Boolean Algebra
 Logic Gates

Introduction

- Hardware consists of a few simple building blocks
- These are called logic gates
- AND, OR, NOT, ...
- NAND, NOR, XOR, ...
- Logic gates are built using transistors
- NOT gate can be implemented by a single transistor
- AND gate requires 3 transistors
- Transistors are the fundamental devices
- Pentium processor consists of 3 million transistors
- Now we can build chips with more than 100 million transistors

Basic Concepts

- Simple gates
- AND
- OR
- NOT
- Functionality can be expressed by a truth table
- A truth table lists output for each possible input combination
- Precedence
- NOT > AND > OR
$-F=A \bar{B}+\bar{A} B$
$=(A(\bar{B}))+((\bar{A}) B)$

OR gate

Logic symbol

A	B	F
0	0	0
0	1	0
1	0	0
1	1	1
A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

Truth table

Basic Concepts (cont.)

- Additional useful gates
- NAND
- NOR
- XOR
- NAND = AND + NOT
- $\mathrm{NOR}=\mathrm{OR}+\mathrm{NOT}$
- XOR implements exclusive-OR function
- NAND and NOR gates require only 2 transistors
- AND and OR need 3 transistors!

Basic Concepts (cont.)

- Number of functions
- With N logical variables, we can define $2^{2^{N}}$ functions
- Some of them are useful
- AND, NAND, NOR, XOR, ...
- Some are not useful:
- Output is always 1
- Output is always 0
- "Number of functions" definition is useful in proving completeness property

Basic Concepts (cont.)

- Complete sets
- A set of gates is complete
- If we can implement any logical function using only the type of gates in the set
- You can uses as many gates as you want
- Some example complete sets
- $\{$ AND, OR, NOT $\} \longleftarrow$ Not a minimal complete set
- \{AND, NOT\}
- \{OR, NOT\}
- \{NAND\}
- \{NOR\}
- Minimal complete set
- A complete set with no redundant elements.

Basic Concepts (cont.)

- Proving NAND gate is universal

AND gate

NOT gate

OR gate

Basic Concepts (cont.)

- Proving NOR gate is universal

OR gate

NOT gate

Logic Chips

Logic Chips (cont.)

- Integration levels
- SSI (small scale integration)
- Introduced in late 1960s
- 1-10 gates (previous examples)
- MSI (medium scale integration)
- Introduced in late 1960s
- 10-100 gates
- LSI (large scale integration)
- Introduced in early 1970s
- 100-10,000 gates
- VLSI (very large scale integration)
- Introduced in late 1970s
- More than 10,000 gates

Logic Functions

- Logical functions can be expressed in several ways:
- Truth table
- Logical expressions
- Graphical form
- Example:
- Majority function
- Output is one whenever majority of inputs is 1
- We use 3-input majority function

Logic Functions (cont.)

3-input majority function

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- Logical expression form

$$
F=A B+B C+A C
$$

Logical Equivalence

- All three circuits implement $F=A B$ function

Logical Equivalence (cont.)

- Proving logical equivalence of two circuits
- Derive the logical expression for the output of each circuit
- Show that these two expressions are equivalent
- Two ways:
- You can use the truth table method
» For every combination of inputs, if both expressions yield the same output, they are equivalent
» Good for logical expressions with small number of variables
- You can also use algebraic manipulation
» Need Boolean identities

Logical Equivalence (cont.)

- Derivation of logical expression from a circuit
- Trace from the input to output
- Write down intermediate logical expressions along the path

Logical Equivalence (cont.)

- Proving logical equivalence: Truth table method

A	B	$\mathrm{F} 1=\mathrm{A} \mathbf{B}$	$\mathrm{F} 3=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\overline{\mathrm{B}})(\overline{\mathrm{A}}+\mathrm{B})$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Boolean Algebra

Boolean identities

Name	AND version	OR version
Identity	$\mathrm{x} \cdot \mathrm{l}=\mathrm{x}$	$\mathrm{x}+0=\mathrm{x}$
Complement	$\mathrm{x} \cdot \overline{\mathrm{x}}=0$	$\mathrm{x}+\overline{\mathrm{x}}=1$
Commutative	$\mathrm{x} \cdot \mathrm{y}=\mathrm{y} \cdot \mathrm{x}$	$\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x}$
Distribution	$\mathrm{x} \cdot(\mathrm{y}+\mathrm{z})=\mathrm{xy}+\mathrm{xz}$	$\mathrm{x}+(\mathrm{y} \cdot \mathrm{z})=$
		$(\mathrm{x}+\mathrm{y})(\mathrm{x}+\mathrm{z})$
Idempotent	$\mathrm{x} \cdot \mathrm{x}=\mathrm{x}$	$\mathrm{x}+\mathrm{x}=\mathrm{x}$
Null	$\mathrm{x} \cdot 0=0$	$\mathrm{x}+1=1$

Boolean Algebra (cont.)

Name	AND version	OR version
Involution	$\overline{\bar{x}}=x$	---
Absorption	$x \cdot(x+y)=x$	$x+(x \cdot y)=x$
Associative	$x \cdot(y \cdot z)=(x \cdot y) \cdot z$	$x+(y+z)=$
de Morgan	$\overline{x \cdot y}=\bar{x}+\bar{y}$	$\overline{x+y}=\bar{x} \cdot \bar{y}$

Boolean Algebra (cont.)

- Proving logical equivalence: Boolean algebra method
- To prove that two logical functions F1 and F2 are equivalent
- Start with one function and apply Boolean laws to derive the other function
- Needs intuition as to which laws should be applied and when
- Practice helps!
- Sometimes it may be convenient to reduce both functions to the same expression
- Example: F1 = A B and F3 are equivalent

Logic Circuit Design Process

- A simple logic design process involves
- Problem specification
- Truth table derivation
- Derivation of logical expression
- Simplification of logical expression
- Implementation

Deriving Logical Expressions

- Derivation of logical expressions from truth tables
- sum-of-products (SOP) form
- product-of-sums (POS) form
- SOP form
- Write an AND term for each input combination that produces a 1 output
- Write the variable if its value is 1 ; complement otherwise
- OR the AND terms to get the final expression
- POS form
- Dual of the SOP form

Deriving Logical Expressions

- 3-input majority function

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- SOP logical expression
- Four product terms
- Because there are 4 rows with a 1 output

$$
\begin{gathered}
F=\bar{A} B C+A \bar{B} C+ \\
A B \bar{C}+A B C
\end{gathered}
$$

Deriving Logical Expressions

- 3-input majority function

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- POS logical expression
- Four sum terms
- Because there are 4 rows with a 0 output

$$
\begin{aligned}
F= & (A+B+C)(A+B+C) \\
& (A+B+C) \overline{(A+B+C)}
\end{aligned}
$$

Logical Expression Simplification
 -Algebraic manipulation

- Use Boolean laws to simplify the expression
- Difficult to use
- Don't know if you have the simplified form

Algebraic Manipulation

- Majority function example

$$
\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C=
$$

$$
\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C+A B C+A B C
$$

- We carn now simpilifthis expression as

$$
B C+A C+A B
$$

- A difficult method to use for complex expressions

Implementation Using NAND Gates

- Using NAND gates
- Get an equivalent expression

$$
A B+C D=A B+C D
$$

- Using de Morgan's law

$$
A B+C D=\overline{\overline{A B} \cdot \overline{C D}}
$$

- Can be generalized
- Majority function

$$
A B+B C+A C=\overline{\overline{A B} \cdot \overline{B C} \cdot A \bar{C}}
$$

Idea: NAND Gates: Sum-of-Products, NOR Gates: Product-of-Sums

Implementation Using NAND Gates (cont.)

- Majority function

Introduction to Combinational Circuits

- Combinational circuits
- Output depends only on the current inputs
- Combinational circuits provide a higher level of abstraction
- Help in reducing design complexity
- Reduce chip count
- We look at some useful combinational circuits

