Boolean Algebra
Logic Gates




Introduction

« Hardware consists of a few simple building
blocks

— These are called logic gates
- AND, OR, NOT, ...
« NAND, NOR, XOR, ...

* Logic gates are built using transistors

 NOT gate can be implemented by a single transistor
* AND gate requires 3 transistors

 Transistors are the fundamental devices

« Pentium processor consists of 3 million transistors
* Now we can build chips with more than 100 million transistors



Basic Concepts

Simple gates
— AND

- OR

— NOT

Functionality can be
expressed by a truth table

— A truth table lists output for
each possible input
combination

Precedence
— NOT > AND > OR
- F=AB+AB

= (A (B)) + ((A) B)

NOT gate

Logic symbol
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Truth table



Basic Concepts (cont.)

Additional useful gates
— NAND

— NOR

— XOR

NAND = AND + NOT
NOR = OR + NOT

XOR implements
exclusive-OR function

NAND and NOR gates
require only 2 transistors

— AND and OR need 3
transistors!
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Basic Concepts (cont.)

* Number of functions
— With N logical variables, we can define
22N functions

— Some of them are useful
« AND, NAND, NOR, XOR, ...

— Some are not useful:
« Output is always 1
« Output is always O

— “Number of functions” definition is useful in
proving completeness property



Basic Concepts (cont.)

« Complete sets

— A set of gates Is complete

* |[f we can implement any logical function using only
the type of gates in the set
— YOou can uses as many gates as you want

— Some example complete sets
« {AND, OR, NOT} - Not a minimal complete set
« {AND, NOT}
* {OR, NOT}
 {NAND}
* {NOR}
— Minimal complete set
— A complete set with no redundant elements.




Basic Concepts (cont.)

* Proving NAND gate is universal

AND gate A {}
DTN

NOT gate OR gate




Basic Concepts (cont.)

* Proving NOR gate is universal

D

NOT gate AND gate
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Logic Chips
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Logic Chips (cont.)

Integration levels
— SSI (small scale integration)

 Introduced in late 1960s
« 1-10 gates (previous examples)

— MSI (medium scale integration)

e |ntroduced in late 1960s
« 10-100 gates

— LSI (large scale integration)

 Introduced in early 1970s
« 100-10,000 gates

— VLSI (very large scale integration)

* Introduced in late 1970s
« More than 10,000 gates



Logic Functions

 Logical functions can be expressed In

several ways:

— Truth table

— Logical expressions
— Graphical form

« Example:

— Majority function
« Output is one whenever majority of inputs is 1
« We use 3-input majority function



Logic Functions (cont.)

3-input majority function  Logical expression form
A B C F F=AB+BC+AC
0 0 0 0 A B C

0 0 1 0 .

0 1 0 0 ¢ }

0 1 1 1

1 0 0 |o ] — =
1 0 1 1
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1 1 1 1 ™




Logical Equivalence

 All three circuits implement F = A B function
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Logical Equivalence (cont.)

Proving logical equivalence of two circuits

— Derive the logical expression for the output of
each circuit

— Show that these two expressions are
equivalent

* Two ways:
— You can use the truth table method

» For every combination of inputs, if both expressions yield
the same output, they are equivalent

» Good for logical expressions with small number of
variables

— You can also use algebraic manipulation
» Need Boolean identities



Logical Equivalence (cont.)

 Derivation of logical expression from a circuit
— Trace from the input to output
« Write down intermediate logical expressions along the path
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Logical Equivalence (cont.)

* Proving logical equivalence: Truth table method

A B| FI=AB| F3=(A+B)(A+B)(A+B)
O O 0 0
O 1 0 0
1 O 0 0
1 1 1 1




Boolean Algebra

Boolean identities

Name AND version OR version
Identity xl=x x+0=x
Complement xx=0 X+x=1
Commutative XV=VX X+Ty=y+X
Distribution X (V1z)=xy+xz | X+ (v 2) =
(xHy) (x+2)
Idempotent XX =X X TX=X

Null

x+1=1




Boolean Algebra (cont.)

Name AND version OR version
Involution X=X .
Absorption X (Xty) =X X+ (XV)=X
Associative X(vz)=(xvy)z | x+t(y+tz)=
(Xty) +z
de Morgan X V=X+Yy XFV=X YV




Boolean Algebra (cont.)

* Proving logical equivalence: Boolean
algebra method

— To prove that two logical functions F1 and F2

are equivalent
 Start with one function and apply Boolean laws to derive the
other function
* Needs intuition as to which laws should be applied and when
— Practice helps!

« Sometimes it may be convenient to reduce both functions to
the same expression

— Example: F1= A B and F3 are equivalent



Logic Circuit Design Process

* A simple logic design process involves

— Problem specification

— Truth table derivation

—  Derivation of logical expression

— Simplification of logical expression
— Implementation

Problem Derive Derive logical Simplify logical
specification truth table expression expression

Derive final
logic circuit




Deriving Logical Expressions

» Derivation of logical expressions from truth
tables
— sum-of-products (SOP) form
— product-of-sums (POS) form

e SOP form

— Write an AND term for each input combination that
produces a 1 output
« Write the variable if its value is 1; complement otherwise

— OR the AND terms to get the final expression

e POS form
— Dual of the SOP form



Deriving Logical Expressions

* 3-input majority function  SOP logical expression
A B C E * Four product terms
— Because there are 4 rows
0 0 0 with a 1 output
0 0 1 0
0 1 0 0 B -
0 1 1 1 F=ABC+ABC+
1 0 0 0 ABC+ABC
1 0 1 1
1 1 0 1
1 1 1 1




Deriving Logical Expressions

 3-input majority function « POS logical expression
A B C E * Four sum terms

— Because there are 4 rows
0 0 0 with a 0 output
0 0 1 0
0 1 0 0 B
0 1 1 1 F=(A+B+C)(A+B+C)
1 0 0 0 (A+B+C)(A+B+C)
1 0 1 1
1 1 0 1
1 1 1 1




Logical Expression
Simplification

— Algebraic manipulation

« Use Boolean laws to simplify the expression
— Difficult to use
— Don’t know if you have the simplified form



Algebraic Manipulation

« Majority function example Added extra

KBC+A§C+ABE+ABC: / \
ABC+ABC+ABC+ABC+ABC+ABC

« We can .o”u IS_expression as

BC+AC+AB

A difficult method to use for complex
expressions



Implementation Using NAND Gates

« Using NAND gates
— Get an equivalent expression

AB+CD=AB+CD
— Using de Morgan’s law

AB+CD=AB-CD

— Can be generalized
* Majority function

AB+BC+AC=AB BC: AC

I[dea: NAND Gates: Sum-of-Products, NOR Gates: Product-of-Sums



Implementation Using NAND Gates (cont.)

* Majority function

A B C

. .
1 =
e




Introduction to Combinational Circuits

« Combinational circuits
« Output depends only on the current inputs

« Combinational circuits provide a higher
level of abstraction
— Help in reducing design complexity
— Reduce chip count

« We look at some useful combinational
Clrcuits



