Лабораторная работа № 5.

Определение железа (II) методом перманганатометрии

Цель работы. Определить содержание железа (II) в растворе соли Мора. Провести обработку результатов анализа методом математической статистики.

Теоретическая часть

Метод перманганатометрии основан на реакциях окисления восстановителей ионом перманганата. Окисление может проводиться как в кислой, так и в щелочной или нейтральной средах.

При окислении в кислой среде восстановление ${\rm MnO_4^-}$ до ${\rm Mn^{2+}}$ протекает следующим образом:

$$MnO_4^- + 8H^+ + 5e = Mn^{2+} + 4H_2O$$

При окислении в слабощелочной или нейтральной среде MnO_4^- восстанавливается до MnO_2 , выпадающего в осадок бурого цвета:

$$MnO_4^- + 2H_2O + 3e = MnO_2 \downarrow + 4OH^-$$

Стандартный окислительно-восстановительный потенциал пары $MnO_4^- + 8H^+ / Mn^{2+} + 4H_2O$ (+1,51)B) E° гораздо выше, чем пары $MnO_4^- + 2H_2O/MnO_2 + 4OH^-$ (+0,59 B). Следовательно, окислительная способность перманганата в кислой среде выше, чем в слабощелочной (нейтральной).

В то время как при титровании в кислой среде образуются бесцветные ионы Mn^{2+} , в слабощелочной или нейтральной среде выпадает темно-бурый осадок, затрудняющий фиксирование точки эквивалентности по окраске небольшого избытка перманганата. Малиново-фиолетовая окраска MnO_4^- исчезает в результате восстановления этого иона до бесцветного Mn^{2+} . Когда же весь восстановитель оттитрован, одна лишняя капля перманганата окрашивает раствор в розовый цвет.

Рабочий раствор $KMnO_4$ не является первичным стандартом вследствие его восстановления. Обычно берут приблизительную навеску $KMnO_4$ и приготовленный раствор стандартизируют.

Для стандартизации раствора перманганата калия применяют $H_2C_2O_4$ $^{\circ}$ $2H_2O$, $(NH_4)_2C_2O_4$ $^{\circ}$ H_2O , $Na_2C_2O_4$, As_2O_3 , $K_4[Fe(CN)_6]$, металлическое железо и некоторые другие вещества. Наиболее удобны как установочные вещества щавелевая кислота и ее соли, т. к. они могут быть легко очищены от примесей перекристаллизацией из водных растворов.

Соль Мора — двойная соль сульфата железа (II) и сульфата аммония, $(NH_4)_2 Fe(SO_4)_2 \cdot 6H_2O$. При титровании раствора соли Мора перманганатом протекает реакция:

$$2KMnO_4 + 10 FeSO_4 + 8H_2SO_4 = 2MnSO_4 + 5Fe_2(SO_4)_3 + K_2SO_4 + 8H_2O_4 + 6H_2O_4 + 6H_2O$$

Титрование проводят в сернокислой среде, т.к. в присутствии соляной кислоты происходит реакция между MnO_4^- и Cl^- :

$$2MnO_4^- + 10 Cl^- + 16H^+ = 2Mn^{2+} + 5Cl_2 \uparrow + 8H_2O$$

Это вызывает повышенный расход раствора $KMnO_4$ и результат анализа становится неправильным.

Следует отметить, что ${\rm Mn}^{2+}$ -ионы играют роль автокатализатора, поэтому в близи точки эквивалентности титрование проводят по каплям. Первые капли ${\rm KMnO_4}$ обесцвечиваются медленно, но как только образуется немного ${\rm Mn}^{2+}$, дальнейшее обесцвечивание ${\rm KMnO_4}$ происходит быстро. Нужно уловить момент, когда одна лишняя капля ${\rm KMnO_4}$ окрасит титруемый раствор в бледнорозовый цвет, не исчезающий в течение 30 с.

Выполнение работы:

Посуда:

- бюретка для титрования объемом 25 мл;
- пипетка Мора объемом 10 мл;
- пипетка Пастера (капельная пипетка);
- мерная колба объемом 100 мл;
- колба Эрленмейера (коническая колба для титрования);
- мерный цилиндр.

Реактивы:

- стандартный раствор $KMnO_4$ (0,0500 моль-экв/л);
- контрольный раствор соли Мора ((NH₄)₂ Fe(SO₄)₂);
- раствор 2н H₂SO₄;
- дистиллированная вода.

1. Подготовить бюретку к работе.

Бюретку промывают дистиллированной водой, а затем ополаскивают 2 раза небольшим количеством стандартного раствора $KMnO_4$. Наполняют бюретку раствором $KMnO_4$, удаляют пузырьки воздуха и устанавливают уровень жидкости на нуле по *верхнему* краю мениска.

2. Приготовить контрольный раствор.

Доводят объем контрольного раствора в мерной колбе на 100,0 мл дистиллированной водой до метки. В чистую коническую колбу переносят пипеткой 10,0 мл соли Мора, предварительно ополоснув пипетку этим же раствором.

3. Титрование контрольного раствора соли акммония.

В коническую колбу с разбавленным раствором *соли Мора* добавляют мерным цилиндром $10 \, \text{мл} \, 2 \, \text{н} \, H_2 \text{SO}_4$. После чего титруют ее

стандартизованным раствором KMnO₄ до появления устойчивой в течение 30 с бледно-розовой окраски от одной лишней капли перманганата.

- 4. Титрование повторяют до получения 4-х сходимых результатов.
- **5.** Рассчитывают объем раствора КМnO₄, пошедший на титрование (V, мл), и массу (m, Γ).
 - 6. При написании вывода по лабораторной работе необходимо отразить:
 - какой метод титриметрического анализа изучили;
 - какой прием и способ выполнения титрования использовали;
 - в какой среде проводили титрование и почему;
 - как определяли конечную точку титрования и почему.

Исходные данные	Расчеты
$M_{ m S}({ m Fe}^{2+}) = = 55,85\ { m г/}$ моль экв $V_{ m a}({ m FeSO}_4) = 10,0\ { m мл}$ $V_{ m K} = 100,0{ m мл}$	$m(Fe^{2+}) = \frac{(V \cdot C_H)_{KMnO_4} \cdot M_{\Im}(Fe^{2+})}{1000} \cdot \frac{V_K}{V_a} (\Gamma)$
$C_{H}(KMnO_{4}) =$ $V_{1}(KMnO_{4}) =$ $V_{2}(KMnO_{4}) =$ $V_{3}(KMnO_{4}) =$ $V_{4}(KMnO_{4}) =$	$\overline{m}(\text{Fe}^{2+}) = \frac{m_1 + m_2 + m_3 + m_4}{4} (\Gamma)$

Обработка результатов анализа методом математической статистики

№	m _.	— m	— m - m. i	$(m - m_i)^2$	
1 2 3 4					$S_{\overline{m}} = \sqrt{\frac{\sum (\overline{m} \cdot m_{\underline{i}})^2}{n(n-1)}}$
Σ					$\varepsilon = t_{0.95} \cdot S_{\overline{m}}$ $- (m \pm \varepsilon), \Gamma$

Вывод:

Вопросы к лабораторной работе:

1. Что такое реакция окисления-восстановления, в чем сущность метода редоксиметрии?

- 2. Что такое стандартный электродный потенциал? Что характеризует величина и знак стандартного окислительно-восстановительного потенциала?
- 3. Какое уравнение связывает величину равновесного потенциала с активностью реагирующих веществ в окислительно-восстановительной реакции?
- 4. Как определить направление реакции окисления восстановления и полноту ее протекания?
- 5. Назовите способы фиксирования точки эквивалентности в методе редоксиметрии.
- 6. В чем сущность метода перманганатометрии, какое вещество используется в качестве титранта?
- 7. Какие вещества можно определять методом перманганатометрии?
- 8. В какой среде проводят перманганатометрические определения? Какую кислоту используют для создания среды в перманганатометрии?
- 9. Какие свойства проявляет перманганат калия в реакции с солью Мора?
- 10. Чему равен фактор эквивалентности перманганата калия при титровании в кислой среде? Какой фактор эквивалентности у соли Мора при титровании перманганатом калия?
- 11.Почему раствор перманганата калия подлежит стандартизации? Какие вещества являются установочными для перманганата калия?
- 12.Почему при стандартизации перманганата калия щавелевой кислотой необходимо нагревание?
- 13. Какую роль играют ионы Mn(II), образующиеся при перманганатометрическом титровании?
- 14. Как определяют конечную точку титрования в перманганатометрии? Чем обусловлено изменение окраски в конце перманганатометрического титрования?
- 15. Зачем проводят статистическую обработку результатов?