
 Boolean Algebra  

    Logic Gates 



Introduction 

• Hardware consists of a few simple building 

blocks 

– These are called logic gates 
• AND, OR, NOT, …  

• NAND, NOR, XOR, … 

• Logic gates are built using transistors 
• NOT gate can be implemented by a single transistor 

• AND gate requires 3 transistors 

• Transistors are the fundamental devices 
• Pentium processor consists of 3 million transistors 

• Now we can build chips with more than 100 million transistors 



Basic Concepts 

• Simple gates 

– AND 

– OR 

– NOT 

• Functionality can be 

expressed by a truth table 

– A truth table lists output for 

each possible input 

combination 

• Precedence 

– NOT > AND > OR 

– F = A B + A B 

       =  (A (B)) + ((A) B) 



Basic Concepts (cont.) 

• Additional useful gates 
– NAND 

– NOR 

– XOR 

• NAND = AND + NOT 

• NOR = OR + NOT 

• XOR implements 
exclusive-OR function 

• NAND and NOR gates 
require only 2 transistors 
– AND and OR need 3 

transistors! 



Basic Concepts (cont.) 

• Number of functions 

– With N  logical variables, we can define 

   22N
 functions 

– Some of them are useful 

• AND, NAND, NOR, XOR, … 

– Some are not useful: 

• Output is always 1 

• Output is always 0 

– “Number of functions” definition is useful in 

proving completeness property 



Basic Concepts (cont.) 

• Complete sets 
– A set of gates is complete 

• If we can implement any logical function using only 
the type of gates in the set 

– You can uses as many gates as you want 

– Some example complete sets 
• {AND, OR, NOT}               Not a minimal complete set 

• {AND, NOT} 

• {OR, NOT} 

• {NAND} 

• {NOR} 

– Minimal complete set 
– A complete set with no redundant elements. 



Basic Concepts (cont.) 

• Proving NAND gate is universal 



Basic Concepts (cont.) 

• Proving NOR gate is universal 



Logic Chips 



Logic Chips (cont.) 

• Integration levels 

– SSI (small scale integration) 
• Introduced in late 1960s 

• 1-10 gates (previous examples) 

– MSI (medium scale integration) 
• Introduced in late 1960s 

• 10-100 gates 

– LSI (large scale integration) 
• Introduced in early 1970s 

• 100-10,000 gates 

– VLSI (very large scale integration) 
• Introduced in late 1970s 

• More than 10,000 gates 



Logic Functions 

• Logical functions can be expressed in 

several ways: 
– Truth table 

– Logical expressions 

– Graphical form 

• Example: 
– Majority function 

• Output is one whenever majority of inputs is 1 

• We use 3-input majority function 



Logic Functions (cont.) 

3-input majority function 
 
A  B C F 

0  0 0 0 

0  0 1 0 

0  1 0 0 

0  1 1 1 

1  0 0 0 

1  0 1 1 

1  1 0 1 

1  1 1 1 

• Logical expression form 

  F = A B + B C + A C 

 



Logical Equivalence 

• All three circuits implement F = A B function 



Logical Equivalence (cont.) 

• Proving logical equivalence of two circuits 

– Derive the logical expression  for the output of 

each circuit 

– Show that these two expressions are 

equivalent 

• Two ways: 
– You can use the truth table method 

» For every combination of inputs, if both expressions yield 

the same output,  they are equivalent 

» Good for logical expressions with small number of 

variables 

– You can also use algebraic manipulation 

» Need Boolean identities 



Logical Equivalence (cont.) 

• Derivation of logical expression from a circuit 

– Trace from the input to output 

• Write down intermediate logical expressions along the path 



Logical Equivalence (cont.) 

• Proving logical equivalence: Truth table method 
 

A     B F1 = A B F3 = (A + B) (A + B) (A + B) 

0     0       0                                        0 

0     1       0                                        0 

1     0       0                                        0 

1     1       1                                        1 

 



Boolean Algebra 



Boolean Algebra (cont.) 



Boolean Algebra (cont.) 

• Proving logical equivalence: Boolean 

algebra method 

– To prove that two logical functions F1 and F2 

are equivalent 
• Start with one function and apply Boolean laws to derive the 

other function 

• Needs intuition as to which laws should be applied and when 

– Practice helps! 

• Sometimes it may be convenient to reduce both functions to 

the same expression 

– Example: F1= A B and F3 are equivalent 

 



Logic Circuit Design Process 

• A simple logic design process involves 
– Problem specification 

–   Truth table derivation 

–     Derivation of logical expression 

–       Simplification of logical expression 

–         Implementation 



Deriving Logical Expressions 

• Derivation of logical expressions from truth 

tables 

– sum-of-products (SOP) form 

– product-of-sums (POS) form 

• SOP form  

– Write an AND term for each input combination that 

produces a 1 output 

• Write the variable if its value is 1; complement otherwise 

– OR the AND terms to get the final expression 

• POS form 

– Dual of the SOP form 



Deriving Logical Expressions 

• 3-input majority function 
 
A  B C F 

0  0 0 0 

0  0 1 0 

0  1 0 0 

0  1 1 1 

1  0 0 0 

1  0 1 1 

1  1 0 1 

1  1 1 1 

• SOP logical expression 

• Four product terms 

– Because there are 4 rows 

with a 1 output 

 

 

F = A B C + A B C +  

      A B C + A B C 



Deriving Logical Expressions 

• 3-input majority function 
 
A  B C F 

0  0 0 0 

0  0 1 0 

0  1 0 0 

0  1 1 1 

1  0 0 0 

1  0 1 1 

1  1 0 1 

1  1 1 1 

• POS logical expression 

• Four sum terms 

– Because there are 4 rows 

with a 0 output 

 

 

F = (A + B + C) (A + B + C) 

 (A + B + C) (A + B + C) 

 



Logical Expression 

Simplification 
– Algebraic manipulation 

• Use Boolean laws to simplify the expression 
– Difficult to use 

– Don’t know if you have the simplified form 



Algebraic Manipulation 

• Majority function example 
 

A B C + A B C + A B C + A B C  = 
 

A B C + A B C + A B C + A B C + A B C + A B C  

 

• We can now simplify this expression as 

 

B C + A C + A B 

 

• A difficult method to use for complex 

expressions 

Added extra 



Implementation Using NAND Gates 

• Using NAND gates 

– Get an equivalent expression 
 

A B + C D = A B + C D 

– Using de Morgan’s law 
 

A B + C D = A B . C D 

– Can be generalized 

• Majority function 
 

A B + B C + AC = A B . BC . AC 

Idea: NAND Gates: Sum-of-Products, NOR Gates: Product-of-Sums 



Implementation Using NAND Gates (cont.) 

• Majority function 



Introduction to Combinational Circuits 

• Combinational circuits 
• Output depends only on the current inputs 

• Combinational circuits provide a higher 

level of abstraction 

– Help in reducing design complexity 

– Reduce chip count 

• We look at some useful combinational 

circuits 


