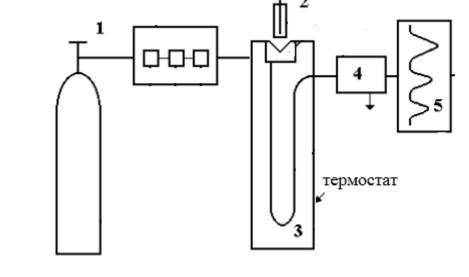
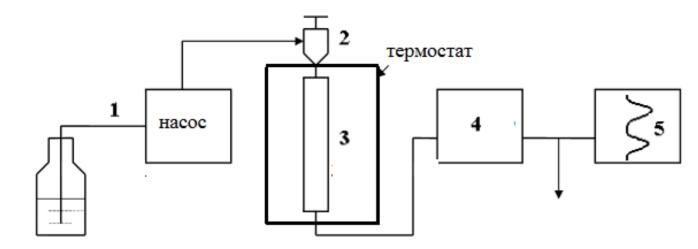
Лекция 6 Хроматографические методы анализа (Часть 2)


Аппаратурное оформление в хроматографии

Аппаратурное оформление


Общие блоки

1г- баллон с сжатым газом и блок подготовки газа - носителя

1ж - растворители и насос с блоком подготовки ПФ

- 2 дозатор введения пробы
- 3 -колонка
- 4 детектор
- 5 регистратор

Газовая хроматография

Жидкостная хроматография

1. ГХ. Система подачи газа-носителя

► Газ должен быть инертным по отношению к разделяемым веществам и сорбенту, взрывобезопасным и достаточно чистым.

Агрон, гелий, водород, азот, диоксид углерода или воздух.

► *Редуктор* - регулятор подачи газа, измеритель расхода газа, фильтр.

1. ЖХ. Система подачи элюента

Емкости для растворителей

Из стекла или нержавеющей стали, объемом 200-5000 мл

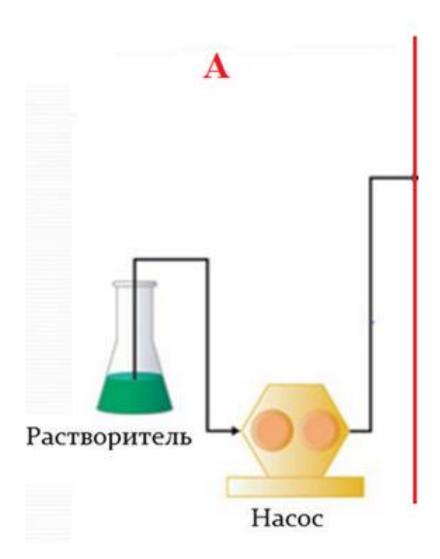
Система фильтрации и дегазации

Пропускание растворителя через фильтр перед заливкой его в емкости или установка на входе насоса фильтра с небольшим сопротивлением

Пропускание гелия убирает 80% воздуха, вакуумная дегазация убирает 60% воздуха

7

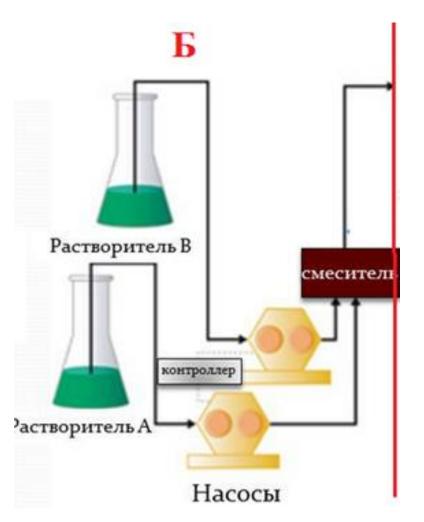
Насосы

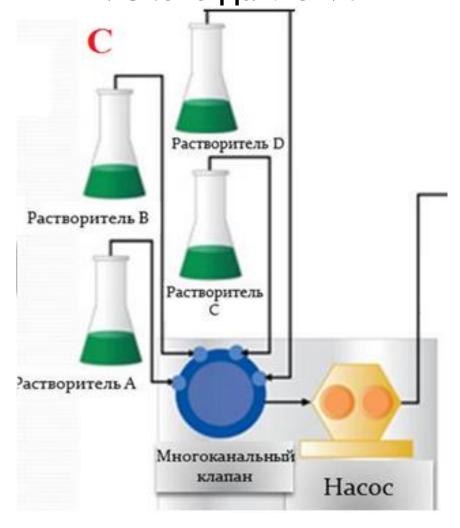

Шприцевые, пневматические, плунжерные возвратно-поступательные

Градиентное устройство
Изократическое элюирование - применение элюента одного состава

Градиентное элюирование - постоянное изменение состава элюента по определенному закону для ускорения анализа и улучшения разделения

Элюирование


Изократическое


Элюирование

Градиентное

высокого давления

низкого давления

Подвижная фаза - растворитель, должен обеспечить различную емкость колонки и эффективное разделение за приемлемое время.

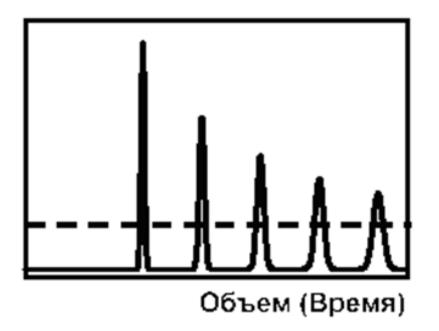
Слабые - слабо адсорбируются неподвижной фазой

Сильные - сильно адсорбируются неподвижной фазой

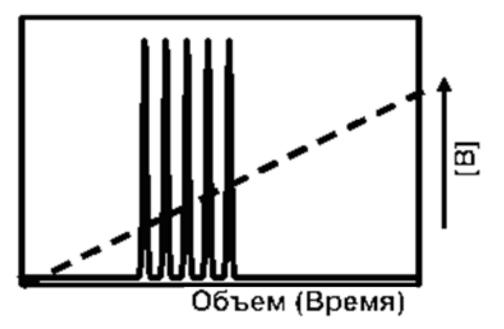
При разделении многокомпонентных смесей одна подвижная фаза в качестве элюента может не разделить все компоненты пробы.

В этом случае применяют метод градиентного элюирования, применяя в процессе хроматографирования последовательно все более сильные элюенты.

 слабый элюент - хорошо разделяет наиболее слабо удерживаемые компоненты пробы, а более прочно сорбированные вещества будут выходить из колонки слишком поздно в виде сильно размытых пиков или вообще останутся в колонке


 сильный элюент - хорошо разделяет прочно сорбирующиеся компоненты, но плохо удерживаемые вещества выйдут слишком рано, а первые из них - могут и не поделиться друг от друга

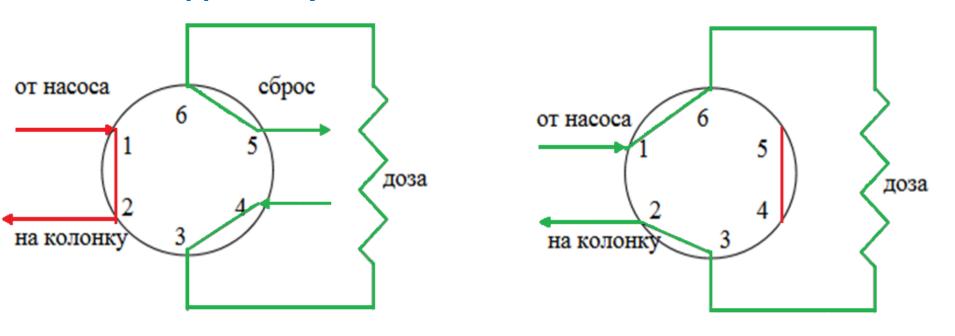
Градиентное элюирование


▶ В начале разделения используется слабый элюент (А), как только из колонки вышли наиболее слабо сорбирующиеся компоненты, концентрацию в элюенте компонента с большой элюирующей силой (В) начинают плавно повышать

 К концу разделения, она достигает некоторого максимального значения, достаточного, чтобы быстро вымыть из колонки наиболее прочно удерживаемые вещества.

Изократическое

Градиентное

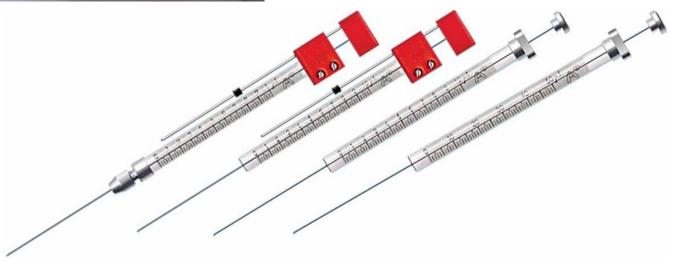


2. Дозатор - система ввода пробы

- медицинский шприц,
- микрошприц,
- петля-дозатор,
- инжектор,
- автосамплер

Испаритель (ГХ) - предназначен для быстрого испарения жидкой или твердой пробы, снабжен нагревателем (поддерживает t на 50 С выше, чем в колонке)

Петля-дозатор


Под высоким давлением находятся входы 1,2 и канал между ними.

Входы 3-6, каналы между ними и дозирующая петля находятся под атмосферным давлением, что позволяет заполнить петлю с помощью шприца или насоса. При повороте дозатора поток подвижной фазы вытесняет пробу в колонку.

Инжектор

Шприцы

Автосамплер

3.Хроматографическая колонка

- прямые, спиралевидные
- насадочные, капиллярные
- металлические, пластиковые, стеклянные (кварцевые, боросиликатные)

4. Детектор

Устройство для получения аналитического сигнала, пропорционального концентрации компонента

- Универсальный, селективный, специфический
- Деструктивный, недеструктивный по отношению к пробе

Способы детектирования:

Прямое - проводят по увеличению сигнала детектора при прохождении через него зоны определяемого вещества, при этом сигнал элюента должен быть минимальным

▶ Непрямое - сигнал элюента должен быть постоянным и намного большим, чем определяемых веществ, который ослабевает при прохождении через детектор разделенных веществ ²³

 Послеколоночная реакция - проводят для повышения чувствительности и селективности.

В элюат, прошедший через колонку вводят специальный реагент (спектрофотометрический), в результате химической модификации определяемых веществ образуются окрашенные или флуоресцирующие производные.

В газовых хроматографах

- > по теплопроводности (катарометр),
- пламенно-ионизационный,
- > электронного захвата,
- > фотоионизационный,
- термохимический, термоионный,
- пламенно-фотометрический,
- > пульсирующий атомно-эмиссионный,
- масс-спектрометрический и др.

A) Детектор по теплопроводности (катарометр)

Измеряют сопротивление нагретой вольфрамовой нити, которое зависит от теплопроводности омывающего газа. Больше теплопроводность газа - носителя (H2, He).

Количество теплоты, отводимое от нагретой нити при постоянных условиях, зависит от состава газа.

Достоинства: простота, точность и надежность в работе.

Недостатки: невысокая чувствительность

Б) Пламенно-ионизационный детектор

Измеряют электрическую проводимость пламени водородной горелки.

Чистое водородное пламя обладает очень низкой электрической проводимостью. Органические соединения сгорают в пламени водорода под действием кислорода до органических ионов. Когда в него попадают образующиеся ионы, проводимость пламени резковозрастает.

Недостатки: применим только для анализа органических веществ, взрывоопасен, разрушает пробу

В жидкостных хроматографах

- спектрофотометрический на диодной матрице,
- > рефрактометр,
- > флуоресцентный,
- > кондуктометрический,
- > амперометрический,
- масс-спектрометрический,
- ИК-спектрометрический и др.

В) Дифференциальный рефрактометр

Определяют общий показатель преломления системы проба - элюент, сигнал дают все компоненты, показатель преломления которых отличается от показателя преломления элюента.

Чувствительность детектора - 10^{-6 г.}

Г) УФ-детектор

Длина волны - наиболее интенсивная линия ртутной лампы низкого давления 253.7 нм.

Молярные коэффициенты светопоглощения компонентов высоки, а элюент не поглощает в ультрафиолетовой области спектра.

Чувствительность 10^{-9 г.}

5. Регистратор

ПК

Особенности газовой хроматографии

Неподвижные фазы в ГТХ

Высокодисперсные искусственные или природные тела с большой поверхностью, поглощающие газы или пары.

Требования:

- селективность
- отсутствие каталитической активности
- механическая прочность
- стабильность при повышенных температурах
- •однородность пор и размер зерен

Неподвижные фазы в ГЖХ

Твердый носитель

Практически инертное твердое вещество, на которое наносят неподвижную жидкость.

Требования:

- удерживать жидкую фазу на своей поверхности в виде однородной пленки
- •как и для ГТХ

Неподвижные фазы в ГЖХ

Жидкая фаза

Практически нелетучая при температуре колонки жидкость, нанесенная на твердый носитель. Составляет 5 - 30 % от массы твердого носителя.

Жидкая фаза

- •Нижний температурный предел Рабочая температура колонки выше точки застывания жидкой фазы на 10 15°С.
- •Верхний температурный предел Рабочая температура колонки ниже точки кипения жидкой фазы на 20 30°С.

Жидкая фаза

Требования:

- •способность хорошо растворять компоненты смеси
- •инертность по отношению к компонентам смеси и твердому носителю
- •малая летучесть
- •термическая устойчивость
- •высокая селективность
- •небольшая вязкость
- •способность образовывать равномерную пленку

Особенности жидкостной хроматографии

Применим для разделения более широкого круга веществ, чем метод ГХ, тк большинство веществ не обладает летучестью, многие из них неустойчивы при высоких температурах.

Жидкая подвижная фаза, в отличие от газа в ГХ, выполняющего только транспортную функцию, является активным элюентом.

Молекулы жидкой фазы сорбируются на поверхности неподвижной фазы. При прохождении через колонку молекулы определяемого компонента вытесняют молекулы элюента с поверхности сорбента.

Применяя различные элюенты, можно изменять параметры удерживания и селективность хроматографической системы.

Классический вариант ЖХ

- размер частиц сорбента >100 мкм
- скорость прохождения элюента под действием силы тяжести мала
- продолжительность анализа высока

ВЭЖХ

- размер частиц сорбента до 5-10 мкм
- нагнетательные насосы
- чувствительные детекторы
- разделение и определение молекул, ионов, разделение макромолекул и биологически активных молекул

Нормально-фазовая хроматография (НФХ)

 неполярная подвижная фаза и полярная неподвижная фаза (адсорбент, жидкость)

Обращенно-фазовая хроматография (ОФХ)

 полярная подвижная фаза и неполярная неподвижная фаза (адсорбент, жидкость)

Требования к подвижной фазе

- растворять анализируемую пробу
- обладать малой вязкостью
- возможность выделения разделенных компонентов
- инертная по отношению к материалам всех частей хроматографа
- безопасная
- дешевая

Требования к неподвижной фазе

как и для ГЖХ

Тонкослойная хроматография

Основана на различии в скорости перемещения компонентов смеси в плоском тонком слое сорбента при их движении в потоке подвижной фазы.

Разделение происходит по:

- адсорбционному,
- распределительному
- ионообменному механизму,
- их комбинации

Подложка + Сорбент

- стекло
- пластмасса
- алюминий

- силикагель
- целлюлоза
- оксид алюминия

43

Этапы:

- подготовка образца
- подготовка пластин
- подготовка камеры
- нанесение образца
- элюирование веществ
- удаление элюата с пластины
- идентификация компонентов
- количественное содержание

Нанесение образца

- концентрации растворов около 1%
- микрошприц и отградуированный капилляр
- 1-2 см от нижнего края пластинки
- 2 см между наносимыми пятнами
- 4 мм размер наносимого пятна
- разделенные пятна не должны иметь большие размеры, чем пятно на старте

Появление "хвостов", неправильная форма разделенных пятен:

- высокая концентрация
- неправильно подобранная хроматографическая система
- химическое взаимодействие разделяемых компонентов

Элюирование образца

восходящее

нисходящее

радиальное

Восходящее

фронт подвижной фазы поднимается по пластинке снизу вверх под действием капиллярных сил

Нисходящее

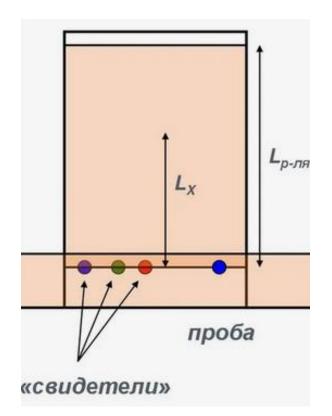
фронт подвижной фазы опускается по пластинке, в основном под действием сил тяжести

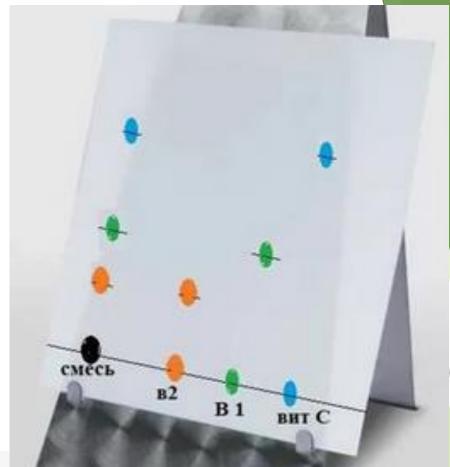
В верхней части хроматографической камеры крепится кювета с хроматографической системой, из которой с помощью фитиля на хроматографическую пластинку поступает растворитель, который стекает

Радиальное

нанесение исследуемого вещества в центр пластинки и туда же подаётся система, которая движется от центра к краю пластинки

Идентификация


- визуальные методы и определение R_f разделенных веществ
- цветные реакции
- сравнение со свидетелями
- физико-химические методы идентификации


 R_f - подвижность относительной скоростью перемещения компонентов в тонком слое.

Является аналогией времени удерживания

Зависит от

- свойств разделяемых веществ,
- состава подвижной фазы и сорбента
- физических параметров

$$R_f = \frac{l_X}{l_{p-ns}}$$

R_f – подвижность, является качественной характеристикой вещества

Количественный анализ

Градуировочный график

- площадь пятна
- прямое спектрофотометрирование (отражение или поглощение)

Механическое удаление или вымывание растворителем и определение СФ, ААС, флуориметрией