
 Boolean Algebra

 Logic Gates

Introduction

• Hardware consists of a few simple building

blocks

– These are called logic gates
• AND, OR, NOT, …

• NAND, NOR, XOR, …

• Logic gates are built using transistors
• NOT gate can be implemented by a single transistor

• AND gate requires 3 transistors

• Transistors are the fundamental devices
• Pentium processor consists of 3 million transistors

• Now we can build chips with more than 100 million transistors

Basic Concepts

• Simple gates

– AND

– OR

– NOT

• Functionality can be

expressed by a truth table

– A truth table lists output for

each possible input

combination

• Precedence

– NOT > AND > OR

– F = A B + A B

 = (A (B)) + ((A) B)

Basic Concepts (cont.)

• Additional useful gates
– NAND

– NOR

– XOR

• NAND = AND + NOT

• NOR = OR + NOT

• XOR implements
exclusive-OR function

• NAND and NOR gates
require only 2 transistors
– AND and OR need 3

transistors!

Basic Concepts (cont.)

• Number of functions

– With N logical variables, we can define

 22N
 functions

– Some of them are useful

• AND, NAND, NOR, XOR, …

– Some are not useful:

• Output is always 1

• Output is always 0

– “Number of functions” definition is useful in

proving completeness property

Basic Concepts (cont.)

• Complete sets
– A set of gates is complete

• If we can implement any logical function using only
the type of gates in the set

– You can uses as many gates as you want

– Some example complete sets
• {AND, OR, NOT} Not a minimal complete set

• {AND, NOT}

• {OR, NOT}

• {NAND}

• {NOR}

– Minimal complete set
– A complete set with no redundant elements.

Basic Concepts (cont.)

• Proving NAND gate is universal

Basic Concepts (cont.)

• Proving NOR gate is universal

Logic Chips

Logic Chips (cont.)

• Integration levels

– SSI (small scale integration)
• Introduced in late 1960s

• 1-10 gates (previous examples)

– MSI (medium scale integration)
• Introduced in late 1960s

• 10-100 gates

– LSI (large scale integration)
• Introduced in early 1970s

• 100-10,000 gates

– VLSI (very large scale integration)
• Introduced in late 1970s

• More than 10,000 gates

Logic Functions

• Logical functions can be expressed in

several ways:
– Truth table

– Logical expressions

– Graphical form

• Example:
– Majority function

• Output is one whenever majority of inputs is 1

• We use 3-input majority function

Logic Functions (cont.)

3-input majority function

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• Logical expression form

 F = A B + B C + A C

Logical Equivalence

• All three circuits implement F = A B function

Logical Equivalence (cont.)

• Proving logical equivalence of two circuits

– Derive the logical expression for the output of

each circuit

– Show that these two expressions are

equivalent

• Two ways:
– You can use the truth table method

» For every combination of inputs, if both expressions yield

the same output, they are equivalent

» Good for logical expressions with small number of

variables

– You can also use algebraic manipulation

» Need Boolean identities

Logical Equivalence (cont.)

• Derivation of logical expression from a circuit

– Trace from the input to output

• Write down intermediate logical expressions along the path

Logical Equivalence (cont.)

• Proving logical equivalence: Truth table method

A B F1 = A B F3 = (A + B) (A + B) (A + B)

0 0 0 0

0 1 0 0

1 0 0 0

1 1 1 1

Boolean Algebra

Boolean Algebra (cont.)

Boolean Algebra (cont.)

• Proving logical equivalence: Boolean

algebra method

– To prove that two logical functions F1 and F2

are equivalent
• Start with one function and apply Boolean laws to derive the

other function

• Needs intuition as to which laws should be applied and when

– Practice helps!

• Sometimes it may be convenient to reduce both functions to

the same expression

– Example: F1= A B and F3 are equivalent

Logic Circuit Design Process

• A simple logic design process involves
– Problem specification

– Truth table derivation

– Derivation of logical expression

– Simplification of logical expression

– Implementation

Deriving Logical Expressions

• Derivation of logical expressions from truth

tables

– sum-of-products (SOP) form

– product-of-sums (POS) form

• SOP form

– Write an AND term for each input combination that

produces a 1 output

• Write the variable if its value is 1; complement otherwise

– OR the AND terms to get the final expression

• POS form

– Dual of the SOP form

Deriving Logical Expressions

• 3-input majority function

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• SOP logical expression

• Four product terms

– Because there are 4 rows

with a 1 output

F = A B C + A B C +

 A B C + A B C

Deriving Logical Expressions

• 3-input majority function

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• POS logical expression

• Four sum terms

– Because there are 4 rows

with a 0 output

F = (A + B + C) (A + B + C)

 (A + B + C) (A + B + C)

Logical Expression

Simplification
– Algebraic manipulation

• Use Boolean laws to simplify the expression
– Difficult to use

– Don’t know if you have the simplified form

Algebraic Manipulation

• Majority function example

A B C + A B C + A B C + A B C =

A B C + A B C + A B C + A B C + A B C + A B C

• We can now simplify this expression as

B C + A C + A B

• A difficult method to use for complex

expressions

Added extra

Implementation Using NAND Gates

• Using NAND gates

– Get an equivalent expression

A B + C D = A B + C D

– Using de Morgan’s law

A B + C D = A B . C D

– Can be generalized

• Majority function

A B + B C + AC = A B . BC . AC

Idea: NAND Gates: Sum-of-Products, NOR Gates: Product-of-Sums

Implementation Using NAND Gates (cont.)

• Majority function

Introduction to Combinational Circuits

• Combinational circuits
• Output depends only on the current inputs

• Combinational circuits provide a higher

level of abstraction

– Help in reducing design complexity

– Reduce chip count

• We look at some useful combinational

circuits

