§ 1. Комплексные числа

$$i = \sqrt{-1}$$

 $i = \sqrt{-1}$ — мнимая единица

$$i^2 = -1$$

z = a + bi – комплексное число, где a и b – действительные числа.

 $a = \text{Re } z - \partial e \check{u} c m \epsilon u m e n b h a s ч a c m b$ комплексного числа

Числа z = a + bi и $\overline{z} = a - bi$ называются комплексно сопряженными.

Если a = 0, то число называют **чисто мнимым**.

Если b = 0, то число является действительным

⇒ множество действительных чисел является подмножеством множества комплексных чисел.

Множество комплексных чисел обозначается C.

Действия над комплексными числами

Пусть $z_1 = a_1 + b_2 i$, $z_2 = a_2 + b_2 i$.

1. Сложение и вычитание.

$$z_1 \pm z_2 = (a_1 + b_1 i) \pm (a_2 + b_2 i) = (a_1 \pm a_2) + (b_1 \pm b_2) i$$

2. Умножение.

$$z_{1} \cdot z_{2} = (a_{1} + b_{1}i) \cdot (a_{2} + b_{2}i) = a_{1}a_{2} + b_{1}a_{2}i + a_{1}b_{2}i + b_{1}b_{2}i^{2} = (a_{1}a_{2} - b_{1}b_{2}) + (b_{1}a_{2} + a_{1}b_{2})i$$

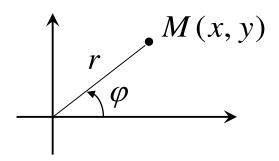
3. Деление.

$$z_{1}: z_{2} = \frac{a_{1} + b_{1}i}{a_{2} + b_{2}i} = \frac{(a_{1} + b_{1}i)(a_{2} - b_{2}i)}{(a_{2} + b_{2}i)(a_{2} - b_{2}i)} = \frac{a_{1}a_{2} + b_{1}a_{2}i - a_{1}b_{2}i - b_{1}b_{2}i^{2}}{a_{2}^{2} - b_{2}^{2}i^{2}} = \frac{a_{1}a_{2} + a_{2}b_{2} + (b_{1}a_{2} - b_{1}b_{2})i}{a_{2}^{2} + b_{2}^{2}} = \frac{a_{1}a_{2} + b_{1}b_{2}}{a_{2}^{2} + b_{2}^{2}} + \frac{(b_{1}a_{2} - a_{1}b_{2})}{a_{2}^{2} + b_{2}^{2}}i$$

Различные формы записи комплексных чисел

- **1.** Алгебраическая форма записи: z = x + yi
- 2. Тригонометрическая форма записи.

Представим число z = x + yi в виде точки M(x,y) на плоскости:



Введём полярную систему координат:

Модуль комплексного числа: $|z| = r = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$

Аргумент комплексного числа: $Argz = \varphi + 2\pi k, k \in \mathbb{Z}$

Главное значение аргумента: argz $-\pi < argz \le \pi$ $(0 \le argz < 2\pi)$

Для z = 0 аргумент не определён.

Как найти аргумент комплексного числа?

$$\frac{x = r\cos\varphi}{y = r\sin\varphi} \implies \frac{y}{x} = \frac{r\sin\varphi}{r\cos\varphi} \implies tg\varphi = \frac{y}{x} \implies \varphi = arctg\frac{y}{x}$$

$$\frac{\pi + arctg \frac{y}{x}}{-\pi + arctg \frac{y}{x}} \xrightarrow{arctg \frac{y}{x}} arctg \frac{y}{x}$$

$$= \begin{cases} arctg \frac{y}{x}, & ecnu \ x > 0 \\ \pi + arctg \frac{y}{x}, & ecnu \ x < 0, y > 0 \\ -\pi + arctg \frac{y}{x}, & ecnu \ x < 0, y < 0 \end{cases}$$

3. Показательная форма записи.

 Φ ормула Эйлера $e^{i\varphi} = \cos \varphi + i \sin \varphi$

$$z = r(\cos \varphi + i \sin \varphi) \implies z = re^{i\varphi}$$

Действия над комплексными числами в тригонометрической и показательной форме записи

Пусть
$$z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1) = r_1 e^{i\varphi_1}$$

 $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2) = r_2 e^{i\varphi_2}$

1. Умножение.

$$z_{1} \cdot z_{2} = r_{1}(\cos \varphi_{1} + i \sin \varphi_{1}) \cdot r_{2}(\cos \varphi_{2} + i \sin \varphi_{2}) =$$

$$= r_{1}r_{2}(\cos \varphi_{1} \cos \varphi_{2} + \cos \varphi_{1} i \sin \varphi_{2} + i \sin \varphi_{1} \cos \varphi_{2} + i \sin \varphi_{1} i \sin \varphi_{2}) =$$

$$= r_{1}r_{2} \left((\cos \varphi_{1} \cos \varphi_{2} - \sin \varphi_{1} \sin \varphi_{2}) + i (\cos \varphi_{1} \sin \varphi_{2} + \sin \varphi_{1} \cos \varphi_{2}) \right) =$$

$$= r_{1}r_{2} \left(\cos(\varphi_{1} + \varphi_{2}) + \sin(\varphi_{1} + \varphi_{2}) \right)$$

$$z_{1} \cdot z_{2} = r_{1}r_{2} \left(\cos(\varphi_{1} + \varphi_{2}) + i \sin(\varphi_{1} + \varphi_{2}) \right)$$

$$z_{1} \cdot z_{2} = r_{1}r_{2} e^{i(\varphi_{1} + \varphi_{2})}$$

$$z^{n} = r^{n} (\cos n\varphi + i \sin n\varphi) \quad \phi o p m y n a M y a s p a$$

$$z^{n} = r^{n} e^{in\varphi}$$

Действия над комплексными числами в тригонометрической и показательной форме записи

Пусть
$$z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1) = r_1 e^{i\varphi_1}$$

 $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2) = r_2 e^{i\varphi_2}$

2. Деление.

$$z_1 \cdot z_2 = r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \right)$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right)$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$$

Извлечение корней из комплексных чисел

Пусть n — натуральное число.

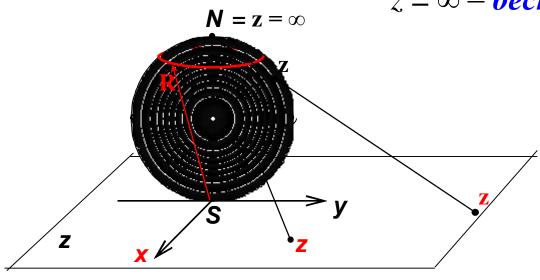
Определение. Комплексное число w называется *корнем n-ой степени* из числа z, если $z = w^n$.

$$w = \sqrt[n]{z}$$

Пусть
$$z = re^{i\varphi}$$
 $w = \rho e^{i\psi}$
Но $z = w^n \implies re^{i\varphi} = \rho^n e^{in\psi} \implies \rho^n = r$
 $p = \sqrt[n]{r}$
 $\psi = \frac{\varphi + 2\pi k}{n}, k \in \mathbb{Z}$
 $\psi = \frac{\varphi + 2\pi k}{n}, k \in \mathbb{Z}$
 $\psi = \frac{\varphi + 2\pi k}{n}, k \in \mathbb{Z}$
 $\psi = \frac{\varphi + 2\pi k}{n}, k \in \mathbb{Z}$

Для любого $z \neq 0$ корень n-ой степени из числа z имеет ровно n различных корней.

Сфера Римана и z = ∞



Комплексная плоскость с присоединенной бесконечно удаленной точкой называется расширенной комплексной плоскостью. Изображается сферой

Изображается сферой Римана.

Окрестью бесконечно удаленной точки $z = \infty$ называется внешность круга с центром в точке 0 радиуса R, то есть множество точек комплексной плоскости, удовлетворяющих условию |z| > R.

 ε -окрестность $R = \frac{1}{\varepsilon}$

§ 2. Понятие функции комплексного переменного

Пусть D – произвольное множество в комплексной плоскости.

Определение. Если каждому комплексному числу $z \in D$ поставлено в соответствие некоторое комплексное число w, то говорят, что на D определена **однозначная функция** комплексного переменного z.

Если же каждому $z \in D$ соответствует несколько значений w, то говорят, что на D определена *многозначная функция* комплексного переменного z.

$$w = f(z)$$

Примеры.

- 1. f(z) = |z| однозначная функция.
- 2. f(z) = Arg z многозначная функция.

Пусть задана функция w = f(z).

Если z = x + iy, w = u + iv, то u = u(x,y), v = v(x,y).

Тогда f(x+iy) = u(x,y) + i v(x,y).

Таким образом, задание функции комплексного переменного равносильно заданию двух функций действительных переменных u(x,y) и v(x,y).

Функции u(x,y) и v(x,y) называются соответственно **действи**-**тельной** и **мнимой частью функции** f(z).

Обозначают: Re f(z) и Im f(z).

Пример.

$$f(z) = z^2$$

Основные элементарные функции комплексного переменного

Пусть z = x + iy.

1. Показательная.

$$w = e^z = e^x (\cos y + i \sin y)$$

Если z — действительное число, то

$$y = 0 \implies w = e^z = e^x(\cos 0 + i \sin 0) = e^x \implies$$

показательная функция комплексного переменного совпадает с показательной функцией действительного переменного.

Если z — чисто мнимое число, то

$$x=0 \implies w=e^{iy}=e^0(\cos y+i\sin y)=\cos y+i\sin y \implies$$

получили формулу Эйлера.

Свойства показательной функции.

 $e^{x+iy} = e^x(\cos y + i\sin y)$

- 1. $e^{z_1} \cdot e^{z_2} = e^{z_1 + z_2}$
- $2. \frac{e^{z_1}}{e^{z_2}} = e^{z_1 z_2}$
- 3. $(e^z)^n = e^{zn}$ (*n* натуральное число)
- 4. $e^z \neq 0$ для всех z
- 5. $w = e^z периодическая функция с периодом <math>T = 2\pi i$

Примеры.

- 1. e^{2}
- 2. $e^{1+\pi/3i}$

2. Логарифмическая функция.

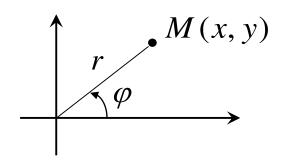
$$e^{x+iy} = e^x(\cos y + i\sin y)$$

Логарифмическая функция обратна показательной ⇒

w – **логарифм** числа z, если $e^w = z$.

$$w = Ln z$$
 $z \neq 0$ (tak kak $e^w \neq 0$)

Пусть
$$w = u + iv$$
 $\Rightarrow z = e^w = e^{u + iv} = e^u(\cos v + i\sin v)$



Введём полярную систему координат:

$$\begin{array}{c} x = r \cos \varphi \\ y = r \sin \varphi \end{array} \Rightarrow \begin{array}{c} z = r(\cos \varphi + i \sin \varphi) \end{array}$$

Модуль комплексного числа: |z| = r

Аргумент комплексного числа:
$$Argz = \varphi + 2\pi k$$
, $k \in \mathbb{Z}$

$$\Rightarrow \begin{vmatrix} |z| = e^u \Rightarrow u = \ln|z| \\ v = Arg z \Rightarrow Ln z = \ln|z| + i Argz$$

$$Ln z = \ln |z| + i \operatorname{Arg} z = \ln |z| + i (\operatorname{arg} z + 2\pi k) \quad k \in \mathbb{Z}$$

Логарифмическая функция имеет бесконечно много значений, то есть многозначная функция.

При k = 0 получаем однозначную функцию, называемую главным значением логарифма: $\ln z = \ln |z| + i \arg z$

Примеры.

- 1. *Lne*
- 2. Ln(-1)

Свойства логарифмической функции.

1.
$$Ln(z_1 \cdot z_2) = Ln(z_1) + Ln(z_2)$$

2.
$$Ln\left(\frac{z_1}{z_2}\right) = Ln(z_1) - Ln(z_2)$$

$$3. Ln z^n = n \cdot Ln z$$

4.
$$Ln \sqrt[n]{z} = \frac{1}{n} \cdot Ln z$$

3. Степенная функция.

Пусть a – комплексное число. Как задать $w = z^a$?

- 1. a = n натуральное число $w = z^n = |z|^n (\cos n\varphi + i \sin n\varphi)$ формула Муавра
- 2. a = 1/n, где n натуральное число

$$w = z^{1/n} = \sqrt[n]{z} = \sqrt[n]{z} \left[\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right]$$

3. a = m/n, где m и n — натуральные числа

$$w = z^{m/n} = (z^{1/n})^m = \sqrt[n]{|z|^m} \left(\cos \frac{m(\varphi + 2\pi k)}{n} + i \sin \frac{m(\varphi + 2\pi k)}{n} \right)$$
$$k = 0, 1, \dots, n-1$$

4. a — произвольное комплексное число $e^{Ln z} = z \implies z^a = e^{Ln z^a} \implies$ по свойству логарифма

$$w = z^a = e^{aLnz}$$

Пример.

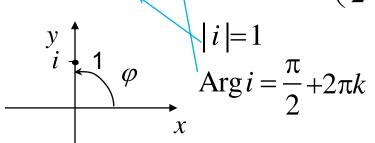
$$w = i^i$$

$$i^{i} = e^{i \cdot \operatorname{Ln} i} = e^{i \cdot i \left(\frac{\pi}{2} + 2\pi k\right)} = e^{-\left(\frac{\pi}{2} + 2\pi k\right)}$$

$$z^a = e^{a \cdot \operatorname{Ln} z}$$

$$\operatorname{Ln} z = \operatorname{ln} |z| + i \operatorname{Arg} z$$

Ln
$$i = \ln |i| + i \operatorname{Arg} i = \ln 1 + i \left(\frac{\pi}{2} + 2\pi k\right) = i \left(\frac{\pi}{2} + 2\pi k\right)$$



Другой вариант решения

$$i^i = (e^{i\cdot(\frac{\pi}{2}+2\pi k)})^i = e^{i\cdot(\frac{\pi}{2}+2\pi k)\cdot i} = e^{-(\frac{\pi}{2}+2\pi k)}$$

$$i = 1 \cdot e^{i \cdot (\frac{\pi}{2} + 2\pi k)} = e^{i \cdot (\frac{\pi}{2} + 2\pi k)}$$

$$z = r e^{\varphi i}$$

4. Тригонометрические функции.

$$e^{x+iy} = e^x(\cos y + i\sin y)$$

Пусть z — действительное число.

$$e^{iz} = e^{0}(\cos z + i\sin z) = \cos z + i\sin z$$

 $e^{-iz} = e^{0}(\cos(-z) + i\sin(-z)) = \cos z - i\sin z$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i} \qquad tg \ z = \frac{\sin z}{\cos z} \qquad ctg \ z = \frac{\cos z}{\sin z}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$tg \ z = \frac{\sin z}{\cos z}$$

$$ctg \ z = \frac{\cos z}{\sin z}$$

Свойства тригонометрических функций.

- 1. Тригонометрические функции комплексного переменного в случае, когда комплексное число является действительным, совпадают с тригонометрическими функциями действительного переменного.
- 2. Синус является нечётной функцией, а косинус чётной. Тангенс и котангенс – нечётные функции.
- 3. Все известные из тригонометрии формулы сохраняются и для функций комплексного переменного.

4. Синус и косинус — периодические функции с периодом $T = 2\pi$. Тангенс и котангенс — периодические с периодом $T = \pi$.

$$|\cos z| \le 1$$

$$|\sin z| \le 1$$
Hesepho!
$$\lim_{\text{Im } z \to \pm \infty} \cos z = \infty \qquad \lim_{\text{Im } z \to \pm \infty} \sin z = \infty$$

$$\lim_{z\to\pm\infty}\cos z=\infty$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

5. Гиперболические функции.

$$sh z = \frac{e^z - e^{-z}}{2} \qquad ch z = \frac{e^z + e^{-z}}{2} \qquad th z = \frac{sh z}{ch z} \qquad cth z = \frac{ch z}{sh z}$$

$$ch z = \frac{e^z + e^{-z}}{2}$$

$$th z = \frac{sh z}{ch z}$$

$$cth z = \frac{ch z}{sh z}$$

 Γ иперболические функции также периодические: гиперболические синус и косинус имеют период $T = 2\pi i$, а тангенс и котангенс — период $T = \pi i$.

Существует связь между тригонометрическими и гиперболическими функциями:

$$shiz = i \cdot \sin z$$

$$chiz = \cos z$$

$$th iz = i \cdot tg z$$

$$shiz = i \cdot sin z$$
 $chiz = cos z$ $thiz = i \cdot tg z$ $cthiz = -i \cdot ctg z$

6. Обратные тригонометрические функции.

$$\operatorname{Arcsin} z = -i\operatorname{Ln}\left(iz + \sqrt{1 - z^2}\right)$$

$$\operatorname{Arccos} z = -i\operatorname{Ln}\left(z + \sqrt{z^2 - 1}\right)$$

Arctg
$$z = -\frac{i}{2} \operatorname{Ln} \left(\frac{1+iz}{1-iz} \right)$$

Arcetg
$$z = -\frac{i}{2} \operatorname{Ln} \left(\frac{iz - 1}{iz + 1} \right)$$

Все обратные тригонометрические функции – многозначные.

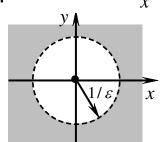
§ 3. Предел, непрерывность и дифференцируемость функции комплексного переменного

ε-*окрестность числа* z_0 — это внутренность круга с центром в точке z_0 радиуса є

$$|z-z_0|<\varepsilon$$

 z_0

ε-окрестность бесконечно удаленной точки $z = \infty$ — это внешность круга с центром в точке 0 радиуса $1/\epsilon$



Определение. Комплексное число w_0 называется **пределом функции** f(z) в точке z_0 , если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любого $z \neq z_0$ из δ -окрестности z_0 число f(z) принадлежит ε -окрестности w_0 .

$$\lim_{z \to z_0} f(z) = w_0$$

$$f(z) = f(x + iy) = u(x,y) + i v(x,y)$$

$$\lim_{z \to z_0} f(z) = w_0 \text{ существует} \iff \text{существуют}$$

$$\lim_{z \to z_0} u(x, y) = u_0 \quad \text{и} \quad \lim_{z \to z_0} v(x, y) = v_0$$

Свойства пределов.

1.
$$\lim_{z \to z_0} (c \cdot f(z)) = c \cdot \lim_{z \to z_0} f(z)$$

2.
$$\lim_{z \to z_0} (f_1(z) + f_2(z)) = \lim_{z \to z_0} f_1(z) + \lim_{z \to z_0} f_2(z)$$

3.
$$\lim_{z \to z_0} (f_1(z) \cdot f_2(z)) = \lim_{z \to z_0} f_1(z) \cdot \lim_{z \to z_0} f_2(z)$$

4.
$$\lim_{z \to z_0} \frac{f_1(z)}{f_2(z)} = \frac{\lim_{z \to z_0} f_1(z)}{\lim_{z \to z_0} f_2(z)}$$

Пусть функция f(z) определена в некоторой точке $z_0 \in \mathbb{C}$ и некоторой её окрестности.

Определение. Функция f(z) называется **непрерывной в точке** z_0 , если справедливо равенство

$$\lim_{z \to z_0} f(z) = f(z_0)$$

Определение. Функция f(z) называется **непрерывной в области** D, если она непрерывна в каждой точке этой области.

$$f(z) = f(x + iy) = u(x,y) + i v(x,y)$$

 $z_0 = x_0 + iy_0$

Теорема. Функция f(z) непрерывна в точке $z_0 \Leftrightarrow \phi$ ункции u(x,y) и v(x,y) непрерывны в точке (x_0,y_0) .

Пусть однозначная функция w = f(z) определена в некоторой точке $z_0 \in \mathbb{C}$ и некоторой её окрестности.

Определение. Производной функции w = f(z) в точке z называется предел $\lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = f'(z)$

(если он существует и конечен).

Определение. Функция w = f(z) называется дифференцируемой в точке z, если ее приращение в этой точке может быть записано как сумма линейной относительно Δz части и бесконечно малой более высокого порядка чем Δz , то есть

$$\Delta w = A \cdot \Delta z + \alpha \cdot \Delta z ,$$

где A — комплексное число, α — бесконечно малая при $\Delta z \rightarrow 0$.

Слагаемое $A \cdot \Delta z$ называют **дифференциалом функции** w = f(z) **в точке** z и обозначают: dw(z) или df(z).

Теорема (о связи дифференцируемости с существованием производной).

Функция w = f(z) дифференцируема в точке $z \Leftrightarrow \exists f'(z)$. При этом для <u>её</u> дифференциала в точке z справедливо равенство $df(z) = f'(z) \cdot \Delta z$.

Функция w = f(z) дифференцируемая в точке z:

$$\Delta w = A \Delta z + \alpha \cdot \Delta z$$
,

где A — комплексное число, α — бесконечно малая при $\Delta z \to 0$. f'(z)

Пусть
$$w = z$$
. Найдём $dw = dz$. $dz = \Delta z \implies df(z) = f'(z) \cdot \Delta z = f'(z) \cdot dz \implies f'(z) = \frac{df(z)}{dz}$

Производная функции равна отношению дифференциала функции к дифференциалу независимого переменного.

Замечание. Из дифференцируемости функции f(z) в некоторой точке z следует её непрерывность в этой точке. Обратное утверждение **неверно**.

Теорема (необходимое и достаточное условие дифференцируемости функции).

Если функция w = f(z) = u(x,y) + iv(x,y) определена в некоторой окрестности точки z, причём в этой точке действительные функции u(x,y) и v(x,y) дифференцируемы, то w = f(z) дифференцируема в $z \Leftrightarrow$ выполняются равенства:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ условия Коши-Римана (Эйлера-Даламбера)

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

Пример.

$$f(z) = z^2$$
$$f'(z) = ?$$

Свойства производных.

- 1. $(c \cdot f(z))' = c \cdot f'(z)$
- 2. $(f_1(z) + f_2(z))' = f_1'(z) + f_2'(z)$
- 3. $(f_1(z) \cdot f_2(z))' = f_1'(z) \cdot f_2(z) + f_1(z) \cdot f_2'(z)$
- 4. $\left(\frac{f_1(z)}{f_2(z)}\right)' = \frac{f_1'(z) \cdot f_2(z) f_1(z) \cdot f_2'(z)}{f_2^2(z)}$
- 5. Если $\varphi(z)$ дифференцируема в точке z_0 , а f(w) дифференцируема в точке $w_0 = \varphi(z_0)$, то

$$(f(\varphi(z)))' = f_{\varphi}' \cdot \varphi_z'$$

6. Если в некоторой точке z функция f(z) дифференцируема и существует функция $f^{-1}(w)$, дифференцируемая в точке w = f(z), причём $(f^{-1}(w))' \neq 0$, то

$$f'(z) = \frac{1}{(f^{-1}(w))'}$$
 $f^{-1}(w) - ф$ ункция, обратная к $f(z)$

Теорема (о дифференцируемости основных элементарных функций комплексного переменного).

Функции $w = e^z$, $w = \sin z$, $w = \cos z$, $w = \sinh z$, $w = \cosh z$, $w = z^n$ (где n — натуральное число) дифференцируемы в любой точке комплексной плоскости.

Функции $w = \operatorname{tg} z$ и $w = \operatorname{th} z$ дифференцируемы в любой точке комплексной плоскости, кроме точек $z = \pi/2 + \pi k$ и $z = (\pi/2 + \pi k) \cdot i$ соответственно $(k \in \mathbf{Z})$.

Функции $w = \operatorname{ctg} z$ и $w = \operatorname{cth} z$ дифференцируемы в любой точке комплексной плоскости, кроме точек $z = \pi k$ и $z = \pi k i$ соответственно ($k \in \mathbf{Z}$).

Для функций $w = \operatorname{Ln} z$ и $w = z^a$ в окрестности каждой точки $z \neq 0$ можно выделить однозначную ветвь, которая является дифференцируемой в точке z.

Определение. Функция f(z) называется **аналитической в точке** z_0 , если она дифференцируема в этой точке и во всех точках некоторой окрестности точки z_0 .

Функция f(z) называется *аналитической в области* D, если она дифференцируема в каждой точке $z \in D$.

Замечание. Условия дифференцируемости и аналитичности в области совпадают. Но в точке условие аналитичности более сильное, чем условие дифференцируемости.

Функция аналитична в некоторой области ⇔ её действительная и мнимая части дифференцируемы и удовлетворяют условиям Коши-Римана.

Определение. Точки, в которых однозначная функция f(z) аналитична, называются **правильными** точками f(z). Точки, в которых функция f(z) не является аналитической, называются **особыми** точками этой функции.

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$
 уравнение Лапласа

Функции f(x,y,z), удовлетворяющие уравнению Лапласа называются *гармоническими*.

Частный случай уравнения Лапласа: $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$

Пусть функция f(z) = u(x,y) + iv(x,y) аналитична в некоторой области \Rightarrow её действительная и мнимая части u(x,y) и v(x,y) дифференцируемы и удовлетворяют условиям Коши-Римана

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \implies \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \implies \frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial x \partial y} \implies \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \implies u(x,y) - \text{гармоническая функция}$$

Аналогично показывается, что функция v(x,y) также является гармонической.

Если функция аналитична в некоторой области, то её действительная и мнимая части являются гармоническими функциями.

Пример. Выяснить, существует ли аналитическая функция, у которой действительная часть $u(x, y) = x^3 - 3xy^2 + 2$.

Геометрический смысл модуля и аргумента производной

Пусть функция w = f(z) — аналитическая в точке z_0 и $f'(z_0) \neq 0$.

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \implies |f'(z_0)| = \lim_{\Delta z \to 0} \frac{|\Delta w|}{|\Delta z|}$$
 $|\Delta z| -$ расстояние между точками z_0 и $z_0 + \Delta z$ $|\Delta w| -$ расстояние между точками w_0 и $w_0 + \Delta w$

Величина $|f'(z_0)|$ определяет коэффициент растяжения (подобия) в точке z_0 при отображении w = f(z).

$$|f'(z)| > 1 \implies$$
 растяжение $|f'(z)| < 1 \implies$ сжатие

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \implies \arg f'(z_0) = \lim_{\Delta z \to 0} \arg \frac{\Delta w}{\Delta z} = \lim_{\Delta z \to 0} (\arg \Delta w - \arg \Delta z) = \lim_{\Delta z \to 0} (\arg \Delta w) - \lim_{\Delta z \to 0} (\arg \Delta z) = \alpha_2 - \alpha_1$$

$$\implies \alpha_2 = \alpha_1 + \arg f'(z_0)$$

Величина $\arg f'(z_0)$ определяет угол поворота в точке z_0 при отображении w = f(z).

$$\alpha_2' = \alpha_1' + \arg f'(z_0) \Longrightarrow$$
 углы сохраняются

Функция w = f(z) — аналитическая в точке z_0 и $f'(z_0) \neq 0$.

 $|f'(z_0)|$ – коэффициент растяжения arg $f'(z_0)$ – угол поворота не зависят от выбора кривой, проходящей через точку z_0

Определение. Отображение w = f(z), обладающее свойством сохранения углов и постоянством растяжений, называется **конформным** (то есть отображением, сохраняющим форму).

Отображение w = f(z) конформно в некоторой области \Leftrightarrow функция w = f(z) аналитична в этой области и $f'(z) \neq 0$ во всех точках этой области.

Пример.

Выяснить геометрическую картину отображения w = 2z.

§ 3. Интегрирование функции комплексного переменного

Пусть L – некоторая гладкая кривая в комплексной плоскости.

Выберем на *L* направление:

- а) a начало, b конец, если L не замкнутая;
- б) против часовой стрелки, если L замкнутая.

Пусть f(z) — однозначная функция, определенная на L.

- 1. Разобьем кривую L произвольным образом на n частей точками $z_0 = a, z_1, ..., z_n = b$ в направлении от $a \times b$.
- 2. На каждой дуге $(z_{k-1}z_k)$ выберем произвольную точку C_k и вычислим произведение $f(C_k) \cdot \Delta z_k$, где $\Delta z_k = z_k z_{k-1}$.

$$S_n = \sum_{k=1}^n f(C_k) \cdot \Delta z_k$$

uнтегральная сумма для функции f(z) по кривой L

$$\lambda = \max_{1 \le k \le n} \left| \Delta z_k \right|$$

Определение. Если существует предел интегральных сумм S_n при $\lambda \to 0$, не зависящий от разбиения кривой и выбора точек C_k , то его называют **интегралом от функции** f(z) **по кривой (по контуру)** L.

Обозначают:
$$\int_{L} f(z)dz$$
, $\int_{L} f(z)dz$

Свойства интегралов.

$$1. \quad \int_L dz = b - a$$

$$S_n = \sum_{k=1}^n f(C_k) \cdot \Delta z_k$$

- 2. $\int_{L} c \cdot f(z) dz = c \cdot \int_{L} f(z) dz, \quad c \text{комплексное число}$
- 3. $\int_{L} [f_1(z) + f_2(z)] dz = \int_{L} f_1(z) dz + \int_{L} f_2(z) dz$
- 4. $\int_{AB} f(z)dz = -\int_{BA} f(z)dz$
- 5. Если кривая AB разбита точкой K на две части AK и KB, то $\int_{AB} f(z)dz = \int_{AK} f(z)dz + \int_{KB} f(z)dz$
- 6. Если во всех точках кривой L выполняется неравенство |f(z)| < M, то $\left| \int_{L} f(z) dz \right| \le M \cdot \ell$, где $\ell-$ длина кривой L.

Теорема 1 (существования интеграла).

Если L — гладкая кривая, а функция f(z) — непрерывная и однозначная функция на L, то f(z) интегрируема по кривой L и справедливо равенство

$$\int_{L} f(z)dz = \int_{L} u(x, y)dx - v(x, y)dy + i\int_{L} v(x, y)dx + u(x, y)dy$$

где u(x,y), v(x,y) — действительная и мнимая часть функции f(z).

Замечание.

- 1. Вычисление интеграла от функции комплексного переменного сводится к вычислению двух криволинейных интегралов 2-го рода.
 - 2. Формулу из теоремы можно записать в более удобном для запоминания виде:

$$\int_{L} f(z)dz = \int_{L} (u+iv)(dx+idy)$$

$$\int_{L} f(z)dz = \int_{L} (u+iv)(dx+idy)$$

Теорема 2.

Если гладкая кривая AB задана параметрическими уравнениями $x = \varphi(t), \quad y = \psi(t), \quad z\partial e \ \alpha \le t \le \beta \quad (A \leftrightarrow \alpha, \ B \leftrightarrow \beta),$ и функция f(z) интегрируема по кривой AB, то справедливо равенство

 $\int_{AB} f(z)dz = \int_{\alpha}^{\beta} f(z(t)) \cdot z'(t)dt ,$

Замечание.

Часто в качестве параметра выбирается угол φ = arg z.

Пример. $\int_{I} \overline{z} dz$

- 1. $L \text{прямая от } z_1 = 0$ до $z_2 = 1 + i$
- 2. L дуга окружности |z| = 1 от $z_1 = -1$ до $z_2 = 1$

Интегрирование аналитических функций

Вспомним:

Теорема. Пусть функции P(x,y), Q(x,y), непрерывны вместе со своими частными производными в некоторой односвязной (нет вырезанных кусочков) области $D \subset Oxy$. Следующие условия эквивалентны:

- 1) интеграл $\int_{\ell} P(x,y) dx + Q(x,y) dy$ не зависит от линии интегрирования;
- $2) \iint_{\ell} P dx + Q dy = 0 \quad \forall \ell \subset D$
- $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$
- 4) выражение Pdx + Qdy является полным дифференциалом некоторой функции u(x,y), то есть du = Pdx + Qdy.

Теорема (Коши, для односвязной области).

Если функция f(z) аналитична в односвязной области $D \subset \mathbb{C}$, то интеграл от этой функции по любому замкнутому кусочногладкому контуру (ℓ) , целиком лежащему в D, равен нулю.

Замечания.

- 1) Порядком связности области называется число связных частей, на которые разбивается ее граница.
- 2) Утверждение, обратное теореме Коши, тоже справедливо.

Если f(z) непрерывна в односвязной области $D \subset \mathbb{C}$ и для любого кусочно-гладкого замкнутого контура $(\ell) \subset D$ выполняется условие $\oint f(z) dz = 0 ,$

то f(z) аналитична в D (**теорема Морера**).

Теорема (о независимости интеграла от аналитической функции от формы кривой).

Если функция f(z) аналитична в односвязной области $D \subset \mathbb{C}$, то $\forall A, B \in D$ интеграл $\int_{AB} f(z) dz$

не зависит от формы кривой, соединяющей точки A и B.

Пусть G-(n+1)-связная область, (ℓ) , (ℓ_1) ,..., (ℓ_n) — ее границы. (ℓ) — внешняя граница G, (ℓ_1) , ..., (ℓ_n) — внутренние границы G .

Теорема (Коши для многосвязной области).

Пусть кривые (ℓ) , (ℓ_1) ,..., (ℓ_n) – кусочно-гладкие, не пересекающиеся и ни одна из областей, ограниченных (ℓ_i) не содержит кривой (ℓ_i) .

Если f(z) аналитична в области G и на ее границах, то

$$\oint_{+(\ell)} f(z)dz = \sum_{k=1}^{n} \oint_{+(\ell_k)} f(z)dz.$$

Первообразная аналитической функции. Неопределенный интеграл

Определение. Функция F(z) называется **первообразной** функции f(z) на множестве D, если F'(z) = f(z), $\forall z \in D$.

Пусть f(z) аналитическая в односвязной области D, $z_0, z \in D$.

Тогда интеграл
$$\int f(z)dz$$

не зависит от формы кривой, соединяющей z_0 и z .

$$\Rightarrow$$
 Если z_0 фиксировано, то $\int_{z_0} f(z)dz$ — функция от z .

Теорема (о существовании первообразной).

Пусть f(z) аналитична в односвязной области $D \subset \mathbb{C}, \ z_0 \in D$.

Тогда $\int_{z}^{z} f(z)dz$ является первообразной функции f(z) в D .

Теорема (о количестве первообразных).

Любые две первообразные для одной аналитической функции отличаются на константу.

Определение. Множество всех первообразных функции f(z) называют **неопределенным интегралом** от функции f(z) и обозначают $\int f(z)dz$

Следствие.

Если f(z) аналитична в односвязной области $D \subset \mathbb{C}$, то ее неопределенный интеграл может быть записан в виде

$$\int f(z)dz = \int_{z_0}^{z} f(z)dz + C$$

где C — произвольная постоянная ($C \in \mathbb{C}$), а интеграл берется вдоль любой кривой в D, соединяющей точки z_0 и z.

Теорема (формула Ньютона — Лейбница для интеграла от аналитической функции).

Если f(z) аналитична в односвязной области $D \subset \mathbb{C}$, то интеграл от f(z) не зависит от формы кривой, соединяющей точки z_1 и z_2 , и справедлива формула:

$$\int_{z_1}^{z_2} f(z)dz = F(z_2) - F(z_1)$$

где F(z) – некоторая первообразная функции f(z).

Примеры.

- 1. $\int_{L} 3z^2 dz$, $L прямая от <math>z_1 = 0$ до $z_2 = 1 + i$
- 2. $\int_{L} \frac{dz}{z-z_0}$, L окружность радиуса R с центром в точке z_0

Интегральная формула Коши

Теорема (интегральная формула Коши).

Пусть функция f(z) аналитична в односвязной области D, содержащей в себе свою границу L. Тогда имеет место формула

 $f(z_0) = \frac{1}{2\pi i} \iint_L \frac{f(z)dz}{z - z_0}$

где $z_0 \in D$ — любая точка внутри области D, а интегрирование производится в положительном направлении (то есть против часовой стрелки).

Интеграл в правой части называется *интегралом Коши*, а сама формула – *интегральной формулой Коши*.

Замечание. Интегральная формула Коши позволяет находить значение аналитической функции в любой точке области, зная значение на её границе.

Следствие (теорема о производных высших порядков аналитической функции).

Пусть f(z) аналитична в односвязной области D, содержащей в себе свою границу L. Тогда внутри этой области f(z) имеет производные любого порядка, причем для них справедлива формула

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_L \frac{f(z)dz}{(z - z_0)^{n+1}}$

где z_0 – любая точка внутри области D.

Замечание. Полученные формулы можно использовать для вычисления интегралов по замкнутым областям.

$$f(z_0) = \frac{1}{2\pi i} \iint_L \frac{f(z)dz}{z - z_0} \Rightarrow \qquad \qquad \iint_L \frac{f(z)dz}{z - z_0} = 2\pi i \cdot f(z_0)$$

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \iint_L \frac{f(z)dz}{(z - z_0)^{n+1}} \Rightarrow \qquad \qquad \iint_L \frac{f(z)dz}{(z - z_0)^{n+1}} = \frac{2\pi i}{n!} \cdot f^{(n)}(z_0)$$

$$\iint_{L} \frac{f(z)dz}{z - z_{0}} = 2\pi i \cdot f(z_{0}) \qquad \qquad \iint_{L} \frac{f(z)dz}{(z - z_{0})^{n+1}} = \frac{2\pi i}{n!} \cdot f^{(n)}(z_{0})$$

Примеры.

1.
$$\iint_{L} \frac{dz}{z^2 + 4}$$
 a) L – окружность $|z| = 1$;
б) L – окружность $|z - i| = 2$.

2.
$$\iint_{L} \frac{\cos z dz}{z^3}$$
, $L - \text{окружность } |z| = 1$.

§ 4. Ряды в комплексной плоскости

Пусть задана последовательность комплексных чисел $\{u_n\}$.

Определение. Выражение вида

$$u_1 + u_2 + \dots + u_n + \dots = \sum_{n=1}^{\infty} u_n$$

называют комплексным числовым рядом.

Если
$$u_n = a_n + ib_n$$
, то $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} a_n + i \sum_{n=1}^{\infty} b_n$

Построим последовательность

$$S_1 = u_1$$
, $S_2 = u_1 + u_2$, ..., $S_n = u_1 + u_2 + ... + u_n$, ...

Числа $S_1, S_2, ..., S_n$ называют **частичными суммами ряда** $\sum u_n$.

$$S_n = \sum_{k=1}^n u_k = \sum_{k=1}^n a_k + i \sum_{k=1}^n b_k$$

$$S_n = \sum_{k=1}^n u_k = \sum_{k=1}^n a_k + i \sum_{k=1}^n b_k$$

Определение. Ряд $\sum u_n$ называется **сходящимся**, если существует конечный предел последовательности его частичных сумм $\{S_n\}$. При этом, число

$$S = \lim_{n \to \infty} S_n$$

называют *суммой ряда* $\sum u_n$.

Если

$$\lim_{n\to\infty} S_n = \infty \ (\lim_{n\to\infty} S_n - \mathbb{Z})$$

то говорят, что ряд $\sum u_n$ *расходится* и не имеет суммы.

Теорема.

Ряд $\sum u_n = \sum (a_n + ib_n)$ сходится к $S = S_1 + iS_2 \Leftrightarrow$ сходятся ряды $\sum a_n$, $\sum b_n$, причем S_1 – сумма ряда $\sum a_n$, S_2 – сумма ряда $\sum b_n$.

Замечания.

- 1) Исследование сходимости ряда с комплексными членами сводится к исследованию сходимости двух рядов с действительными членами.
- 2) В теории рядов с комплексными членами основные определения, многие теоремы и их доказательства аналогичны соответствующим определениям и теоремам из теории рядов с действительными членами.

Теорема (признак абсолютной сходимости)

Если ряд $\sum |u_n|$ сходится, то ряд $\sum u_n$ тоже сходится.

Определение. Ряд $\sum u_n$ называют **абсолютно сходящимся**, если его ряд модулей $\sum |u_n|$ сходится.

Если ряд $\sum u_n$ — сходится, а его ряд модулей $\sum |u_n|$ — расходится, то ряд $\sum u_n$ называют *условно сходящимся*.

Степенные ряды

Степенным рядом (рядом по степеням $z-z_0$) в комплексной плоскости называется ряд вида

$$a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \dots + a_n(z-z_0)^n + \dots = \sum_{n=0}^{\infty} a_n(z-z_0)^n$$

где z_n , $z_0 \in \mathbb{C}$. Числа a_n называются **коэффициентами степенного ряда**, z = x + iy – комплексная переменная.

Частный случай степенного ряда – ряд по степеням z:

$$a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n + \dots = \sum_{n=0}^{\infty} a_n z^n$$

Будем изучать ряд $\sum a_n z^n$. На общий случай результаты переносятся заменой $t=z-z_0$.

Степенной ряд $\sum a_n z^n$ всегда сходится в точке z = 0.

Теорема (Абеля).

- 1) Если степенной ряд $\sum a_n z^n$ сходится в точке $z_1 \neq 0$, то он сходится абсолютно в любой точке z, удовлетворяющей условию $|z| < |z_1|$;
- 2) Если степенной ряд $\sum a_n z^n$ расходится в точке z_2 , то он расходится в любой точке z, удовлетворяющей услови ω $|z| > |z_2|$.
- Из теоремы Абеля $\Rightarrow \exists R>0$ такое, что ряд $\sum a_n z^n$ сходится (абсолютно) при |z| < R и расходится при |z| > R.

Число R называют радиусом сходимости ряда $\sum a_n z^n$. Круг |z| < R называют кругом сходимости ряда $\sum a_n z^n$.

Радиус сходимости находится по признаку Даламбера или признаку Коши.

Примеры.

Исследовать ряды на сходимость.

$$1. \sum_{n=1}^{\infty} z^n$$

$$2. \sum_{n=1}^{\infty} \frac{1}{z^n}$$

Свойства степенных рядов.

- 1. Сумма степенного ряда внутри круга его сходимости является аналитической функцией.
- 2. Степенной ряд внутри круга сходимости можно почленно дифференцировать и почленно интегрировать любое число раз.

Полученный при этом ряд имеет тот же радиус сходимости, что и исходный ряд.

Ряд Тейлора

Напомним: говорят, что функция f(x) **разложима в ряд**, если \exists функциональный ряд $\sum f_n(x)$, суммой которого является f(x).

Определение. Пусть функция f(z) — аналитическая в окрестности точки z_0 . **Рядом Тейлора функции** f(z) в окрестности точки z_0 (по степеням $z-z_0$) называется степенной ряд вида

$$f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n$$

Теорема (о разложении функции комплексного переменного в степенной ряд).

Если функция f(z) аналитична в круге $|z-z_0| < R$, то она разлагается в этом круге в степенной ряд, причем этот ряд – ее ряд Тейлора, то есть $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$

для любых z таких, что $|z-z_0| \le R$.

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Из интегральной формулы Коши следует, что коэффициенты разложения в ряд Тейлора могут быть найдены по следующим формулам:

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \iint_L \frac{f(t)dt}{(t-z_0)^{n+1}}$$

где L — произвольная окружность с центром в точке z_0 , лежащая внутри круга $|z-z_0| \le R$.

Замечание. Разложения в ряд Маклорена для функций

$$e^x$$
, $\sin x$, $\cos x$, $\sinh x$, $\cosh x$, $\ln(1+x)$, $\frac{1}{1+x}$, $\frac{1}{1-x}$

остаются справедливыми и в комплексном случае.

На всей комплексной плоскости:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!}$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}$$

Hа окружности |z| < 1:

$$\ln(1+z) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{z^n}{n}$$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n$$

Ряд Лорана

Теорема (о разложении функции в ряд Лорана).

Всякая функция f(z), аналитическая в кольце $r < |z - z_0| < R$, может быть разложена в этом кольце в ряд

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n,$$

где
$$c_n = \frac{1}{2\pi i} \iint_L \frac{f(t)dt}{(t-z_0)^{n+1}},$$

L – любая окружность с центром в точке z_0 , лежащая в кольце $r < |z - z_0| < R$.

Этот ряд называется *рядом Лорана* функции f(z) в точке z_0 (по степеням $z-z_0$).

$$f(z) = c_0 + c_1(z - z_0)^1 + c_2(z - z_0)^2 + \dots + \frac{c_{-1}}{(z - z_0)^1} + \frac{c_{-2}}{(z - z_0)^2} + \dots$$

$$f(z) = c_0 + c_1(z - z_0)^1 + c_2(z - z_0)^2 + \dots + \frac{c_{-1}}{(z - z_0)^1} + \frac{c_{-2}}{(z - z_0)^2} + \dots$$

$$\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n = \sum_{n=0}^{+\infty} c_n (z-z_0)^n + \sum_{n=1}^{+\infty} c_{-n} (z-z_0)^{-n}$$

$$\sum_{n=0}^{+\infty} c_n (z-z_0)^n - правильная часть ряда Лорана.$$

$$\sum_{n=1}^{+\infty} c_{-n} (z-z_0)^{-n} = \sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-z_0)^n} -$$
главная часть ряда Лорана.

Замечания.

- 1) Правильная часть ряда Лорана сходится внутри круга $|z-z_0| \le R$.
- 2) Главная часть ряда Лорана сходится во внешности круга $|z-z_0| > r$.

Пусть функция f(z) — аналитическая внутри круга $|z-z_0| \le R$. Рассмотрим главную часть ряда Лорана этой функции:

$$\sum_{n=1}^{+\infty} c_{-n} (z - z_0)^{-n} = \sum_{n=1}^{+\infty} \frac{c_{-n}}{(z - z_0)^n}$$

$$c_{-n} = \frac{1}{2\pi i} \iint_{L} \frac{f(t)dt}{(t - z_0)^{-n+1}} = \frac{1}{2\pi i} \iint_{L} f(t)(t - z_0)^{n-1} dt$$

Но функция $f(t)(t-z_0)^{n-1}$ — аналитическая для всех $n \Rightarrow$ интеграл от этой функции по замкнутому контуру равен $0 \Rightarrow c_{-n} = 0$ для всех $n \Rightarrow$

главная часть ряда Лорана равна $0 \Rightarrow$

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \Rightarrow$$
 получили разложение в ряд Тейлора

Если функция f(z) не имеет особых точек внутри круга $|z-z_0| < R$, то её разложение в ряд Лорана обращается в ряд Тейлора

Разложение в ряд Лорана производится в кольце $r < |z - z_0| < R$.

Замечания.

- 1) Допускается r = 0 (ряд сходится в проколотой окрестности точки z_0) и $R = +\infty$ (ряд сходится во внешности круга $|z z_0| > r$).
- 2) Если $r \ge R$, то ряд Лорана расходится на всей комплексной плоскости.

Коэффициенты ряда Лорана чаще всего находят используя уже готовые разложения.

Пример.

Разложить в ряд Лорана в точке $z_0 = 0$ (то есть по степеням z).

$$f(z) = \frac{1}{z-2}$$
 $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$

Рассмотрим ряд Лорана функции f(z) в точке $z = \infty$.

Обозначим
$$t = \frac{1}{z} \implies f(z) = f\left(\frac{1}{t}\right)$$
.

Тогда разложение в ряд Лорана функции f(1/t) в точке t = 0:

$$f\left(\frac{1}{t}\right) = \sum_{n=0}^{+\infty} c_{-n} t^{n} + \sum_{n=1}^{+\infty} \frac{c_{n}}{t^{n}}$$
 правильная часть

$$f(z) = \sum_{n=0}^{+\infty} \frac{c_{-n}}{z^n} + \sum_{n=1}^{+\infty} c_n z^n$$

разложение в ряд Лорана $f(z) = \sum_{n=0}^{+\infty} \frac{c_{-n}}{z^n} + \sum_{n=1}^{+\infty} c_n z^n$ разложение в *ряд Лорана* функции f(z) в точке $z = \infty$

$$\sum_{n=0}^{+\infty} \frac{C_{-n}}{z^n}$$

 $\sum_{n=0}^{\infty} \frac{C_{-n}}{Z_{n}}$ правильная часть ряда Лорана

$$\sum_{n=1}^{+\infty} C_n \, Z^n$$

 $\sum_{n=0}^{+\infty} c_n z^n$ главная часть ряда Лорана

Замечание. По внешнему виду ряд Лорана для $z = \infty$ совпадает с рядом Лорана для z = 0.

§ 5. Изолированные особые точки

Нули аналитической функции

Определение. Точка z_0 , принадлежащая области определения функции f(z), называется **нулём функции** f(z), если $f(z_0) = 0$.

В области аналитичности функции f(z) в окрестности точки z_0 функция может быть представлена рядом Тейлора:

$$f(z) = \sum_{n=0}^{+\infty} c_n (z-z_0)^n = c_0 + c_1 (z-z_0)^1 + c_2 (z-z_0)^2 + \dots$$

$$c_0 = f(z_0) \implies \text{если } z_0 \text{ нуль функции } f(z), \text{ то } c_0 = 0$$

Если не только $c_0=0$, но и $c_1=c_2=\ldots=c_{m-1}=0$, а $c_m\neq 0$, то разложение функции f(z) в окрестности точки z_0 имеет вид:

$$f(z) = c_m (z - z_0)^m + c_{m+1} (z - z_0)^{m+1} + \dots$$

При этом z_0 называется *нулём кратности т* или *нулём т-го порядка*. Если m=1, то z_0 называется *простым нулём*.

$$c_0 = c_1 = c_2 = \dots = c_{m-1} = 0, \ c_m \neq 0$$

$$c_n = \frac{f^{(n)}(z_0)}{n!}$$

Теорема 1. Точка z_0 является нулём порядка m аналитической функции f(z) тогда и только тогда, когда

$$f(z_0) = f'(z_0) = \dots = f^{(m-1)}(z_0) = 0, \quad f^{(m)}(z_0) \neq 0$$

$$f(z) = c_m (z - z_0)^m + c_{m+1} (z - z_0)^{m+1} + \dots =$$

$$= (z - z_0)^m (c_m + c_{m+1} (z - z_0) + \dots) = (z - z_0)^m \varphi(z)$$

$$c_m \neq 0 \implies \varphi(z_0) = c_m \neq 0$$

Теорема 2. Точка z_0 является нулём порядка m аналитической функции f(z) тогда и только тогда, когда

$$f(z) = (z - z_0)^m \varphi(z),$$

где $\varphi(z)$ — функция аналитическая в точке z_0 , причём $\varphi(z_0) \neq 0$.

Примеры.

Указать порядок нуля $z_0 = 0$ функции f(z):

a)
$$f(z) = z - \sin z$$
; 6) $f(z) = z^2 \cdot \cos z$; 8) $f(z) = e^{z^2} - 1 - z^2$.

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Способы нахождения порядка нуля функции:

- 1. Нахождение производных (теорема 1).
- **2.** Представление функции в виде $(z z_0)^m \varphi(z)$ (теорема 2).
- 3. Разложение в ряд Тейлора.

Определение. Бесконечно удаленная точка $z = \infty$ называется **нулём функции** f(z), если

$$\lim_{z\to\infty} f(z) = 0.$$

При этом функцию f(z) доопределяют равенством f(z) = 0.

Порядок нуля можно определить как порядок нуля функции f(1/t) в точке t = 0, то есть сделав замену z = 1/t.

Если t = 0 – нуль кратности m, то $f(1/t) = c_{-m}t^m + c_{-(m+1)}t^{m+1} + ...$

$$\Rightarrow f(z) = \frac{c_{-m}}{z^m} + \frac{c_{-(m+1)}}{z^{m+1}} + \dots = \frac{\varphi(z)}{z^m},$$
 где $\lim_{z \to \infty} \varphi(z) = c_{-m} \neq 0.$

Пример.

$$f(z) = \frac{1}{z^2 - 2z}$$
 $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$

3 способа

Изолированные особые точки

Определение. Точки, в которых однозначная функция f(z)аналитична, называются *правильными* точками f(z). Точки, в которых функция f(z) не является аналитической, называются особыми точками этой функции.

Определение. Точка z_0 называется **изолированной особой точкой функции** f(z), если в некоторой ее окрестности нет других особых точек функции f(z).

Если z_0 — изолированная особая точка функции f(z), то существует такое число R > 0, что в кольце $0 < |z - z_0| < R$ функция f(z) будет аналитической \Rightarrow разлагается в ряд Лорана

$$f(z) = \sum_{n=0}^{+\infty} c_n (z - z_0)^n + \sum_{n=1}^{+\infty} c_{-n} (z - z_0)^{-n}$$

правильная главная часть

часть

$$f(z) = \sum_{n=0}^{+\infty} c_n (z - z_0)^n + \sum_{n=1}^{+\infty} c_{-n} (z - z_0)^{-n}$$

правильная главная часть

- **Определение.** Если ряд Лорана не содержит главной части, то есть в ряде нет членов с отрицательными показателями, то точка z_0 называется *устранимой особой точкой* функции f(z).
- **Определение.** Если ряд Лорана в главной части содержит конечное число членов, то есть в ряде конечное число членов с отрицательными показателями, то точка z_0 называется **полюсом** функции f(z).
- **Определение.** Если ряд Лорана в главной части содержит бесконечное число членов, то есть в ряде бесконечное число членов с отрицательными показателями, то точка z_0 называется существенно особой точкой функции f(z).

1. Устранимые особые точки

 z_0 – устранимая особая точка \Rightarrow

$$f(z) = c_0 + c_1(z - z_0)^1 + c_2(z - z_0)^2 + \dots$$

во всех точках круга $|z-z_0| \le R$, кроме точки z_0 .

$$\lim_{z \to z_0} f(z) = c_0 \implies$$

- 1. Устранимую особую точку z_0 можно «устранить», доопределив функцию f(z) в точке z_0 равенством $f(z_0) = c_0$, при этом функция f(z) становится аналитической во всём круге $|z-z_0| \le R$, а точка z_0 правильной точкой.
- **2.** В достаточно малой окрестности точки z_0 функция f(z) является ограниченной.

Теорема. Изолированная особая точка z_0 функции f(z) является устранимой тогда и только тогда, когда существует конечный предел $\lim_{z \to \infty} f(z)$.

Пример.

Найти особые точки функции f(z) и определить их тип, если

$$f(z) = \frac{\sin z}{z}.$$

2. Полюсы

$$\begin{split} z_0 - \text{полюс} & \Longrightarrow \\ f(z) = \sum_{n=0}^{+\infty} c_n (z-z_0)^n + \frac{c_{-1}}{(z-z_0)^1} + \frac{c_{-2}}{(z-z_0)^2} + \ldots + \frac{c_{-m}}{(z-z_0)^m}, \end{split}$$
 где $c_{-m} \neq 0.$

В этом случае полюс z_0 называется **полюсом т-го порядка** функции f(z); если m=1, то полюс z_0 называется **простым**.

$$f(z) = \frac{1}{(z-z_0)^m} \left((z-z_0)^m \sum_{n=0}^{+\infty} c_n (z-z_0)^n + c_{-1} (z-z_0)^{m-1} + c_{-2} (z-z_0)^{m-2} + \ldots + c_{-m} \right) \Rightarrow$$

$$f(z) = \frac{\varphi(z)}{(z-z_0)^m}, \text{ где } \varphi(z) - \text{аналитическая функция, причём}$$

$$\varphi(z_0) = c_{-m} \neq 0.$$

$$\lim_{z \to z_0} f(z) = \infty$$

Теорема. Изолированная особая точка z_0 функции f(z) является полюсом тогда и только тогда, когда $\lim_{z \to z} f(z) = \infty$.

Вопрос: как определить порядок полюса?

$$f(z) = \frac{\varphi(z)}{(z-z_0)^m}$$
, где $\varphi(z)$ – аналитическая функция, причём $\varphi(z_0) = c_{-m} \neq 0$.

Способ 1.

$$\lim_{z \to z_0} (z - z_0)^k f(z) = \lim_{z \to z_0} (z - z_0)^k \frac{\varphi(z)}{(z - z_0)^m} = \begin{vmatrix} \infty, & \text{если } k < m \\ \varphi(z_0) = c_{-m} \neq 0, & \text{если } k = m \end{vmatrix}$$

Найти такое число m, что

$$\lim_{z \to z_0} (z - z_0)^m f(z)$$
 — конечное число, не равное 0

Пример.

Определить тип особенности функции f(z) в точке z = 0, если

$$f(z) = \frac{\sin z}{z^4}.$$

Вопрос: как определить порядок полюса?

$$f(z) = \frac{\varphi(z)}{(z-z_0)^m}$$
, где $\varphi(z)$ – аналитическая функция, причём $\varphi(z_0) = c_{-m} \neq 0$.

Способ 2.

$$\frac{1}{f(z)} = \frac{(z-z_0)^m}{\varphi(z)}, \ \varphi(z_0) \neq 0 \implies z_0$$
 — нуль порядка m функции $1/f(z)$

Теорема. Изолированная особая точка z_0 функции f(z) является полюсом порядка m тогда и только тогда, когда она является нулём кратности m функции 1/f(z), аналитической в точке z_0 .

Пример.

Исследовать особенности функции $f(z) = \frac{z+3}{z(z+2i)(z-i)^3}$.

3. Существенно особые точки

Если z_0 — существенно особая точка функции f(z), то можно доказать, что

 $\lim_{z \to z_0} f(z)$ не существует: ни конечный, ни бесконечный.

Замечание. Чтобы показать, что изолированная особая точка z_0 является существенно особой, обычно находят разложение функции в ряд Лорана по степеням $(z - z_0)$.

Пример.

Определить тип особенности функции f(z) в точке z=0, если $f(z)=e^{1/z}$.

Бесконечно удаленная особая точка

- **Определение.** Если функция f(z) является аналитической в некоторой окрестности бесконечно удаленной точки $z = \infty$, то точка $z = \infty$ называется **изолированной особой точкой** функции f(z).
- Чтобы определить тип особенности бесконечно удаленной изолированной особой точки, необходимо выполнить преобразование z = 1/t. При этом точка $z = \infty$ отображается в точку t = 0.
- В зависимости от того, будет ли точка t = 0 устранимой особой точкой, полюсом или существенно особой точкой функции f(1/t), аналогичный тип особенности имеет и точка $z = \infty$.

1. $z = \infty -$ *устранимая* особая точка \Rightarrow

$$f(1/t) = c_0 + c_{-1}t^1 + c_{-2}t^2 + \dots \implies f(z) = c_0 + \frac{c_{-1}}{z} + \frac{c_{-2}}{z^2} + \dots$$

ряд Лорана не содержит главной части

$$\lim_{z \to \infty} f(z) = c_0$$
 — конечное число

2. $z = \infty -$ полюс порядка $m \implies$

$$f(1/t) = \sum_{n=0}^{+\infty} c_{-n} t^n + \frac{c_1}{t^1} + \frac{c_2}{t^2} + \dots + \frac{c_m}{t^m} \implies$$

$$f(z) = \sum_{n=0}^{+\infty} \frac{c_{-n}}{z^n} + c_1 z^1 + c_2 z^2 + \dots + c_m z^m$$

ряд Лорана в главной части содержит конечное число членов

$$\lim_{z\to\infty} f(z) = \infty$$

Вопрос: как определить порядок полюса?

$$f(z) = \sum_{n=0}^{+\infty} \frac{c_{-n}}{z^n} + c_1 z^1 + c_2 z^2 + \dots + c_m z^m =$$

$$= z^m \left(\sum_{n=0}^{+\infty} \frac{c_{-n}}{z^{n+m}} + \frac{c_1}{z^{m-1}} + \frac{c_2}{z^{m-2}} + \dots + c_m \right) = z^m \varphi(z), \quad \lim_{z \to \infty} \varphi(z) = c_m \neq 0$$

Способ 1.

Найти такое число m, что $\lim_{z\to\infty}\frac{f(z)}{z^m}$ — конечное число, не равное 0.

Способ 2.

$$\frac{1}{f(z)} = \frac{1}{z^m \varphi(z)}, \quad \lim_{z \to \infty} \frac{1}{\varphi(z)} \neq 0 \quad \Rightarrow \quad z = \infty -$$
нуль порядка m функции $1/f(z)$

Определить, нулём какого порядка является точка $z = \infty$ для функции 1/f(z).

3. $z = \infty -$ *существенно* особая точка \Rightarrow

$$f\left(\frac{1}{t}\right) = \sum_{n=0}^{+\infty} c_{-n} t^n + \sum_{n=1}^{+\infty} \frac{c_n}{t^n} \implies$$
 бесконечно много членов

$$f(z) = \sum_{n=0}^{+\infty} \frac{c_{-n}}{z^n} + \sum_{n=1}^{+\infty} c_n z^n$$
 бесконечно много членов

главная часть ряда Лорана содержит бесконечное число членов $\lim_{z\to z} f(z)$ не существует: ни конечный, ни бесконечный

Пример.

Определить тип особой точки $z = \infty$ для функции

a)
$$f(z) = \frac{z+3i}{2-z}$$
; 6) $f(z) = \frac{z^2}{i-z}$.

§ 6. Вычет функции

Пусть функция f(z) — аналитическая внутри круга $|z-z_0| \le R$,

L — некоторый замкнутый контур, лежащий внутри круга и обходящий точку z_0 в положительном направлении.

Тогда по теореме Коши для односвязной области

$$\iint_L f(z)dz = 0.$$

Пусть z_0 – изолированная особая точка функции f(z).

3adaчa: вычислить $\iint_{T} f(z)dz$.

 z_0 — изолированная особая точка \Rightarrow

f(z) — аналитическая внутри кольца 0 < $|z - z_0|$ < R ⇒ разлагается в ряд Лорана:

$$f(z) = \sum_{n=0}^{+\infty} c_n (z - z_0)^n + \sum_{n=1}^{+\infty} \frac{c_{-n}}{(z - z_0)^n}$$

$$\iint_{L} f(z)dz = \sum_{n=0}^{+\infty} c_{n} \iint_{L} (z - z_{0})^{n} dz + \sum_{n=1}^{+\infty} c_{-n} \iint_{L} \frac{dz}{(z - z_{0})^{n}}$$

$$\iint_{L} (z - z_{0})^{n} dz = 0 \qquad \iint_{L} \frac{dz}{(z - z_{0})} = 2\pi i$$

$$\lim_{L} \frac{f(z)dz}{z - z_{0}} = 2\pi i \cdot f(z_{0})$$

$$\lim_{L} \frac{f(z)dz}{(z - z_{0})^{n+1}} = \frac{2\pi i}{n!} \cdot f^{(n)}(z_{0})$$

$$\Rightarrow \qquad \iint_{L} f(z)dz = c_{-1} \cdot 2\pi i \qquad \Rightarrow \qquad c_{-1} = \frac{1}{2\pi i} \iint_{L} f(z)dz$$

Определение. Вычетом функции f(z) в изолированной особой точке z_0 называется число, равное

$$\frac{1}{2\pi i} \iint_L f(z) dz,$$

где L — любой замкнутый контур, лежащий внутри области аналитичности функции f(z), обходящий точку z_0 в положительном направлении и не содержащий в себе других особых точек.

Обозначение:

Res
$$f(z)$$
 Res $f(z_0)$ res $f(z)$ res $f(z_0)$

$$Res f(z) = \frac{1}{2\pi i} \iint_L f(z) dz = c_{-1}$$

Пример.

Найти вычет функции f(z) в точке z = 0, если $f(z) = z^3 e^{2/z}$.

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Способы вычисления вычетов

1. z_0 – *устранимая* особая точка \Rightarrow

$$f(z) = c_0 + c_1(z - z_0)^1 + c_2(z - z_0)^2 + \dots$$

$$\operatorname{Res}_{z=z_0} f(z) = c_{-1} = 0$$

2. z_0 – простой полюс \Rightarrow

$$f(z) = \frac{c_{-1}}{z - z_0} + c_0 + c_1(z - z_0)^1 + c_2(z - z_0)^2 + \dots$$

$$(z-z_0)f(z) = c_{-1} + c_0(z-z_0) + c_1(z-z_0)^2 + c_2(z-z_0)^3 + \dots$$

$$\Rightarrow \lim_{z \to z_0} (z - z_0) f(z) = c_{-1} \Rightarrow$$

Res_{z=z₀}
$$f(z) = c_{-1} = \lim_{z \to z_0} (z - z_0) f(z)$$

Частный случай простого полюса:

 $\psi(z)$ имеет в z_0 простой ноль \Rightarrow $\psi(z_0) = 0$, $\psi'(z_0) \neq 0$

$$\operatorname{Res}_{z=z_{0}} f(z) = \lim_{z \to z_{0}} (z - z_{0}) f(z) = \lim_{z \to z_{0}} (z - z_{0}) \frac{\varphi(z)}{\psi(z)} = \varphi(z_{0}) \lim_{z \to z_{0}} \frac{z - z_{0}}{\psi(z)} = \varphi(z_{0}) \lim_{z \to z_{0}} \frac{z - z_{0}}{\psi(z)} = \varphi(z_{0}) \lim_{z \to z_{0}} \frac{z - z_{0}}{\psi(z)} = \varphi(z_{0}) \frac{1}{\psi'(z_{0})}$$

$$\operatorname{Res}_{z=z_0} f(z) = \frac{\varphi(z_0)}{\psi'(z_0)}$$

3. z_0 – полюс порядка $m \Rightarrow$

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \frac{c_{-m+1}}{(z - z_0)^{m-1}} + \dots + \frac{c_{-1}}{z - z_0} + c_0 + c_1(z - z_0)^1 + \dots$$

$$(z-z_0)^m f(z) =$$

$$= c_{-m+1} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} + c_0 (z-z_0)^m + \dots$$

Продифференцируем полученное равенство (m-1) раз:

$$\frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! + c_0 m! (z - z_0) + \dots \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! \implies \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big((z - z_0)^m f(z) \Big) = c_{-1}(m-1)! + c_{-1}(m-1)! +$$

Res_{z=z₀}
$$f(z) = c_{-1} = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} ((z-z_0)^m f(z))$$

5. z_0 – *существенно* особая точка

$$\operatorname{Res}_{z=z_0} f(z) = c_{-1}$$

коэффициент c_{-1} находится из разложения в ряд Лорана

Вычет функции в бесконечно удалённой точке

Пусть $z = \infty$ – изолированная особая точка функции $f(z) \Rightarrow$ существует такое число R > 0, что вне круга |z| < R функция f(z) будет аналитической \Rightarrow разлагается в ряд Лорана:

$$f(z) = \sum_{n=0}^{+\infty} \frac{c_{-n}}{z^n} + \sum_{n=1}^{+\infty} c_n z^n$$

L – некоторый замкнутый контур, лежащий вне круга $|z| \le R$

$$\iint_{L} f(z)dz = \sum_{n=0}^{+\infty} c_{-n} \iint_{L} \frac{dz}{z^{n}} + \sum_{n=1}^{+\infty} c_{n} \iint_{L} z^{n} dz = c_{-1} \iint_{L} \frac{dz}{z} = c_{-1} 2\pi i \implies$$

$$\iint_{L} f(z)dz = -c_{-1} 2\pi i \implies -c_{-1} = \frac{1}{2\pi i} \iint_{L} f(z)dz$$

Определение. Вычетом функции f(z) в изолированной особой точке $z = \infty$ называется число, равное

$$\frac{1}{2\pi i} \iint_{L} f(z) dz.$$

Замечание. Обход контура L происходит по часовой стрелке, то есть точка $z = \infty$ остаётся слева.

Res_{z=\infty}
$$f(z) = \frac{1}{2\pi i} \int_{L} f(z) dz = -c_{-1}$$

1. $z = \infty - y$ странимая особая точка \Rightarrow

$$f(z) = c_0 + \frac{c_{-1}}{z} + \frac{c_{-2}}{z^2} + \dots \implies f'(z) = -\frac{c_{-1}}{z^2} - \frac{2c_{-2}}{z^3} + \dots \implies z^2 f'(z) = -c_{-1} - \frac{2c_{-2}}{z^3} - \dots \implies \lim_{z \to \infty} z^2 f'(z) = -c_{-1} = \operatorname{Res}_{z=\infty} f(z)$$

$$\operatorname{Res}_{z=\infty} f(z) = \lim_{z \to \infty} z^2 f'(z)$$

2. $z = \infty - nonhoc nopяdка m$

$$\operatorname{Res}_{z=\infty} f(z) = \frac{(-1)^m}{(m+1)!} \lim_{z \to \infty} [z^{m+2} \cdot f^{(m+1)}(z)]$$

3. $z = \infty -$ *существенно* особая точка

$$\operatorname{Res}_{z=\infty} f(z) = -c_{-1}$$

коэффициент c_{-1} находится из разложения в ряд Лорана

Замечание. Вычисление вычета относительно $z = \infty$ можно свести к вычислению вычета относительно t = 0, если сделать замену z = 1/t.

Основная теорема о вычетах

Теорема (основная теорема о вычетах).

- Пусть а) функция f(z) аналитична в ограниченной односвязной области D за исключением конечного числа изолированных особых точек z_1 , z_2 , ... z_n ;
 - б) L замкнутый контур в D , внутри которого содержатся точки z_1 , z_2 , ... z_n .

Тогда

$$\iint_{L} f(z)dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)$$

Следствие. Пусть функция f(z) аналитична в ограниченной односвязной области D за исключением конечного числа изолированных особых точек z_1 , z_2 , ... z_n . Тогда сумма всех вычетов функции f(z) относительно ее особых точек, включая вычет относительно ∞ , равна нулю:

$$\operatorname{Res}_{z=\infty} f(z) + \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z) = 0$$

Применение вычетов при вычислении интегралов

1. Вычисление контурных интегралов

$$\iint_{L} f(z)dz = 2\pi i \cdot \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)$$

Пример 1. Найти
$$\oint \frac{\sin 4z dz}{(z-2)^2 (z-3)(z-6)}$$

Пример 2. Найти
$$\oint_{|z|=3} \frac{z^{15}dz}{z^8+2}$$

2. Вычисление интегралов типа
$$\int_{a}^{a+2\pi} R(\cos x, \sin x) dx$$

Имеем:
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
, $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

Замена: $z = e^{ix}$, $dz = ie^{ix}dx = izdx$

Получим:
$$\int_{a}^{a+2\pi} R(\cos x, \sin x) dx = \prod_{|z|=1} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right) \frac{dz}{iz}$$

Пример 3. Найти
$$\int_{-\pi}^{\pi} \frac{dx}{5 + 3\sin x}$$

3. Вычисление интегралов типа $\int_{-\infty}^{\infty} \frac{P_n(x)}{P_m(x)} dx$

$$\int_{-\infty}^{+\infty} \frac{P_n(x)}{P_m(x)} dx$$

(где $m \ge n + 2$, $P_m(x) \ne 0$).

Теорема. Пусть
$$f(x) = \frac{P_n(x)}{P_m(x)}$$
, где $P_n(x)$, $P_m(x)$ — многочлены степени n и m соответственно, $m \ge n+2$, $P_m(x) \ne 0$.

Тогда

$$\int_{-\infty}^{+\infty} \frac{P_n(x)}{P_m(x)} dx = 2\pi i \sum_{k=1}^{m} \operatorname{res}_{z=z_k} f(z)$$

где z_1 , z_2 , ... , z_m — особые точки f(z), лежащие в верхней полуплоскости ($Im z_k > 0$).

Пример 4. Найти
$$\int_{-\infty}^{+\infty} \frac{x^2}{(x^2+1)(x^2+9)} dx$$

4. Вычисление интегралов типа

$$\int_{-\infty}^{+\infty} f(x) \cos \lambda x dx$$

$$\int_{-\infty}^{+\infty} f(x) \cos \lambda x dx \qquad \begin{cases} +\infty \\ \int_{-\infty}^{+\infty} f(x) \sin \lambda x dx \\ -\infty \end{cases}$$

Теорема.

Пусть 1) f(z) аналитична на вещественной оси;

- 2) f(z) аналитична в верхней полуплоскости за исключением особых точек $z_1, z_2, ..., z_m$;
- 3) f(z) стремится к 0 при $|z| \to \infty$.

Тогда для любого $\lambda > 0$

$$\int_{-\infty}^{+\infty} e^{i\lambda x} \cdot f(x) dx = 2\pi i \sum_{k=1}^{m} \operatorname{res}_{z=z_k} e^{i\lambda z} \cdot f(z).$$

Следствие.

Пусть f(z) удовлетворяет условиям теоремы.

Тогда
$$\int_{-\infty}^{+\infty} f(x) \cos \lambda x dx = \text{Re} \left(2\pi i \sum_{k=1}^{m} \operatorname{res}_{z=z_k} e^{i\lambda z} \cdot f(z) \right),$$

$$\int_{-\infty}^{+\infty} f(x) \sin \lambda x dx = \operatorname{Im} \left(2\pi i \sum_{k=1}^{m} \operatorname{res}_{z=z_{k}} e^{i\lambda z} \cdot f(z) \right),$$

где z_1 , z_2 , ..., z_m – особые точки f(z), лежащие в верхней полуплоскости ($\text{Im} z_k > 0$) .

Пример 5. Найти
$$\int_{-\infty}^{+\infty} \frac{\cos x dx}{x^2 + 2x + 10}$$