; \frac{1}{3}; \frac{1}{3} \right\}$.

8. Проверить, что векторы e_1 = (1,5), e_2 = (2,7) и f_1 = (3,9), f_2 = (3,3) образуют базисы пространства \mathbb{R}^2 и найти координаты вектора x в базисе f_1 , f_2 , если известно, что в базисе e_1 , e_2 он имеет координаты $\{4;-2\}$.

Ответ:
$$\{1; -1\}, \quad \mathbf{T} = \begin{pmatrix} -1 & -5 \\ 2 & 4 \end{pmatrix}$$
.