Практика 1

Расчет типовых схем включения ОУ

Рассчитать типовую схему включения это значит:

- выбрать тип ОУ (исходя из данных технического задания);
- рассчитать значения пассивных элементов (резисторов, конденсаторов)
- выбрать эти элементы из справочника (тип, номинал, мощность, рабочее напряжение)

Выбор ОУ осуществляется на основе следующих данных:

1. параметры обрабатываемого сигнала, т.е. амплитуда, частота следования, форма сигнала или его спектр, определяют частотные или "скоростные" свойства ОУ, которые отражаются следующими параметрами:

 V_U – скорость нарастания выходного напряжения;

 f_1 – частота единичного усиления;

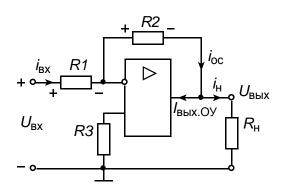
 $t_{\text{нар}}$ – время нарастания выходного напряжения;

 t_{vcr} – время установления выходного напряжения.

- 2. Имеющиеся напряжения питания определяют выбор того ОУ, который может работать при заданном питании.
- 3. Состав совместно работающей элементной базы определяет тип корпуса выбираемого ОУ.
- 4. Параметры выходного сигнала $(U_{\rm H},\ I_{\rm H},\ R_{\rm H},\ P_{\rm H})$ определяют нагрузочную способность ОУ: $U_{_{\rm Bblx\,OY}}$, $I_{_{\rm Bblx\,OY}}$ или $R_{_{\rm H\,min}}$.

Расчет пассивных элементов схемы зависит от выбранной схемы включения.

Исходные данные к расчёту:


- $-\ U_{\text{вх }max}$ амплитуду входного напряжения;
- $-\ \ U_{{\scriptscriptstyle {
 m BЫХ}}\,{\it max}}$ амплитуду выходного напряжения;
- K_U- коэффициент усиления по напряжению (если не дано $U_{\scriptscriptstyle
 m BMX}$)
- $R_{\scriptscriptstyle \Gamma}$ внутреннее сопротивление источника входного сигнала (генератора);
- $-R_{\rm BX}$ требуемое значение входного сопротивления усилителя (если не задано, то $R_{\rm BX} >> R_{\rm F}$)
- $R_{\scriptscriptstyle \rm H}$ сопротивление нагрузки (или $I_{\scriptscriptstyle \rm H\,\it max}$ максимальный ток нагрузки).

І. Расчет инвертирующего масштабного усилителя.

1. Находим коэффициент усиления усилителя

$$K_{U} = \frac{U_{\text{BLIX max}}}{U_{\text{BX max}}}$$

2. Определяем сопротивление резистора R_1 . В данной схеме входное сопротивление $R_{\text{вх}}$ усилителя равно сопротивлению R_1 . На величину этого сопротивления есть ряд ограничений. Его нельзя выбирать слишком маленьким (ограничение «снизу») и слишком

большим (ограничение «сверху»). Итак, сопротивление резистора R_1 "снизу" ограничивается:

- из условия согласования с входным источником

$$R_{1} >> R_{1}$$
, T.e. $R_{1} \ge 10R_{1}$

– из условия нагрузки на ОУ

$$R_{\rm l} \ge \frac{U_{\rm bx\ max}}{I_{\rm bbix\ OY} - U_{\rm bbix\ max}} R_{\rm l}$$

Из последних двух ограничений выбираем то, которое окажется жёстче.

Сопротивление резистора R_1 "сверху" ограничивается значением входного сопротивления операционного усилителя: $R_1 << R_{\text{BX OV}}$, т.е. $R_1 \le 0.1 R_{\text{BX OV}}$.

Исходя из полученных ограничений задаём R_1 (обычно, резисторы обратной связи выбирают из диапазона от 10кОм до 1МОм).

- 3. Рассчитываем значение резистора R_2 $R_2 = |K_U| \cdot R_1$ Выбираем номинал резистора из ряда (например, E24).
- 4. Рассчитываем (и выбираем из ряда) значение резистора R_3 : $R_3 = \frac{R_1 R_2}{R_1 + R_2}$
- 5. Определяем максимальное значение выходного тока ОУ (напряжения и токи по модулю, без учета знака инверсии!)

$$I_{_{
m BbIX}} = I_{_{
m oc}} + I_{_{
m H}}$$
 $I_{_{
m oc}} = I_{_{
m BX}} = U_{_{
m BX \, max}} / R_{_{
m I}}; \quad I_{_{
m H}} = U_{_{
m BbIX \, max}} / R_{_{
m H}}$

И проверяем нагрузочную способность ОУ (хотя в формуле для R_2 она учтена), должно выполняться $I_{\scriptscriptstyle \mathrm{Bbix}} < I_{\scriptscriptstyle \mathrm{Bbix}}$

6. Рассчитываем мощности, рассеиваемые на резисторах усилителя.

$$P_R = I^2 \cdot R$$
, где I – действующее значение.

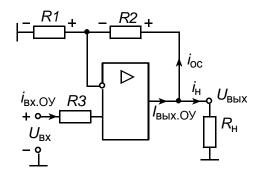
Однако, в схемах с ОУ мощность, рассеиваемая на резисторах, составляет доли мВт, поэтому ток при расчетах можно брать максимальный (на худший случай).

7. Выбираем тип резисторов из справочника: общего назначения – погрешность 5%, 10%; прецизионные – для измерительных схем; безындуктивные – при работе на высоких частотах; проволочные – мощные резисторы, свыше 10 Вт.

Задача. Рассчитать инвертирующий масштабный усилитель

$$U_{_{MBX}} = 0.5 \text{ B}$$
 $\underline{\text{KP140УД608}}$ $U_{_{MBMX}} = 10 \text{ B}$ $R_{_{\text{BX OY}}} = 1 \text{ MOm}$ $U_{_{BMX OY}} = \pm 12 \text{ B}$ $R_{_{\text{H}}} = 5 \text{ кOm}$ $R_{_{\text{H}}} \ge 1 \text{ кOm}$

II. Расчет неинвертирующего масштабного усилителя.


1. Находим коэффициент усиления усилителя:

$$K_{U} = \frac{U_{\text{bux max}}}{U_{\text{bx max}}}$$

2. Задаёмся током в цепи отрицательной обратной связи:

$$I_{_{\rm BX\;OY}} << I_{_{\rm OC}} \leq \left(I_{_{\rm BMX\;OY}} - I_{_{\rm H}}\right)$$

обратной связи Обычно, выбирается: $I_{\text{oc}} \approx 0.1 \div 1 \text{ MA}$.

- 3. Определяем сопротивление резистора R_1 :
- $R_{1} = \frac{U_{\text{BX max}}}{I_{\text{oc}}}$ $R_{2} = (K_{U} 1) \cdot R_{1}$ 4. Рассчитываем значение резистора R_2 : Выбираем номинал резистора из ряда.
- $R_3 = \frac{R_1 R_2}{R_1 + R_2}$ 5. Рассчитываем (и выбираем из ряда) значение резистора R_3 :
- 6. Определяем максимальное значение выходного тока ОУ и проверяем нагрузочную способность ОУ:

$$I_{_{\rm BbIX}} = \frac{U_{_{\rm BX\;max}}}{R_{_{\rm I}}} + \frac{U_{_{\rm BbIX\;max}}}{R_{_{\rm H}}} < I_{_{\rm BbIX\;OY}}$$

- 7. Рассчитываем мощности, рассеиваемые на резисторах усилителя. $P_{R} = I^{2}R$, где I — действующее значение (можно максимальное).
- 8. Выбираем тип резисторов из справочника Например: C2-23-0.062Вт-10кОм±10% и т.д.

Задача. Рассчитать неинвертирующий масштабный усилитель

$$U_{_{m\, \mathrm{BLX}}} = 0.5 \, \mathrm{B}$$
 $KP140 \mathrm{V} \underline{\mathrm{M}608}$ $U_{_{m\, \mathrm{BLX}}} = 5.5 \, \mathrm{B}$ $I_{_{\mathrm{BX}\, \mathrm{OY}}} = 100 \, \mathrm{HA}$ $R_{_{\Gamma}} = 1 \, \mathrm{\kappa}\mathrm{Om}$ $U_{_{\mathrm{BLX}\, \mathrm{OY}}} = \pm 12 \, \mathrm{B}$ $R_{_{\mathrm{H}}} = 2 \, \mathrm{\kappa}\mathrm{Om}$ $R_{_{\mathrm{H}}} \geq 1 \, \mathrm{\kappa}\mathrm{Om}$