

#### Boolean Algebra Logic Gates

#### Introduction

- Hardware consists of a few simple building blocks
  - These are called *logic gates* 
    - AND, OR, NOT, ...
    - NAND, NOR, XOR, ...
- Logic gates are built using transistors
  - NOT gate can be implemented by a single transistor
  - AND gate requires 3 transistors
- Transistors are the fundamental devices
  - Pentium processor consists of 3 million transistors
  - Now we can build chips with more than 100 million transistors

## **Basic Concepts**

- Simple gates
  - AND
  - OR
  - NOT
- Functionality can be expressed by a truth table
  - A truth table lists output for each possible input combination
- Precedence
  - NOT > AND > OR
  - $F = A \overline{B} + \overline{A} B$  $= (A (\overline{B})) + ((\overline{A}) B)$



- Additional useful gates
  - NAND
  - NOR
  - XOR
- NAND = AND + NOT
- NOR = OR + NOT
- XOR implements exclusive-OR function
- NAND and NOR gates require only 2 transistors
  - AND and OR need 3 transistors!



- Number of functions
  - With N logical variables, we can define  $2^{2^N}$  functions
  - Some of them are useful
    - AND, NAND, NOR, XOR, ...
  - Some are not useful:
    - Output is always 1
    - Output is always 0
  - "Number of functions" definition is useful in proving completeness property

- Complete sets
  - A set of gates is complete
    - If we can implement any logical function using only the type of gates in the set
      - You can uses as many gates as you want
  - Some example complete sets
    - {AND, OR, NOT} Not a minimal complete set
    - {AND, NOT}
    - {OR, NOT}
    - {NAND}
    - {NOR}

- Minimal complete set

A complete set with no redundant elements.

• Proving NAND gate is universal



• Proving NOR gate is universal



#### Logic Chips







# Logic Chips (cont.)

- Integration levels
  - SSI (small scale integration)
    - Introduced in late 1960s
    - 1-10 gates (previous examples)
  - MSI (medium scale integration)
    - Introduced in late 1960s
    - 10-100 gates

#### - LSI (large scale integration)

- Introduced in early 1970s
- 100-10,000 gates

#### - VLSI (very large scale integration)

- Introduced in late 1970s
- More than 10,000 gates

# Logic Functions

- Logical functions can be expressed in several ways:
  - Truth table
  - Logical expressions
  - Graphical form

#### • Example:

- Majority function
  - Output is one whenever majority of inputs is 1
  - We use 3-input majority function

## Logic Functions (cont.)

3-input majority function

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Logical expression form
F = A B + B C + A C



## Logical Equivalence

• All three circuits implement F = A B function



# Logical Equivalence (cont.)

- Proving logical equivalence of two circuits
  - Derive the logical expression for the output of each circuit
  - Show that these two expressions are equivalent
    - Two ways:
      - You can use the truth table method
        - » For every combination of inputs, if both expressions yield the same output, they are equivalent
        - » Good for logical expressions with small number of variables
      - You can also use algebraic manipulation
        - » Need Boolean identities

# Logical Equivalence (cont.)

- Derivation of logical expression from a circuit
  - Trace from the input to output
    - Write down intermediate logical expressions along the path



## Logical Equivalence (cont.)

• Proving logical equivalence: Truth table method

| Α | В | F1 = A B | $F3 = (A + B) (A + \overline{B}) (\overline{A} + B)$ |
|---|---|----------|------------------------------------------------------|
| 0 | 0 | 0        | 0                                                    |
| 0 | 1 | 0        | 0                                                    |
| 1 | 0 | 0        | 0                                                    |
| 1 | 1 | 1        | 1                                                    |

#### **Boolean Algebra**

#### **Boolean identities**

| Name         | AND version                                                 | <b>OR</b> version                                   |
|--------------|-------------------------------------------------------------|-----------------------------------------------------|
| Identity     | $x \cdot 1 = x$                                             | $\mathbf{x} + 0 = \mathbf{x}$                       |
| Complement   | $\mathbf{x} \cdot \overline{\mathbf{x}} = 0$                | $x + \overline{x} = 1$                              |
| Commutative  | $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ | $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ |
| Distribution | x(y+z) = xy+xz                                              | $\mathbf{x} + (\mathbf{y} \cdot \mathbf{z}) =$      |
|              |                                                             | (x+y) (x+z)                                         |
| Idempotent   | $\mathbf{X} \cdot \mathbf{X} = \mathbf{X}$                  | $\mathbf{x} + \mathbf{x} = \mathbf{x}$              |
| Null         | $\mathbf{X} 0 = 0$                                          | x + 1 = 1                                           |

## Boolean Algebra (cont.)

| Name        | AND version                                                                                       | OR version                                                                               |
|-------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Involution  | $\overline{\overline{\mathbf{x}}} = \mathbf{x}$                                                   |                                                                                          |
| Absorption  | x (x+y) = x                                                                                       | $\mathbf{x} + (\mathbf{x} \cdot \mathbf{y}) = \mathbf{x}$                                |
| Associative | $\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$ | $\mathbf{x} + (\mathbf{y} + \mathbf{z}) =$                                               |
|             |                                                                                                   | (x+y)+z                                                                                  |
| de Morgan   | $\overline{\mathbf{x}} \cdot \mathbf{y} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$          | $\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$ |

## Boolean Algebra (cont.)

- Proving logical equivalence: Boolean algebra method
  - To prove that two logical functions F1 and F2 are equivalent
    - Start with one function and apply Boolean laws to derive the other function
    - Needs intuition as to which laws should be applied and when
      - Practice helps!
    - Sometimes it may be convenient to reduce both functions to the same expression
  - Example: F1= A B and F3 are equivalent

# Logic Circuit Design Process

- A simple logic design process involves
  - Problem specification
  - Truth table derivation
  - Derivation of logical expression
  - Simplification of logical expression
  - Implementation



# **Deriving Logical Expressions**

- Derivation of logical expressions from truth tables
  - sum-of-products (SOP) form
  - product-of-sums (POS) form
- SOP form
  - Write an AND term for each input combination that produces a 1 output
    - Write the variable if its value is 1; complement otherwise
  - OR the AND terms to get the final expression
- POS form
  - Dual of the SOP form

## **Deriving Logical Expressions**

• 3-input majority function

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

- SOP logical expression
- Four product terms
  - Because there are 4 rows with a 1 output

$$F = \overline{A} B C + A \overline{B} C + A \overline{B} C + A B \overline{C} + A B C$$

## **Deriving Logical Expressions**

• 3-input majority function

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

- POS logical expression
- Four sum terms
  - Because there are 4 rows with a 0 output

$$F = (A + B + C) (A + B + C)$$
  
(A + B + C) (A + B + C)  
(A + B + C) (A + B + C)

## Logical Expression Simplification

- -Algebraic manipulation
  - Use Boolean laws to simplify the expression
    - Difficult to use
    - Don't know if you have the simplified form

#### **Algebraic Manipulation**

- Majority function example Added extra  $\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC =$  $\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC + ABC + ABC$  We can now simplify this expression as BC + AC + AB
- A difficult method to use for complex expressions

#### Implementation Using NAND Gates

- Using NAND gates
  - Get an equivalent expression

A B + C D = A B + C D

- Using de Morgan's law

 $A B + C D = A B \cdot C D$ 

- Can be generalized
  - Majority function

$$A B + B C + AC = \overline{A B} \cdot \overline{BC} \cdot \overline{AC}$$

Idea: NAND Gates: Sum-of-Products, NOR Gates: Product-of-Sums

#### Implementation Using NAND Gates (cont.)

Majority function



#### Introduction to Combinational Circuits

- Combinational circuits
  - Output depends only on the current inputs
- Combinational circuits provide a higher level of abstraction
  - Help in reducing design complexity
  - Reduce chip count
- We look at some useful combinational circuits