МАТЕРИАЛЫ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

«МОДЕЛИРОВАНИЕ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ»

- 1. Паспорт оценивания результатов обучения по дисциплине
- 2. Оценочные средства текущего контроля по дисциплине в семестре
- 3. Оценочные средства промежуточной аттестации по дисциплине в семестре

1. Паспорт оценивания результатов обучения (компетенций) по дисциплине Моделирование химико-технологических процессов

Год набора: 2011

Направление подготовки: Химическая технология; Институт: ИПР

Образовательны			Декомпозиция			
й модуль (учебная дисциплина)	Компетенции ФГОС	Результаты обучения по ООП ТПУ	Знания	Умения	Владение опытом	
Моделирование химико-технологических процессов	• способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-1); • составлять математические модели типовых профессиональных задач, находить способы их решений и интерпретировать профессиональный (физический) смысл полученного математического результата (ПК-8); • применять аналитические и численные методы решения поставленных задач, использовать современные информационные технологии, проводить обработку информации с использованием прикладных программ деловой сферы деятельности; использовать сетевые компьютерные технологии и базы данных в своей предметной области, пакеты прикладных программ для	РЗ Ставить и решать задачи производственного анализа, связанные с созданием и переработкой материалов с использованием моделирования объектов и процессов химической технологии Р5 Проводить теоретические и экспериментальные исследования в области современных химических технологий	35.7, 33.3 методы построения эмпирических и физико-химических моделей ХТП; методы идентификации математических описаний технологических процессов на основе экспериментальных данных, методы оптимизации ХТП с применением эмпирических и физико-химических моделей;	У5.7, У3.3 применять методы вычислительной математики и математической статистики для решения конкретных задач расчета, проектирования, моделирования, идентификации и оптимизации ХТП; рассчитывать основные характеристики химического процесса, выбирать рациональную схему производства заданного продукта, оценивать технологическую эффективность	В5.7, В3.3 методами математическ ой статистики для обработки результатов активных и пассивных эксперименто в, пакетами прикладных программ для моделирован ия ХТП, методами анализа эффективнос ти работы химических производств	

расчета технологических параметров оборудования (ПК-9);		
• планировать и проводить		
физические и химические		
эксперименты, проводить обработку их		
результатов и оценивать погрешности,		
математически моделировать		
физические и химические процессы и		
явления, выдвигать гипотезы и		
устанавливать границы их применения (ПК-21);		

2. ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ САМОСТОЯТЕЛЬНАЯ РАБОТА

РД1 Освоить методологию построения математических моделей ХТП РД2 Выполнять обработку и анализ данных, полученных при теоретических и экспериментальных исследованиях

- способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-1);
- составлять математические модели типовых профессиональных задач, находить способы их решений и интерпретировать профессиональный (физический) смысл полученного математического результата (ПК-8);

Критерии оценивания:

90-100 % правильных ответов – 4 балла (продвинутый уровень);

89-70% правильных ответов – 3 балла (базовый уровень);

55-69% правильных ответов – 2,2 балла (пороговый уровень).

Пример задания

Вариант 1

Написать кинетические уравнения:

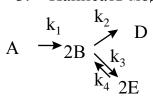
1.
$$2A \xrightarrow{k_1} B+C$$
 2. $A + 2B \xrightarrow{k_1} C \xrightarrow{k_2} 2D$ 3. $\begin{cases} 2A \xrightarrow{k_1} 2B+C \\ k_2 \end{cases}$ $k_5 \xrightarrow{k_4} k_6$ $k_6 \xrightarrow{k_2} F$

Контрольная работа №1

- РД1 Освоить методологию построения математических моделей ХТП
- **РД2** Выполнять обработку и анализ данных, полученных при теоретических и экспериментальных исследованиях
- **РД3** Применять численные методы и компьютерные технологии при решении инженерных задач
- способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-1);
- составлять математические модели типовых профессиональных задач, находить способы их решений и интерпретировать профессиональный (физический) смысл полученного математического результата (ПК-8);

Критерии оценивания:

90-100 % правильных ответов –5 баллов (высокий уровень);


89-70% правильных ответов – 4 балла (базовый уровень);

55-69% правильных ответов – 3 балла (пороговый уровень).

Пример задания

Вариант 1

- 1. Дать понятие математического моделирования и модели.
- 2. Написать гидродинамические модели: ячеечную и диффузионные.
- 3. Написать модель РИС для реакции:

Контрольная работа-2

- РД1 Освоить методологию построения математических моделей ХТП
- **РД2** Выполнять обработку и анализ данных, полученных при теоретических и экспериментальных исследованиях
- **РД3** Применять численные методы и компьютерные технологии при решении инженерных задач
- способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-1);
- составлять математические модели типовых профессиональных задач, находить способы их решений и интерпретировать профессиональный (физический) смысл полученного математического результата (ПК-8);

Критерии оценивания:

- 90-100 % правильных ответов –5 баллов (высокий уровень);
- 89-70% правильных ответов 4 балла (базовый уровень);
- 55-69% правильных ответов 3 балла (пороговый уровень).

Пример задания

Вариант 1

Записать модель РИВ, режим политропический для реакции:

$$A \xrightarrow{k_1} 2B \xrightarrow{k_2} D$$

$$-\Delta H_1 \xrightarrow{k_4} 2E$$

$$\Delta H_4$$

Контрольная работа – 3

- РД1 Освоить методологию построения математических моделей ХТП
- **РД2** Выполнять обработку и анализ данных, полученных при теоретических и экспериментальных исследованиях
- **РД3** Применять численные методы и компьютерные технологии при решении инженерных задач
- способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-1);
- составлять математические модели типовых профессиональных задач, находить способы их решений и интерпретировать профессиональный (физический) смысл полученного математического результата (ПК-8);

Критерии оценивания:

90-100 % правильных ответов –5 баллов (высокий уровень);

89-70% правильных ответов – 4 балла (базовый уровень);

55-69% правильных ответов – 3 балла (пороговый уровень).

Пример задания

Вариант

- 1. В чем суть планирования эксперимента. Привести пример плана 1-го порядка, Кодирование переменных. Свойства матрицы планирования. Привести формулы для расчета коэффициентов
- 2. На процесс влияет три фактора:

$$C = 20 - 40 \%$$

 $T = 480 - 560 \text{ K}$

$$v = 0.6 - 1.4 \frac{m^3}{c}$$

Построить матрицу планирования 2-го порядка (ОЦКП) в натуральных и кодированных единицах.

 $\alpha = 1,215$

ДОМАШНЕЕ ЗАДАНИЕ №1

«Моделирование гетерогенных химических реакций»

РД1 Освоить методологию построения математических моделей ХТП

РД2 Выполнять обработку и анализ данных, полученных при теоретических и экспериментальных исследованиях

РД3 Применять численные методы и компьютерные технологии при решении инженерных задач

В процессе освоения дисциплины у студентов развиваются следующие компетенции:

- способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;
- составлять математические модели типовых профессиональных задач, находить способы их решений и интерпретировать профессиональный (физический) смысл полученного математического результата;

планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, математически моделировать физические и химические процессы и явления, выдвигать гипотезы и устанавливать границы их применения;

Критерии оценивания:

90-100 % правильных ответов – 4 балла (продвинутый уровень);

89-70% правильных ответов – 3 балла (базовый уровень);

55-69% правильных ответов – 2,2 балла (пороговый уровень).

Пример задания

Вариант

Получить уравнение скорости гидрокрекинга методом Ленгмюра:

$$1.z + C_7H_8 \xrightarrow{k_1} zC_7H_8$$

$$2.zC_7H_8 + H_2 \xleftarrow{k_2} zC_7H_{10}$$

$$3.zC_7H_{10} \xleftarrow{k_3} z + CH_4 + C_6H_6$$

$$C_7H_8 + H_2 \xrightarrow{} C_6H_6 + CH_4$$

ДОМАШНЕЕ ЗАДАНИЕ №2

- РД1 Освоить методологию построения математических моделей ХТП
- **РД2** Выполнять обработку и анализ данных, полученных при теоретических и экспериментальных исследованиях
- РД5 Освоить методологию анализа результатов моделирования, формирования и прогнозирования функционирования производственного объекта в реальных условиях

В процессе освоения дисциплины у студентов развиваются следующие компетенции:

- способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;
- составлять математические модели типовых профессиональных задач, находить способы их решений и интерпретировать профессиональный (физический) смысл полученного математического результата;
- планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, математически моделировать физические и химические процессы и явления, выдвигать гипотезы и устанавливать границы их применения;

Критерии оценивания:

90-100 % правильных ответов -5,5-6 баллов (высокий уровень);

89-70% правильных ответов – 4,5 балла (базовый уровень);

55-69% правильных ответов – 3,3 балла (пороговый уровень).

Пример задания

Определить коэффициенты в уравнении регрессии и проверить их на значимость

N	\mathbf{x}_0	\mathbf{x}_1	\mathbf{x}_2	X3	y_1	\mathbf{y}_2
1					2.5	2.45
2					4.7	4.73
3					8.2	8.2
4					10.0	10.2
5					12.2	12.4
6					5.8	5.8
7					6.4	6.2
8					8.7	8.76

$$S_{60cnp.}^2 = 0,2072$$

2 ОЦЕНОЧНЫЕ СРЕДСТВА ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ В СЕМЕСТРЕ

2.1. ПЕРЕЧЕНЬ ВОПРОСОВ

для подготовки к экзамену

по дисциплине "Математическое моделирование ХТП" (2014-2015г.)

- 1. Понятие кибернетики
- 2. Основные методы моделирования: физическое, математическое
- 3. Виды моделей (детерминированные, статистические).
- 4. Эмпирический и структурный подходы
- 5. Моделирование кинетики гомогенных химических реакций
- 6. Моделирование кинетики гетерогенных химических реакций. Метод Лэнгмюра
- 7. Метод графов
- 8. Метод стационарных концентраций
- 9. Гидродинамические модели:
 - идеального смешения
 - идеального вытеснения
 - диффузионные
 - ячеечная
- 10. Классификация реакторов
- 11. Математические модели гомогенных изотермических реакторов:

идеального смешения; идеального вытеснения; с учетом продольного и радиального перемешивания; каскада реакторов

12. Математические модели теплообменных аппаратов:

Смешение-смешение, Вытеснение-вытеснение, Смешение-вытеснение

- 13. Математические модели химических реакторов с учетом переноса тепла
- **14.** Моделирование массообменных процессов. Моделирование противоточного адсорбционного аппарата
 - 15. Понятие генеральной совокупности, выборки. Законы распределения случайной величины
 - 16. Математическое ожидание, дисперсия, коэффициент корреляции и их оценки.
- **17.** Пассивный эксперимент. Расчет коэффициентов для случая линейной регрессии. Метод наименьших квадратов
 - 18. Параболическая регрессия.
 - 19. Корреляционный и регрессионный анализы
- **20.** Полный факторный эксперимент. Суть ПФЭ. Интервал варьирования, уровни факторов, основной уровень. Привести пример плана для 3-х факторов
- **21.** Активный эксперимент. Свойства матрицы планирования, расчет коэффициентов регрессии в ПФЭ
- **22.** Статистический анализ уравнения регрессии в ПФЭ (проверка дисперсии на однородность, коэффициентов на значимость, модели на адекватность)
 - 23. Дробный факторный эксперимент
 - 24. Планирование 2-ого порядка:
- центральное ортогональное композиционное планирование; ротатабельное планирование 2-го порядка.
 - 25. Симплексный метод планирования и оптимизации
 - 26. Метод оптимизации Бокса-Уилсона
 - 27. Постановка задачи оптимизации.
 - 28. Задача об оптимальной температуре обратимой химической реакции
 - 29. Оптимизация РИС
 - 30. Методы оптимизации:
 - дихотомии
 - сканирования
 - «золотого сечения»,
 - покоординатного спуска.

2.2. ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ ПО ДИСЦИПЛИНЕ «МОДЕЛИРОВАНИЕ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ»

НАПРАВЛЕНИЕ ПОДГОТОВКИ БАКАЛАВРОВ 240100 «ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»

№ п/п	Результат
РД1.	Освоить методологию построения математических
	моделей ХТП
РД2.	Выполнять обработку и анализ данных, полученных при
	теоретических и экспериментальных исследованиях
РД3.	Самостоятельно выполнять компьютерные расчеты при
	моделировании, проектировании и оптимизации объектов
	химической технологии
РД4.	Применять численные методы и компьютерные технологии
	при решении инженерных задач
РД5.	Освоить методологию анализа результатов моделирования,
	формирования и прогнозирования функционирования
	производственного объекта в реальных условиях

Знать:

- методы построения эмпирических и физико-химических моделей химико-технологических процессов;
 - методы идентификации математических описаний,
 - методы оптимизации химико-технологических процессов

Уметь:

• применять методы вычислительной математики и математической статистики для решения конкретных задач расчета, проектирования, моделирования, идентификации и оптимизации процессов химической технологии

Владеть:

- методами математической статистики для обработки результатов активных и пассивных экспериментов,
- пакетами прикладных программ для моделирования химико-технологических процессов
- В процессе освоения дисциплины у студентов развиваются следующие компетенции:
- находить организационно-управленческие решения в нестандартных ситуациях и готов нести за них ответственность
 - . Профессиональные:
 - способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;

- составлять математические модели типовых профессиональных задач, находить способы их решений и интерпретировать профессиональный (физический) смысл полученного математического результата;
- применять аналитические и численные методы решения поставленных задач, использовать современные информационные технологии, проводить обработку информации с использованием прикладных программ деловой сферы деятельности; использовать сетевые компьютерные технологии и базы данных в своей предметной области, пакеты прикладных программ для расчета технологических параметров оборудования;
- планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, математически моделировать физические и химические процессы и явления, выдвигать гипотезы и устанавливать границы их применения;

Шкала оценивания результатов

- 39 40 Отлично
- 35 38 Очень хорошо
- 31 34 Хорошо
- 27 30 Удовлетворительно
- 22 26 Посредственно
- 17 21 Условно неудовлетворительно
- 0 16 Безусловно неудовлетворительно

Пример экзаменационного билета

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Томский политехнический университет»

Экзаменационный билет

 по дисциплине
 Моделирование XTII

 институт
 ИПР, ИФВТ

 курс
 4

- 1. Дать понятие метода моделирования. Виды моделей. Эмпирический и структурный подходы.(10 баллов)
- 2. Изложить метод оптимизации Бокса-Уилсона (10 баллов).
- 3. **Задача**. На основании экспериментальных данных получить линейное уравнение регрессии (20 баллов):

$$\widehat{\mathbf{y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x}_1.$$

N	X	Y
1	10	7
2	20	10
3	30	12
4	40	14
5	50	20

Составил	_Мойзес О.Е.
Утверждаю: Зав. кафедрой XTT_	Юрьев Е.М.
«»	2014 г.