ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального

образования

«ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УДК 621. 313

Расчетно-графические работы по теоретическим основам электротехники. Часть 2. Методические указания по самостоятельной работе для студентов ЭЛТИ. – Томск: Изд-во ТПУ, 2008. – 76 с.

Утверждаю Зам.директора ЭЛТИ по МР А.Н. Дудкин

"" 200 г.

Составители:	доц., канд. техн. наук
	доц., канд. техн. наук
	ст.пр.

Г.В. Носов В.А. Колчанова Е.О. Кулешова

Рецензент: профессор, доктор технических наук

Ю.П. Усов

Расчетно-графические работы

по теоретическим основам электротехники

Часть 2 Методические указания по самостоятельной работе для студентов ЭЛТИ

> Методические указания рассмотрены и рекомендованы к изданию методическим семинаром кафедры теоретической и общей электротехники "5" октября 2007 г.

Зав. кафедрой доц., к. т. н.

Г.В.Носов

Одобрено учебно-методической комиссией ЭЛТИ. Председатель учебно-методической комиссии

В.И. Готман

Томск - 2008

Требования к оформлению расчетно-графических работ

Расчетно-графические работы представляют собой один из основных видов занятий по курсу "Теоретические основы электротехники". Его цель закрепление навыков в использовании методов расчета цепей, навыков краткого изложения сущности рассматриваемых явлений в электрических цепях, а также умения краткого анализа полученных результатов.

К представленному на проверку отчету по расчетнографической работе, выполненному на бумаге формата А4, предъявляются следующие требования:

- 1. На второй странице (после титульного листа, образец которого прилагается) записывается условие задания, затем схема и табличные данные, соответствующие варианту работы. Записи выполняются на одной стороне листа.
- 2. Основные этапы решения должны быть достаточно подробно пояснены.
- Рисунки, графики, схемы должны быть выполнены аккуратно по линейке в удобно читаемом масштабе. Каждая кривая и рисунки должны быть подписаны, страницы пронумерованы.
- Записывать численные результаты искомых величин нужно, как правило, после округления с четырьмя значащими цифрами. Допускается и с тремя, если первая цифра не 1 или 2. Например, 89,3; 0,01145; 89300.
- 5. Задание должно быть датировано и подписано студентом.
- 6. Незачтенное задание должно быть исправлено и сдано на повторную проверку вместе с первоначальным вариантом и замечаниями преподавателя. Если неправильно выполнена не вся работа, а только часть ее, то после переработки исправленный текст нужно написать вблизи первоначального текста, указав, что это исправление ошибок.
- 7. **Расчетно-графическая работа засчитывается после защиты**, если оно удовлетворяет всем перечисленным требованиям, решение не содержит принципиальных ошибок, а при исправлении выполнены все указания преподавателя.

Дополнительные требования:

- 1. Все буквенные символы необходимо пояснять словами или обозначать на схемах. Числовому решению должно предшествовать буквенное решение или формула.
- 2. Не следует менять однажды принятые направления токов, наименования узлов, сопротивлений и т.д. В разных методах одну и ту

же величину следует обозначать одним и тем же символом. Конечные результаты необходимо четко выделять.

3. Масштаб кривых и диаграмм выбирать таким образом, чтобы в одном сантиметре укладывалось целое число единиц физической величины. Градуировку осей выполнять, начиная с нуля, равномерно через один или два сантиметра, указывая численные значения величин слева от вертикальной оси и под горизонтальной осью. Обозначения величин и их единицы измерения указывать обязательно. Для векторных диаграмм оси не градуируются, масштаб указывается в правом верхнем углу, например, ти = 10 В/см.

ОБРАЗЕЦ ТИТУЛЬНОГО ЛИСТА

ЗАДАНИЕ № 4

Расчет переходных процессов в линейных электрических иепях

I. Для заданной схемы при коммутации ключа K_1 в момент времени t=0, когда ключ K_2 еще не сработал, выполнить следующее.

1. При постоянном источнике ЭДС e(t)=E или тока J(t)=J определить ток i(t) или напряжение $u_t(t)$:

а) классическим методом;

б) операторным методом;

в) построить график зависимости тока i(t) или напряжения $u_{I}(t)$.

2. При гармоническом источнике ЭДС $e(t) = \sqrt{2}E\sin(\omega t + \alpha)$ или

тока $J(t) = \sqrt{2}J \sin(\omega t + \alpha)$ определить ток *i*(*t*) или напряжение $u_{I}(t)$:

а) классическим методом:

б) комбинированным (операторно-классическим) методом;

в) на интервале времени $0 \le t \le \frac{2\pi}{\omega}$ построить график зависимости тока i(t) или напряжения $u_{t}(t)$.

 $e(t) = Ee^{2pt}$ 3. При импульсном источнике ЭДС или тока $J(t) = Je^{2pt}$ и нулевых начальных условиях определить интегралом Дюамеля ток i(t) или напряжение $u_t(t)$, построить их график зависи-

мости (*p*-корень характеристического уравнения из п.1,а).

II. Для заданной схемы с постоянным источником ЭДС e(t) = E или тока J(t)=J при коммутации ключа K_2 в момент времени t=0, когда ключ K_1 давно уже сработал, определить ток i(t) или напряжение $u_1(t)$:

а) классическим методом;

б) операторным методом;

в) методом переменных состояния;

г) построить график зависимости тока *i(t)* или напряжения $u_{I}(t)$.

Ш. Проанализировать методы расчета, результаты вычислений, графики зависимостей и сформулировать выводы по работе.

Примечание:

объем задания уточняет лектор; 1-ая цифра номера задания – номер строки в таблице 1;

2-ая цифра номера задания – номер строки в таблице 2; 3-ья цифра номера задания – номер схемы.

		Табли	ца 1
N⁰	E	J	α
-	В	Α	град
1	300	5.5	90
2	280	5	60
3	260	4.5	45
4	240	4	30
5	220	3.5	0
6	200	3	-30
7	175	2.5	-45
8	150	2	-60
9	125	1.5	-90
0	100	1	-120

		Т	аблица	2
№	ω	R	L	С
-	1/c	Ом	Гн	мκΦ
1	100	100	2	200
2	150	90	1.2	150
3	200	80	0.8	125
4	250	75	0.6	107
5	300	60	0.4	111
6	400	50	0.25	100
7	500	40	0.16	100
8	600	30	0.1	111
9	800	24	0.06	104
0	1000	10	0.02	200

ЗАДАНИЕ № 5

Расчет установившегося режима в нелинейных электрических цепях

Для заданной схемы с источником гармонической ЭДС $e(t) = \sqrt{2}E\sin(314t + \alpha)$ или тока $J(t) = \sqrt{2}J\sin(314t + \alpha)$ и нелинейным индуктивным элементом (НИЭ), изготовленным в виде последовательно соединенных катушек на общем ферромагнитном сердечнике, без учета рассеяния магнитных потоков и потерь энергии в сердечнике и катушках при заданной основной кривой намагничивания ферромагнитного материала сердечника

В, Тл	0	0,6	1	1,2	1,6	2	2,2	2,3	2,5
Н, А/м	0	250	500	1000	2000	6000	12000	30000	200000

выполнить следующее.

1. Относительно зажимов а и b НИЭ определить комплексное сопротивление эквивалентного генератора $\underline{z}_{\Gamma} = z_{\Gamma} e^{j\varphi_{\Gamma}}$, а также комплексы действующих значений ЭДС $\underline{U}_{XX} = \underline{E}_{\Gamma} = E_{\Gamma} e^{j\alpha_{\Gamma}}$ и тока $\underline{I}_{K3} = \underline{J}_{\Gamma} = J_{\Gamma} e^{j\beta_{\Gamma}}$ этого генератора.

2. Для двух мгновенных значений тока i_L НИЭ, равных $\sqrt{2}J_{\Gamma}/2$ и $\sqrt{2}J_{\Gamma}$, из расчета магнитной цепи определить величины потокосцепления

$$\psi = w_1 \Phi_1 + w_2 \Phi_2 + w_3 \Phi_3$$
, B6.

3. По результатам п.2 построить веберамперную характеристику $\psi(i_L)$ НИЭ, которую заменить зависимостью $i_L(\psi) = k_1 \psi + k_3 \psi^3$ и рассчитать коэффициенты k_1 и k_3 .

4. При приближенной гармонической зависимости для напряжения НИЭ $u_L(t) = \sqrt{2}U_L \cos(314t + \beta)$ для его четырех действующих значений U_L ($0 < U_L < E_{\Gamma}$) по зависимости $i_L(\Psi)$ п.З рассчитать соответствующие действующие значения гармоник тока НИЭ I_1 и I_3 , его действующее значение I_L и коэффициент гармоник k_{Γ} , причем брать такие U_L , чтобы $0 < I_L < J_{\Gamma}$.

5. По результатам п.4 построить вольтамперную характеристику для действующих значений НИЭ $U_L(I_L)$, на основании которой при

 $\varphi_L(I_L)=90^\circ$ для одноконтурной схемы с <u>*E*</u>_Г, <u>*z*</u>_Г и НИЭ найти комплексы действующих значений эквивалентных синусоид <u>*U*</u>_{*L*} и <u>*I*</u>_{*L*} напряжения и тока НИЭ, построить векторную диаграмму.

6. По току \underline{I}_L из п.5 и \underline{E}_{Γ} определить потребляемую активную мощность P, а по напряжению \underline{U}_L из п.5 и зависимости $i_L(\Psi)$ из п.3 для тока НИЭ

 $i_L(t) = \sqrt{2}I_1 \sin(314t + \beta) + \sqrt{2}I_3 \sin(942t + 3\beta)$

определить I_1 , I_3 и β , а также уточнить его действующее значение I_L и коэффициент гармоник k_{Γ} .

7. Проанализировать полученные результаты и сформулировать выводы по работе.

Примечание:

1-ая цифра номера задания – номер строки в таблице 1;

2-ая цифра номера задания – номер строки в таблице 2;

3-ья цифра номера задания – номер схемы.

					таолица 1
N⁰	E	J	α	R	С
-	В	А	град	Ом	мкФ
1	100	1	-30	10	318.47
2	110	1.1	-45	11	289.52
3	120	1.2	-60	12	265.39
4	130	1.3	-90	13	244.98
5	140	1.4	120	14	227.48
6	150	1.5	90	15	212.31
7	160	1.6	45	16	199.04
8	170	1.7	60	17	187.34
9	180	1.8	30	18	176.93
0	190	1.9	0	19	167.62

										Ta	блица	n 2
№	<i>w</i> ₁	<i>w</i> ₂	<i>w</i> ₃	S ₁	S ₂	<i>S</i> ₃	l_1	l_2	l_3	δ_{i}	δ_2	δ_3
-	ВИТ	ВИТ	ВИТ	см ²	см ²	см ²	см	см	см	ММ	MM	ММ
1	1000	500	0	2	1	1	20	10	20	1	0	0
2	1000	0	1000	2	1	1	20	10	20	1	0	0
3	0	1000	500	2	1	1	20	10	20	1	0	0
4	500	1000	0	1	2	1	30	15	30	0	1	0
5	1000	0	1000	1	2	1	30	15	30	0	1	0
6	0	500	1000	1	2	1	30	15	30	0	1	0
7	1000	500	0	1	1	2	30	10	30	0	0	1
8	0	500	1000	1	1	2	30	10	30	0	0	1
9	1000	0	1000	1	1	2	30	10	30	0	0	1
0	500	0	500	1	2	1	45	15	45	0	1	0

Нелинейный индуктивный элемент (НИЭ)

ЗАДАНИЕ № 6

Расчет длинных линий в установившемся и переходном режимах

Для одной фазы линии электропередачи длиной *l*=1500 км и удельными параметрами из табл.2 выполнить следующее.

1. В установившемся режиме при заданном фазном напряжении в конце линии

$$u_2(t) = \sqrt{2U_2}\sin(314t + \Psi_{U_2})$$

a) определить волновое сопротивление Z_B , постоянную $\gamma = \alpha + j\beta$, фазовую скорость V, длину волны λ , комплексы

действующих значений токов <u>I</u>₁ и <u>I</u>₂, напряжения <u>U</u>₁ = U₁ $e^{j\Psi_{U_1}}$, а также активные мощности в начале линии P₁ и конце линии P₂, эффективность передачи энергии по линии (К.П.Д.) $\eta = P_2/P_1$;

б) изменяя координату x от 0 до l рассчитать распределение вдоль линии действующих значений напряжения U(x) и тока I(x), а также активной мощности P(x);

в) по результатам расчетов построить совмещенные графики зависимостей для действующих значений U(x) и I(x), а также активной мощности P(x).

2. В переходном режиме при подключении линии без потерь ($R_0 \approx 0$; $G_0 \approx 0$) к источнику постоянного напряжения $U_0 = \sqrt{2}U_1 |\sin \Psi_{U_1}|$

рассчитать и построить совмещенные графики зависимостей распределения вдоль линии волн тока $i(x, t_0)$ и напряжения $u(x, t_0)$, соответст-

вующих моменту времени $t_0 = \frac{3l}{2V}$ после подключения источника, ко-

гда отраженные от конца линии волны напряжения и тока достигли середины линии.

3. Проанализировать полученные результаты, графики зависимостей и сформулировать выводы по работе.

Примечание:

1-ая цифра номера задания – номер строки в таблице 1;

2-ая цифра номера задания – номер строки в таблице 2;

3-ья цифра номера задания – номер схемы нагрузки линии.

_	Таблица 1									Таблиг	1a 2
№	U_2	ψ_{U_2}	R	L	С		№	R_0	L_0	G_0	C_0
-	κВ	град	Ом	Гн	мкФ		-	Ом/км	Гн/км	См/км	Ф/км
1	500	90	1000	3.18	3.18		1	0.01	1.10-3	1.5.10-6	$1.11 \cdot 10^{-8}$
2	450	60	900	2.86	3.53		2	0.02	$1.1 \cdot 10^{-3}$	1.3·10 ⁻⁶	$1.01 \cdot 10^{-8}$
3	400	45	800	2.54	3.98		3	0.04	$1.2 \cdot 10^{-3}$	$1.1 \cdot 10^{-6}$	0.93·10 ⁻⁸
4	350	30	700	2.22	4.54		4	0.05	1.3·10 ⁻³	1.10-6	$0.86 \cdot 10^{-8}$
5	300	0	600	1.91	5.30		5	0.06	$1.4 \cdot 10^{-3}$	0.8.10-6	0.8.10-8
6	250	-30	500	1.59	6.36		6	0.07	1.5·10 ⁻³	0.6.10-6	$0.74 \cdot 10^{-8}$
7	200	-45	400	1.27	7.96		7	0.08	1.6.10-3	0.5.10-6	0.7.10-8
8	150	-60	300	0.95	10.61		8	0.09	$1.7 \cdot 10^{-3}$	0.3.10-6	$0.66 \cdot 10^{-8}$
9	100	-90	200	0.63	15.92		9	0.1	1.8·10 ⁻³	0.1.10-6	$0.62 \cdot 10^{-8}$
0	50	-120	100	0.32	31.84		0	0.11	1.9·10 ⁻³	$0.05 \cdot 10^{-6}$	$0.59 \cdot 10^{-8}$

Схема нагрузки линии к заданию 6

<u>Пример 1.</u> Методические указания к заданию №4 «Расчет переход-

ных процессов в линейных электрических цепях»

- При постоянном источнике тока J(t) = J после срабатывания ключа K₁, когда ключ K₂ ещё не сработал, определяем напряжение u_J(t).
 Используем упрошённый классический метод, когда дифферен-
- $u_{J}(t)$ не составляется.
 - 1.1.1. Определяем независимые начальные условия (ННУ) при $t = 0-: u_C(0-) = ?$ (схема до коммутации установившийся режим, постоянный источник, С разрыв, L закоротка).

Т.к. $i_C(0-) = 0$,

то по 2 закону Кирхгофа (Рис. 1.2): $-u_C(0-) - R \cdot i_C(0-) = 0$, $\Rightarrow u_C(0-) = 0$.

Для построения графика $u_{I}(t)$ определим $u_{I}(0-) = RJ = 200$ В.

1.1.2. Определяем ЗНУ при $t = 0+: u_J(0+) = ?$ (схема после коммутации ключа K_1). Используем метод узловых потенциалов.

Имеем $E_C = u_C(0-) = u_C(0+) - 2$ закон коммутации. Используя метод узловых потенциалов:

$$\varphi_b = 0, \qquad \varphi_a \left(\frac{1}{R} + \frac{1}{R}\right) = J + \frac{E_C}{R};$$

тогда $\varphi_a = 100$ В и $u_J(0+) = J \cdot R + \varphi_a = 300$ В.

1.1.3. Определяем принуждённую составляющую при $t = \infty$: $u_{Jnp}(t) = ?$ (Схема после коммутации ключа K_1 ,

установившейся режим, постоянный источник, *С* – разрыв, *L* – закоротка).

1.1.4. Определяем корень характеристического уравнения: *p* = ? . Используем метод сопротивления цепи после

коммутации (
$$C \rightarrow \frac{1}{Cp}$$
; $L \rightarrow Lp$), причём $R_J = \infty$, а $R_E = 0$.

- 1.1.5. Определяем постоянную интегрирования: B = ? $B = u_J (0+) - u_{Jnp} = 300 - 400 = -100$ В.
- 1.1.6. Окончательный результат.

$$u_J(t) = u_{Jnp} + Be^{pt} = 400 - 100e^{-50t}$$
 В.
Где $\tau = \frac{1}{|p|} = \frac{1}{|-50|} = 0.02$ с – постоянная времени.

Рассчитываем третью строку таблицы для построения графика:

t	0	τ	2τ	3τ	4τ	5τ
_ <u>t</u>						
$e^{- au}$	1	0,368	0,135	0,05	0,018	0,007
$u_J(t), \mathbf{B}$	300	363	386	395	398	399

1.2. Используем операторный метод.

1.2.1. Находим независимые начальные условия (п. 1.1.1):

 $u_C(0-) = u_C(0) = 0.$

1.2.2. В операторной схеме после коммутации используем метод контурных токов:

$$I_{11}(p) = \frac{J}{p};$$

$$I_{22}(p) \left(2R + \frac{1}{Cp}\right) - I_{11}(p)R = -\frac{u_C(0)}{p};$$

$$\begin{split} I_{22}(p) &= \frac{I_{11}(p)R - \frac{u_C(0)}{p}}{2R + \frac{1}{Cp}} = \frac{JRC - u_C(0)C}{1 + 2RCp};\\ I_R(p) &= I_{11}(p) - I_{22}(p) = \\ &= \frac{J}{p} - \frac{JRC - u_C(0)C}{1 + 2RCp} = \frac{J + J2RCp - JRCp + u_C(0)Cp}{p(1 + 2RCp)} = \\ &= \frac{J + JRCp + u_C(0)Cp}{p(1 + 2RCp)}; \end{split}$$

По 2 закону Кирхгофа в операторной форме определяем операторное изображение искомого напряжения

$$\begin{split} U_J(p) &= \frac{J}{p} R + I_R(p) R = \frac{JR}{p} + \frac{JR + JR^2 Cp + u_C(0)RCp}{p(1+2RCp)} = \\ &= \frac{JR + 2JR^2 Cp + JR + JR^2 Cp + u_C(0)RCp}{p(1+2RCp)} = \frac{2JR + 3JR^2 Cp + u_C(0)RCp}{p(1+2RCp)} = \\ &= \frac{400 + 6p}{p(1+0.02p)} = \frac{D(p)}{B(p)}. \end{split}$$

1.2.3. По теореме разложения находим $u_I(t)$:

$$\begin{split} B(p) &= p(1+0.02p) = 0; \quad \Rightarrow p_1 = 0; \quad p_2 = -50 \frac{1}{c}; \\ B'(p) &= 1+0.04p; \\ u_J(t) &= \sum_{\kappa=1}^2 \frac{D_\kappa(p_\kappa)}{B'_\kappa(p_\kappa)} e^{p_\kappa t} = \frac{400+6\cdot 0}{1+0.04\cdot 0} e^{0\cdot t} + \frac{400+6\cdot(-50)}{1+0.04\cdot(-50)} e^{-50t} = \\ &= 400-100e^{-50t} \quad (B) \end{split}$$

– результат совпал с классическим методом.

2. При гармоническом источнике тока $J(t) = \sqrt{2}J\sin(\omega t + \alpha) = \sqrt{2}2\sin(100t + 90)$, А после срабатывания ключа K_1 определим напряжение $u_J(t)$.

2.1. Используем упрощённый классический метод, когда дифференциальное уравнение для искомой функции $u_1(t)$ не составляется.

2.1.1. Определяем независимые начальные условия (ННУ) при $t = 0-: u_C(0-) = ?$ (схема до коммутации установившийся режим, гармонический источник, символический метод).

$$\begin{split} \underline{I}_{C}^{(\mathcal{A})} &= \underline{J} \frac{0}{0+R-jX_{C}} = 0; \\ \underline{U}_{C}^{(\mathcal{A})} &= (-jX_{C})\underline{I}_{C}^{(\mathcal{A})} = U_{C}^{(\mathcal{A})}e^{j\beta} = 0; \\ u_{C}^{(\mathcal{A})}(t) &= \sqrt{2}U_{C}^{(\mathcal{A})}\sin(\omega t + \beta) = 0. \\ \mathcal{A}$$
ля построения графика $u_{J}(t)$ определим $u_{J}(0-): \\ \underline{U}_{J}^{(\mathcal{A})} &= \underline{J}\underline{Z}_{2}^{(\mathcal{A})} = \underline{J}R = 200e^{j90^{0}} \mathrm{B}; \\ u_{J}^{(\mathcal{A})}(t) &= \sqrt{2} \cdot 200\sin(\omega t + 90^{0}) \mathrm{B}; \\ u_{J}(0-) &= \sqrt{2} \cdot 200\sin(\omega \cdot 0 + 90^{0}) = 282 \mathrm{B}. \end{split}$

2.1.2. Определяем ЗНУ при $t = 0+: u_J(0+) = ?$ (схема после коммутации ключа K_1).

$$E_{C} = u_{C}(0-) = u_{C}(0+) = 0;$$

$$J(0) = \sqrt{2}J \sin(\omega 0 + \alpha) = \sqrt{2}2 \sin(90^{\circ}) = 2,82 \text{ A}.$$

Используем метод контурных токов.

$$I_{11} = J(0) = 2.82 \text{ A};$$

$$I_{22} 2R - I_{11}R = -E_{C};$$

$$I_{22} = \frac{I_{11}R - E_{C}}{2R} = \frac{282 - 0}{200} = 1,41 \text{ A};$$

$$i_{C}(0+) = I_{22} = 1,41 \text{ A}.$$

По второму закону Кирхгофа для внешнего контура

$$u_{J}(0+) - E_{C} = J(0)R + i_{C}(0+)R;$$

$$\Rightarrow u_{J}(0+) = E_{C} + J(0)R + i_{C}(0+)R = 0 + 282 + 141 = 423 \text{ B}.$$

2.1.3. Определяем принуждённую составляющую при $t = \infty$: $u_{Jnp}(t) = ?$ (Схема после коммутации ключа K_1 , установившейся режим, гармонический источник, символический метод).

По закону Ома

$$\begin{split} \underline{U}_{J}^{(np)} &= \underline{J} \cdot \underline{Z}_{\mathcal{B}}^{(n)} = \underline{J} \left[R + \frac{R(R - jX_C)}{2R - jX_C} \right] = \\ &= 2e^{j90^0} \left[100 + \frac{100(100 - j100)}{200 - j100} \right] = 2e^{j90^0} \cdot 161,245e^{-j7^0} = 322.5e^{j83^0} B. \\ \text{Тогда } u_{Jnp}(t) &= \sqrt{2} \ 322.45 \sin(100t + 83^0) \text{ B}; \\ u_{Jnp}(0) &= \sqrt{2} \ 322.45 \sin(100 \cdot 0 + 83^0) = 452,67 \text{ B}. \end{split}$$

2.1.4. Определяем корень характеристического уравнения: p = ?. Используем метод сопротивления цепи после коммутации. Аналогично п. 1.1.4 получаем $p = -50 \frac{1}{c}$.

2.1.5. Определяем постоянную интегрирования: B = ?. $B = u_J (0+) - u_{Jnp} (0) = 423 - 452.67 = -29.67$ B.

2.1.6. Окончательный результат.

$$u_J(t) = u_{Jnp}(t) + Be^{pt} = \sqrt{2} \cdot 322.5 \sin(100t + 83^0) - 29.67e^{-50t}$$
 B.

Причем $\tau = \frac{1}{|p|} = \frac{1}{|-50|} = 0.02 \text{ с} - \text{постоянная времени;}$ $t_n = 5\tau = 5 \cdot 0.02 = 0.1$ с – время окончания переходного процесса; $T = \frac{2\pi}{\omega} = 6,28$ с – период принужденной составляющей.

Заполняем таблицу для построения графика:

t	0	τ	2τ	3τ	4τ	5τ
<u>_t</u>						
$e^{-\tau}$	1	0,368	0,135	0,05	0,018	0,007
<u>t</u>						
-29,67 $e^{-\tau}$	-29,67	-10,915	-4,015	-1,477	-0,543	-0,2
$u_{Jnp}(t)$, B	452,67	-131,838	-337,949	419,11	-10,874	-410,06
$u_J(t), \mathbf{B}$	423	-148,753	-341,964	417,63	-11,417	-410,26

Строим график, для построения можно использовать Mathcad.

Puc. 1.11

Используем комбинированный операторно-классический метод 2.2. для определения $u_I(t)$.

2.2.1. Находим независимые начальные условия (п. 2.1.1): $u_C(0-) = u_C(0) = 0$.

2.2.2. Определяем принуждённые составляющие при $t = \infty$: $u_{Jnp}(t) = ?$, $u_{Cnp}(t) = ?$. Схема после коммутации ключа K_1 , установившейся режим, гармонический источник, символический метод.

$$\begin{split} & \underset{L}{R} \qquad a \qquad \underbrace{I_{C}^{(np)}}_{Q} \qquad \underbrace{I} = Je^{j\alpha} = 2e^{j90} \text{ A}, \\ & X_{C} = \frac{1}{\omega C} = 100 \text{ OM}, \\ & X_{C} = \frac{1}{\omega C} = 100 \text{ OM}, \\ & X_{C} = \frac{1}{\omega C} = 100 \text{ OM}, \\ & X_{C} = \frac{1}{\omega C} = 100 \text{ OM}, \\ & U_{C}^{(np)} = \underbrace{I} \cdot \underbrace{Z}_{\mathcal{D}}^{(n)} = \underbrace{I} \left[R + \frac{R(R - jX_{C})}{2R - jX_{C}} \right] = \\ & = 2e^{j90^{0}} \left[100 + \frac{100(100 - j100)}{200 - j100} \right] = 2e^{j90^{0}} \cdot 161, 245e^{-j7^{0}} = 322.5e^{j83^{0}} B; \\ & \underbrace{I_{C}^{(np)}}_{C} = \underbrace{I}_{C}^{(np)} (-jX_{C}) = 0.894e^{j116,6^{0}} (-j100) = 89, 4e^{j26,6^{0}} B. \\ & B \text{ pesynstate} \\ & u_{Cnp}(0) = \sqrt{2} \cdot 89, 4 \sin(100t + 26,6^{0}) B; \\ & u_{Cnp}(0) = \sqrt{2} \cdot 89, 4 \sin(26,6^{0}) = 56,61 B. \end{split}$$

2.2.3. Определяем начальное значение свободной составляющей напряжения на ёмкости

 $u_{Cce}(0) = u_C(0) - u_{Cnp}(0) = 0 - 56.61 = -56.61 B.$

2.2.4. Рассчитываем операторную схему замещения для свободных составляющих.

окончательный результат $u_J(t) = u_{Jnp}(t) + u_{Jcs}(t) = \sqrt{2} \cdot 322,45 \sin(100t + 83^0) + \sum_{\nu=1}^2 \frac{D_{\kappa}(p_{\kappa})}{B'_{\nu}(p_{\nu})} e^{p_{\kappa}t} =$

$$=\sqrt{2}\cdot 322,45\sin(100t+83^{\circ})-28,305e^{-50t}$$
 B,

- результат практически совпал с классическим методом.

3. При импульсном источнике тока $J(t) = Je^{2pt} = 2e^{-100t}$, А (р – корень характеристического уравнения) и нулевых начальных условиях (ключ K_1 сработал) определяем интегралом Дюамеля напряжение $u_J(t)$.

3.1. Находим переходную характеристику h(t) для $u_J(t)$ операторным методом при $u_C(0) = u_C(0-) = 0$.

$$h(t) = R + \sum_{\kappa=1}^{2} \frac{D_{\kappa}(p_{\kappa})}{B'_{\kappa}(p_{\kappa})} e^{p_{\kappa}t} = R + R + \frac{R + R^{2}C \cdot (-\frac{1}{2RC})}{1 + 4RC \cdot (-\frac{1}{2RC})} e^{-\frac{t}{2RC}} =$$
$$= 2R + \frac{0.5R}{-1}e^{-\frac{t}{2RC}} = 2R - 0.5Re^{-\frac{t}{2RC}} = 200 - 50e^{-50t} (OM)$$

– переходное сопротивление.

Проверка:

а)
$$t = 0$$
, $h(0) = 2R - 0.5R = \frac{3R}{2} = R_{\mathcal{P}}(0)$ – верно, т.к. $u_{\mathcal{C}}(0) = 0$, и

С – закоротка;

б) $t = \infty$, $h(\infty) = 2R = R_{\mathcal{I}}(\infty)$ – верно, т.к. С – разрыв.

3.2. Рассчитаем интегралом Дюамеля
$$u_J(t)$$
:

$$u_J(t) = J(0)h(t) + \int_0^t J'(\tau)h(t-\tau)d\tau,$$

J(0) = 2 A, $J'(\tau) = -200e^{-100\tau} \frac{A}{c},$

$$h(t-\tau) = 200 - 50e^{-(50t-\tau)} = 200 - 50e^{-50t}e^{50\tau} \text{ Ом.}$$

Тогда

$$u_J(t) = 400 - 100e^{-50t} + \int_0^t \left[-200e^{-100\tau} \right] \left[200 - 50e^{-50t}e^{50\tau} \right] d\tau =$$

$$= 400 - 100e^{-50t} - 40000 \int_0^t e^{-100\tau} d\tau + 1000e^{-50t} \int_0^t e^{-50\tau} d\tau =$$

$$= 400 - 100e^{-50t} + 400e^{-100\tau} \Big|_0^t - 200e^{-50t}e^{-50\tau} \Big|_0^t =$$

$$= 400 - 100e^{-50t} + 400e^{-100t} - 400 - 200e^{-50t}(e^{-50t} - 1) =$$

$$= 400e^{-100t} - 100e^{-50t} - 200e^{-100t} + 200e^{-50t} = 200e^{-100t} + 100e^{-50t}, B.$$
Проверка:
a) $t = 0$, $u_J(0) = 300 B$ – верно, т.к.
 $u_J(0) = J(0) \cdot R_{\Im}(0) = 2 \cdot \frac{3R}{2} = 300 B.$
6) $t = \infty$, $u_J(\infty) = 0$, – верно, т.к.
 $u_J(\infty) = J(\infty)R_{\Im}(\infty) = 0$, – верно, т.к.
 $u_J(\infty) = J(\infty)R_{\Im}(\infty) = 0 \cdot 2R = 0.$
3.3. Строим график $u_J(t) = 200e^{-100t} + 100e^{-50t} B,$
 $t = 0, 0.01 \dots \frac{5}{|p|} c.$

Ниже приводится расчет рассматриваемого примера цепи первого порядка, когда ключ K_2 еще не сработал (документ *Mathcad*).

Документ Mathcad

Исходные данные:

J := 2 R := 100 c := 10010⁻⁶

- 1.1. Классический метод, постоянный источник
- 1.1.1. Определяем независимые начальные условия

Ucc := C

1.1.2. Определяем зависимые начальные условия

$$fb := fb \cdot \left(\frac{1}{R} + \frac{1}{R}\right) - J + \frac{Ucc}{R} \text{ solve }, fb \rightarrow 100$$
$$UJo := J \cdot (R) + fb \qquad UJo = 300$$

1.1.3. Определяем принуждённую составляющую

UJnp :=
$$J \cdot (2R)$$
 UJnp = 400

1.1.4. Определяем корень характеристического уравнения

$$p := \frac{1}{c \cdot p} + 2 \cdot R \text{ solve }, p \rightarrow -50 \qquad p = -50$$

1.1.5. Определяем постоянную интегрирования

1.1.6. Окончательный результат

UJ(t) := UJпр + B·e^{p t} UJ(t) → 400–100 exp(-50 t)
1.1.7. График искомой фунции
$$\tau := \frac{1}{|p|}$$
 $\tau = 0.02$ $t := C, \tau ... 5 \cdot \tau$

B = -100

1.2 Операторный метод, постоянный источник

1.2.1. Определяем независимые начальные условия

Ucc := C

1.2.2. Определяем изображение искомой функции

$$I22(p) := I22(p) \cdot \left(2 \cdot R + \frac{1}{c \cdot p}\right) - \frac{J}{p} \cdot R + \frac{Ucc}{p} \text{ solve }, I22(p) \rightarrow \frac{1}{p + 50}$$
$$UJ(p) := \frac{J}{p}R + \left(\frac{J}{p} - I22(p)\right) \cdot R \text{ simplify } \rightarrow 100 \frac{3 \cdot p + 200}{p \cdot (p + 50)}$$

1.2.3. Определяем оригинал искомой функции

Uj(t) := UJ(p) invlaplace, p → 400 - 100 exp(-50 t) Uj(t) → 400 - 100 exp(-50 t)

3. Интеграл Дюамеля, экспоненциальный источник

$$J(t) := 2e^{-100}$$

3.1. Переходная характеристика

$$h(t) := 2 \cdot R - 0.5 \cdot R \cdot e^{-50t}$$

3.2. Искомая функция напряжения на источнике тока

$$UJ(t) := J(C) \cdot h(t) + \int_{0}^{t} \left(\frac{d}{dx}J(x)\right) \cdot h(t-x) dx$$

UJ(t) simplify $\rightarrow 100 \cdot \exp(-50 \cdot t) + 200 \cdot \exp(-100 \cdot t)$

3.3. График искомой функции $\tau := \frac{1}{50}$ $\tau = 0.02$ t :=

$$t := C, \tau \cdot 0.1..5 \cdot \tau$$

Исходные данные:

Intercepting damageJ1 := 2J := J1-e90i degORIGIN:= 1 $g(x) := \sqrt{2} \cdot |x| \cdot sin(arg(x))$ $\omega := 100$ R := 100 $c := 100 10^{-6}$ $h(z) := |x_{1,1} \leftarrow Re(z)|$ 2.1.Классический метод, гармонический источник $x_{1,2} \leftarrow Im(z)|$ $xc := \frac{1}{\omega \cdot c}$ xc = 100 $x_{2,1} \leftarrow |z||$ 2.1.1.Определяем независимые начальные условия $x_{2,2} \leftarrow \frac{arg(z)}{deg}|x||$ 2.1.2.Определяем зависимые начальные условияx = 100

Jo := g(J) Jo = 2.828
$$\frac{1}{122}$$

I22 := I22·2·R - Jo·R + Ucc solve, I22 $\rightarrow 2^2 \cdot \sin(\arg(\exp(90 i \cdot \deg)))$

$$I22 = 1.414$$

 $UJo := Ucc + Jo \cdot R + I22 \cdot R \qquad UJo = 424.264$

2.1.3. Определяем принуждённую составляющую

$$UJnp := J \left[R + \frac{R \cdot (R - i \cdot xc)}{2 \cdot R - i \cdot xc} \right]$$

$$UJnp = 40 + 320i$$

$$h(UJnp) = \begin{pmatrix} 40 & 320 \\ 322.49 & 82.875 \end{pmatrix}$$

$$UJnp0 := g(UJnp)$$

$$UJnp0 = 452.548$$

2.1.4. Определяем корень характеристического уравнения

 $p := \frac{1}{c \cdot p} + 2 \cdot R \text{ solve }, p \rightarrow -50$ p = -50

2.1.5. Определяем постоянную интегрирования

UJo – UJпр0
$$B = -28.284$$

2.1.6. Окончательный результат UJпр(t) := $|UJпp| \cdot \sqrt{2} \cdot \sin(\omega \cdot t + \arg(UJпp))$

$$UJ(t) := UJ\pi p(t) + B \cdot e^{p \cdot t}$$

B:=

2.1.7. Строим график искомой фунции
$$\tau := \frac{1}{|p|}$$
 $\tau = 0.02$
 $t := 0.001..5 \cdot \tau$

4. При постоянном источнике тока J(t) = J после срабатывания ключа K_2 определяем напряжение $u_J(t)$. (Ключ K_1 давно уже сработал).

4.1. Используем упрощённый классический метод, когда дифференциальное уравнение для искомой функции $u_J(t)$ не составляется.

4.1.1. Определяем независимые начальные условия (ННУ) при $t = 0-: u_C(0-) = ?$ (схема до коммутации установившийся режим, постоянный источник, C – разрыв, L – закоротка).

Находим: $i_L(0-) = 0$; $u_C(0-) = J \cdot R = 200$ В. Для построения графика $u_J(t)$ определим $u_J(0-) = J \cdot 2R = 400$ В. 4.1.2. Определяем ЗНУ при t = 0+: $U_J(0+) = ?$ (схема после коммутации ключа K_2).

 $u_{I}(0+)$

Записываем уравнения по законам Кирхгофа:

$$\begin{cases} u_{J} = JR + u_{C} + R \cdot (i_{C} + i_{L}); \\ u_{J} = JR + R \cdot i_{R} \Rightarrow i_{R} = \frac{u_{J}}{R} - J; \\ J = i_{R} + i_{C} + i_{L}; \Rightarrow i_{C} = J - i_{R} - i_{L} = 2J - \frac{u_{J}}{R} - i_{L}; \\ u_{J} = JR + R \left[i_{L} + 2J - \frac{u_{J}}{R} - i_{L} \right] + u_{C}; \Rightarrow u_{J} = 3JR - u_{J} + u_{C}; \\ \Rightarrow u_{J} = \frac{3}{2}JR + \frac{u_{C}}{2}; \\ \frac{du_{J}}{dt} = \frac{3R}{2}\frac{d\sqrt{2}}{dt} + \frac{1}{2}\frac{du_{C}}{dt}; \qquad \frac{du_{J}}{dt} \Big|_{t=0+} = \frac{1}{2}\frac{du_{C}}{dt} \Big|_{t=0+} = 0. \end{cases}$$

4.1.3. Определяем принуждённую составляющую при $t = \infty$: $u_J np = ?$ (Схема после коммутации ключа K_2 , установившейся режим, постоянный источник, C – разрыв, L – закоротка).

4.1.4. Определяем корень характеристического уравнения: p = ? Используем метод сопротивления цепи после коммутации:

$$C \to \frac{1}{Cp}$$
; $L \to Lp$, причём $R_J = \infty$, а $R_E = 0$.

$$\begin{split} p_{1,2} &= -\frac{1}{4RC} \pm \sqrt{\frac{1}{16R^2C^2} - \frac{1}{LC}} = -25 \pm j96, 8 = -\delta \pm j\omega_{ce} \frac{1}{c} \,. \\ &\quad 4.1.5. \text{ Определяем постоянные интегрирования: } B = ? \text{ и } \beta = ? \,. \\ &\quad \delta = 25 \frac{1}{c}; \quad \omega_{ce} = 98.6 \frac{1}{c} \,. \\ &\quad \left[u_J(t) = u_{Jnp} + Be^{-\delta t} \cos(\omega_{ce}t + \beta); \right] \end{split}$$

$$\left[\frac{du_J(t)}{dt} = -\delta B e^{-\delta t} \cos(\omega_{ce} t + \beta) - \omega_{ce} e^{-\delta t} \sin(\omega_{ce} t + \beta)\right].$$

$$\begin{cases} u_J(0+) = u_{Jnp} + B\cos(\beta); \\ \frac{du_J(t)}{dt} \Big|_{t=0+} = -\delta B\cos(\beta) - \omega_{ce} e^{-\delta t}\sin(\beta). \\ \begin{cases} 400 = 300 + B\cos\beta; \\ 0 = -25\beta\cos\beta - 96.8\beta\sin\beta. \end{cases}$$

$$\begin{cases} 100 = B\cos\beta; \\ tg\beta = -0,258. \end{cases}$$

$$\beta = -0.252 \ pa\partial = -14,467^0; \quad B = \frac{100}{\cos\beta} = 103.275 \text{ B.} \\ 4.1.6. \text{ Окончательный результат.} \\ u_J(t) = u_{Jnp} + Be^{-\delta t}\cos(\omega_{ce}t + \beta) = \\ = 300 + 103,275e^{-25t}\cos(96,8t - 14.467^0) \text{ B.} \end{cases}$$

Где $\tau = \frac{1}{\delta} = \frac{1}{25} = 0.04 \text{ с} - \text{постоянная времени}; \end{cases}$

 $t_n = 5\tau = 5 \cdot 0.04 = 0.2$ с – длительность переходного процесса; $T = \frac{2\pi}{\omega_{ce}} = 0,065$ с – период свободных колебаний.

4.1.7. На интервале времени $0 \le t \le t_n = 0, 2c$ при помощи Mathcad строим $u_J(t)$.

- 4.2. Используем операторный метод для определения $u_{I}(t)$.
 - 4.2.1. Из расчёта установившегося режима до коммутации находим независимые начальные условия (п. 4.1.1): $i_L(0-) = 0$; $u_C(0-) = J \cdot R = 200$ В.
 - 4.2.2. В операторной схеме после коммутации используем метод наложения:

$$U_J(p) = U_J^{(1)}(p) + U_J^{(2)}(p) = \frac{8p^2 + 400p + 60000}{p(0.02p^2 + p + 200)} = \frac{D(p)}{B(p)}$$

4.2.3. По теореме разложения находим искомое напряжение $u_J(t)$: $B(p) = p(0.02p^2 + p + 200) = 0;$ $\Rightarrow p_1 = 0; \quad p_{2,3} = -25 \pm j96, 8 = -\delta \pm j\omega_{c6} \quad \frac{1}{c};$ $B'(p) = 0.06p^2 + 2p + 200;$ $u_J(t) = \sum_{\kappa=1}^3 \frac{D_{\kappa}(p_{\kappa})}{B'_{\kappa}(p_{\kappa})} e^{p_{\kappa}t} = \frac{60000}{200} + 2\operatorname{Re}\left(\sum_{\kappa=2}^3 \frac{D(p_2)}{B'(p_2)} e^{p_{2}t}\right) =$

$$\begin{split} &= 300 + 2 \operatorname{Re} \left[\frac{8 \left(-25 + j96, 8 \right)^2 + 400 \left(-25 + j96, 8 \right) + 60000}{0.06 \left(-25 + j96, 8 \right)^2 + 2 \left(-25 + j96, 8 \right) + 200} e^{\left(-25 + j96, 8 \right) t} \right] = \\ &= 300 + 2 \operatorname{Re} \left[\frac{2000}{-375 + j96, 8} e^{-25t} e^{j96, 8t} \right] = 300 + 2 \operatorname{Re} \left[51,64 e^{-j14,478^0} e^{-25t} e^{j96, 8t} \right] = \\ &= 300 + 2 \cdot 51, 64 \cdot e^{-25t} \cos(96.8t - 14,478^0) = \\ &= 300 + 103, 28 e^{-25t} \cos(96.8t - 14,478^0), B. \\ &\Pi \text{роверка: } u_J (0) = 300 + 103, 28 \cdot \cos(-14.478^0) = 400 \ \text{B.} \\ &\frac{du_J}{dt} \bigg|_{t=0} = 103, 28(-25)\cos(-14,478^0) - 103, 28 \cdot 96, 8\sin(-14,478^0) = -0.547 \ \frac{B}{c} \approx 0. \end{split}$$

Ниже приводится расчет рассматриваемого примера программой Mathcad.

Документ Mathcad J := 2 L := 1 R := 100 $c := 100 \cdot 10^{-6}$ ORIGIN:= 1

4.1. Классический метод, постоянный источник, цепь второго порядка

4.1.1. Определяем независимые начальные условия

iLo:=0	iLo = 0
$Uco := J \cdot R$	Uco = 200

4.1.2. Определяем зависимые начальные условия

ico := ico
$$\cdot (2 \cdot R) - J \cdot R + Uco \text{ solve }, ico \rightarrow 0$$

icc = 0

1.1.3. Определяем принуждённую составляющую

Ucnp := 0
UJnp := J
$$\cdot \left(\frac{3}{2}R\right)$$
 UJnp = 300

1.1.4. Определяем корень характеристического уравнения

$$p := \frac{1}{c p} + \frac{2 R L p}{2R + L p} \text{ solve }, p \rightarrow \frac{-25 + 25 i 15^2}{(-25 - 25 i 15^2)} \qquad p = \frac{(-25 + 96.825i)}{(-25 - 96.825i)}$$

1.1.5. Определяем постоянные интегрирования

$$a := \begin{pmatrix} 1 & 1 \\ p_1 & p_2 \end{pmatrix} \qquad b := \begin{pmatrix} Uco - Ucnp \\ \frac{icc}{c} \\ 0 \end{pmatrix} \qquad B := a^{-1} \cdot b \qquad B = \begin{pmatrix} 100 - 25.82i \\ 100 + 25.82i \end{pmatrix}$$

1.1.6. Окончательный результат

$$Uc(t) := Ucnp + B_1 \cdot e^{p_1 t} + B_2 \cdot e^{p_2 t}$$

$$UJ(t) := \frac{3}{2} \cdot \mathbf{R} \cdot \mathbf{J} + \frac{1}{2} \cdot Uc(t)$$

UJ(t) complex \rightarrow 30C + 100 exp(-25t) \cdot cos (96.8 t) + 25.82 \cdot exp(-25t) \cdot sin(96.8 t)

.

4.1.6. График искомой фунции
$$\tau := \frac{1}{|\text{Re}(p_1)|}$$
 $\tau = 0.04$
 $t := 0, \tau \cdot 0.1..5 \cdot \tau$

4.2. Операторный метод, постоянный источник, цепь второго порядка

4.2.1. Определяем независимые начальные условия

$$iLo := 0 \qquad iLo = 0$$
$$Uco := J \cdot R \qquad Uco = 200$$

4.2.2. Определяем изображение искомой функции

$$UJ(p) := \frac{J}{p} \cdot R + \frac{\left(\frac{1}{c \cdot p} \cdot L \cdot p\right)}{\left(\frac{1}{c \cdot p} + L \cdot p\right)} + R \cdot \frac{\frac{Uco}{p}}{\frac{p}{c \cdot p} \cdot L \cdot p} \cdot \frac{L \cdot p}{L \cdot p + 2 \cdot R}$$

$$UJ(p) := \frac{J}{p} \cdot R + \frac{\frac{1}{c \cdot p} \cdot L \cdot p}{2 \cdot R + \frac{1}{c \cdot p} + L \cdot p} + R \cdot \frac{\frac{Uco}{p}}{\frac{1}{c \cdot p} + \frac{2 \cdot R \cdot L \cdot p}} \cdot \frac{L \cdot p}{L \cdot p + 2 \cdot R}$$

$$UJ(p) \text{ simplify } \rightarrow 400 \cdot \frac{7500 + 50 \cdot p + p^{2}}{\left(10000 + 50 \cdot p + p^{2}\right)p}$$
4.2.3. Определяем оригинал искомой функции

 $Uj(t) := UJ(p) \text{ invlaplace, } p \rightarrow$

$$UJ(t) \rightarrow 300 + 100 \exp(-25 \cdot t) \cdot \cos(96.8 \cdot t) + 25.82 \cdot \exp(-25 \cdot t) \cdot \sin(96.8 \cdot t)$$

В результате преобразований:

$$300 + 100e^{-25t}\cos(96,8t) + 25,82e^{-25t}\sin(96,8t) =$$

 $= 300 + e^{-25t}(100e^{j90^{\circ}} + 25,82e^{j0^{\circ}}) =$
 $= 300 + e^{-25t}(103.28e^{j75.522^{\circ}}) =$
 $= 300 + e^{-25t}103.28\sin(96,8t + 75.522^{\circ}) =$
 $= 300 + 103.28e^{-25t}\cos(96,8t - 14.478^{\circ}).$

4.3. Методом переменных состояния находим $u_{I}(t)$.

4.2.1. Начальные условия:

$$i_L(0-) = 0$$
; $u_C(0-) = J \cdot R = 200$ B; $u_I(0) = 400$ B.

4.2.2. По законам Кирхгофа составляем уравнения состояния:

$$\begin{cases} u_{L} = u_{C}; \\ R \cdot i_{R} = u_{C} + i_{L}R + i_{C}R \Rightarrow i_{R} = \frac{u_{C}}{R} + i_{C} + i_{L}; \\ J = i_{R} + i_{C} + i_{L}; \Rightarrow J = \frac{u_{C}}{R} + 2i_{C} + 2i_{L}; \\ J = \frac{u_{C}}{R} + 2C\frac{du_{C}}{dt} + 2i_{L}; \Rightarrow \frac{du_{C}}{dt} = -\frac{1}{C}i_{L} - \frac{1}{2CR}u_{C} + \frac{J}{2C}; \\ u_{L} = u_{C} \Rightarrow L\frac{di_{L}}{dt} = 0 \cdot i_{L} + u_{C} + 0 \cdot J; \\ \begin{cases} \frac{di_{L}}{dt} = 0 \cdot i_{L} + \frac{u_{C}}{L} + 0 \cdot J; \\ \frac{du_{C}}{dt} = -\frac{1}{C}i_{L} - \frac{1}{2CR}u_{C} + \frac{J}{2C}; \\ u_{J} = 0 \cdot i_{L} + \frac{1}{2}u_{C} + \frac{3R}{2} \cdot J; \end{cases}$$

Решаем с использованием Mathcad:

Документ Mathcad

$$J := 2 \quad L := 1 \quad R := 100 \quad c := 100 \cdot 10^{-6} \quad (11)^{-6} \quad (11)^{-$$

Полученный график полностью совпадает с уже построенной зависимостью.

<u>Пример 2.</u> Методические указания к заданию № 5 «Расчет установившегося режима в нелинейных электрических цепях»

Для заданной схемы дано	:
$e(t) = \sqrt{2} \cdot E \cdot \sin(314t + \alpha)$, B;	$J(t) = \sqrt{2} \cdot J \cdot \sin(314t + \alpha) , A$

Ε	J	α	R	С
В	А	0	Ом	мкФ
100	2	90	100	31.847

Нелинейный индуктивный элемент (НИЭ)

W_1	W_2	<i>W</i> ₃	S_1	S_2	<i>S</i> ₃
Вит.	Вит.	Вит.	см ²	см ²	см ²
2000	0	1000	1	2	1

l_1	l_2	l_3	δ_1	δ_2	δ ₃
СМ	СМ	СМ	MM	MM	MM
30	15	30	1	0	0

Схема:

1. Относительно зажимов *a* и *b* НИЭ определяем комплексное сопротивление эквивалентного генератора $\underline{Z}_{\Gamma} = Z_{\Gamma} e^{j\alpha}$, а также комплексы действующих значений ЭДС $\dot{U}_{xx} = \dot{E}_{\Gamma} = E_{\Gamma} e^{j\cdot\alpha_{\Gamma}}$ и тока $\dot{I}_{K3} = \dot{J}_{\Gamma} = J_{\Gamma} e^{j\cdot\beta_{\Gamma}}$ этого генератора если:

$$\begin{split} \dot{E} &= Ee^{j\cdot\alpha} = 100e^{j\cdot90^{\circ}}, \text{ B}; \\ \dot{J} &= Je^{j\cdot\alpha} = 2e^{j\cdot90^{\circ}}, \text{ A}. \\ X_{C} &= \frac{1}{\omega C} = \frac{1}{314 \cdot 31.847 \cdot 10^{-6}} = 100 \text{ Om}. \end{split}$$

$$\begin{split} \underline{Z}_{\Gamma} &= R + \frac{R \cdot (-jX_{C})}{R - jX_{C}} = 100 + \frac{100 \cdot (-j100)}{100 - j100} = 100 + 50 - j50 = 150 - j50 = \\ &= 158, 1e^{-j18.4^{\circ}} \text{ Om, t.e. } Z_{\Gamma} = 158, 1 \text{ Om, } \varphi_{\Gamma} = -18, 4^{\circ} \text{ .} \\ &\begin{cases} \dot{I}_{11} = \dot{J} \\ \dot{I}_{22} \cdot (R - jX_{C}) - \dot{I}_{11} \cdot R = \dot{E} \end{cases}; \\ \dot{I}_{22} = \dot{I}_{C} = \frac{\dot{E} + \dot{J} \cdot R}{R - jX_{C}} = \frac{100e^{j90^{\circ}} + 2e^{j90^{\circ}} \cdot 100}{100 - j100} = 2,12e^{j135^{\circ}}, \text{ A}; \\ \dot{U}_{xx} = \dot{E}_{\Gamma} = \dot{I}_{C} \left(-jX_{C}\right) = 2,12e^{j135^{\circ}} \left(-j100\right) = 212e^{j45^{\circ}}, \text{ B}; \\ \dot{I}_{x3} = \dot{J}_{\Gamma} = \frac{\dot{E}_{\Gamma}}{\underline{Z}_{\Gamma}} = \frac{212e^{j45^{\circ}}}{158,1e^{-j18.4^{\circ}}} = 1,34e^{j63.4^{\circ}}, \text{ A}. \end{split}$$

Таким образом $E_{\Gamma} = 212$, В; $\alpha_{\Gamma} = 45^{\circ}$, $J_{\Gamma} = 1,34$ А, $\beta_{\Gamma} = 63,4^{\circ}$.

2. Для двух мгновенных значений тока i_L НИЭ, равных $i_{L_1} = \sqrt{2}J_{\Gamma/2} = 0,945$ А и $i_{L_2} = \sqrt{2}J_{\Gamma} = 1,89$ А, из расчета магнитной истородовилация:

цепи определяем величины потокосцепления:

$$\Psi = w_1 \Phi_1 + w_2 \Phi_2 + w_3 \Phi_3$$
, B6.

Для этого заданную магнитную цепь заменяем схемой замещения, для которой воспользуемся методом двух узлов (c и d) и составим уравнения по законам Кирхгофа для магнитной цепи:

$$\begin{cases} \Phi_{2} = \Phi_{1} + \Phi_{3}; \\ U_{Mcd}(\Phi_{1}) = i_{L}w_{1} - U_{M1}(\Phi_{1}) - U_{M\delta}(\Phi_{1}); \\ U_{Mcd}(\Phi_{2}) = U_{M2}(\Phi_{2}); \\ U_{Mcd}(\Phi_{3}) = i_{L}w_{3} - U_{M3}(\Phi_{3}); \end{cases}$$
(1)

где магнитные напряжения

$$U_{M1}(\Phi_{1}) = H_{1}l_{1}; U_{M2}(\Phi_{2}) = H_{2}l_{2}; U_{M3}(\Phi_{3}) = H_{3}l_{3};$$
$$U_{M\delta}(\Phi_{1}) = \frac{B_{1}\delta_{1}}{\mu_{0}}.$$
 (2)

Используя заданную кривую намагничивания ферромагнитного материала магнитной цепи $B(H) = B_{1,2,3}(H_{1,2,3})$, рассчитываем уравнения (2) и заполняем таблицу 1.

				-					Табл	ица 1.
$B_{1,2,3}$	Тл	0	0,6	1	1,2	1,6	2	2,2	2,3	2,5
$H_{1,2,3}$	А/м	0	250	500	10 ³	$2 \cdot 10^3$	$6 \cdot 10^{3}$	$12 \cdot 10^{3}$	$3 \cdot 10^4$	$2 \cdot 10^5$
$\Phi_1 = B_1 S_1$	мВб	0	0,06	0,1	0,12	0,16	0,2	0,22	0,23	0,25
$\Phi_2 = B_2 S_2$	мВб	0	0,12	0,2	0,24	0,32	0,4	0,44	0,46	0,5
$\Phi_3 = B_3 S_3$	мВб	0	0,06	0,1	0,12	0,16	0,2	0,22	0,23	0,25
$U_{M1}(\Phi_1)$	A	0	75	150	300	600	1800	3600	9000	$6 \cdot 10^4$
$U_{M\delta}(\Phi_1)$	A	0	477,6	796	955,2	1273,6	1592	1751,2	1830,8	1990
$U_{_{M2}}(\Phi_2)$	A	0	37,5	75	150	300	900	1800	4500	$3 \cdot 10^4$
$U_{M3}(\Phi_3)$	A	0	75	150	300	600	1800	3600	9000	$6 \cdot 10^4$

2.1. При токе $i_{L1} = \sqrt{2}J_{T/2} = 0,945$ А по данным таблицы 1 рассчитываем уравнения (1) и заполняем таблицу 2.

									Tat	блица 2
$B_{1,2,3}$	Тл	0	0,6	1	1,2	1,6	2	2,2	2,3	2,5
$U_{\scriptscriptstyle Mcd}(\Phi_1)$	А	1890	1337,4	944	634,8	16,4	-1502	-3461,2	-8940,8	-60100
×	А	0	37,5	75	150	300	900	1800	4500	30000
$U_{_{Mcd}}(\Phi_3)$	Α	945	870	795	645	345	-855	-2655	-8055	-59055

Строим графики $U_{Mcd}(\Phi_1), U_{Mcd}(\Phi_2), U_{Mcd}(\Phi_3).$

Т.к. $\Phi_2 = \Phi_1 + \Phi_3$, то графики $U_{Mcd}(\Phi_1), U_{Mcd}(\Phi_2), U_{Mcd}(\Phi_3)$ складываем вдоль оси Φ и получаем $U_{Mcd}(\Phi_1 + \Phi_3)$. По точке пересечения $U_{Mcd}(\Phi_1 + \Phi_3)$ и $U_{Mcd}(\Phi_2)$ определяем магнитные потоки Φ_1 , Φ_2 и Φ_3 .

$$\Psi_1 = w_1 \Phi_1 + w_2 \Phi_2 + w_3 \Phi_3 = 2000 \cdot 0.14 \cdot 10^{-3} + 0 \cdot 0.32 \cdot 10^{-3} + 1000 \cdot 0.18 \cdot 10^{-3} = 0.46 \text{ B6}.$$

2.2. При токе $i_{L2} = \sqrt{2}J_{\Gamma} = 1,89$ А по данным таблицы 1 рассчитываем уравнения (1) и заполняем таблицу 3. Таблица 3.

<i>B</i> _{1,2,3}	Тл	0	0,6	1	1,2	1,6	2	2,2	2,3	2,5
$U_{\scriptscriptstyle Mcd}(\Phi_{\scriptscriptstyle 1})$	Α	3780	3227,4	2834	2524,8	1906,4	388	-1571,2	-7050,7	-58210
$U_{\scriptscriptstyle Mcd}(\Phi_2)$	А	0	37.5	75	150	300	900	1800	4500	30000
$U_{\scriptscriptstyle Mcd}(\Phi_3)$	А	1890	1815	1740	1590	1290	90	-1710	-7110	-58110

Вновь строим графики $U_{Mcd}(\Phi_1), U_{Mcd}(\Phi_2), U_{Mcd}(\Phi_3)$. Аналогично находим графически магнитные потоки $\Phi_1 = 0,19$ мВб, $\Phi_2 = 0,37$ мВб и $\Phi_3 = 0,18$ мВб.

Рис. 2.5 Рассчитываем суммарное потокосцепление обмоток: $\Psi_2 = w_1 \Phi_1 + w_2 \Phi_2 + w_3 \Phi_3 = 2000 \cdot 0.19 \cdot 10^{-3} + 0 \cdot 0.37 \cdot 10$

 $+1000 \cdot 0, 18 \cdot 10^{-3} = 0,56$ B6.

3. Строим веберамперную характеристику НИЭ $\Psi(i_L)$, которую заменяем зависимостью $i_L(\Psi) = k_1 \Psi + k_3 \Psi^3$.

Для этого находим коэффициенты k_1 и k_3 из решения уравнений:

$$\begin{cases} i_{L_1} = k_1 \Psi_1 + k_3 \Psi_1^3 \\ i_{L_2} = k_1 \Psi_2 + k_3 \Psi_2^3 \end{cases};$$

r.e. $k_1 = \frac{i_{L1} - k_3 \Psi_1^3}{\Psi_1};$ $i_{L_2} = (i_{L_1} - k_3 \Psi_1^3) \frac{\Psi_2}{\Psi_1} + k_3 \Psi_2^3,$ тогда
 $k_3 = \frac{i_{L_2} - i_{L_1}}{\Psi_2^3 - \Psi_1^2 \cdot \Psi_2} = \frac{1,89 - 0.945 \cdot \frac{0.56}{0.46}}{0.56^3 - 0.46^2 \cdot 0.56} = 12,96 \text{ A/B6}^3;$
 $k_1 = \frac{i_{L1} - k_3 \Psi_1^3}{\Psi_1} = \frac{0.945 - 12,96 \cdot 0.46^3}{0.46} = -0.687 \text{ A/B6}.$

Для проверки строим зависимость $i_L(\Psi)$ в тех же осях, что и $\Psi(i_L)$. Зависимость $i_L(\Psi) = k_1 \Psi + k_3 \Psi^3$ удовлетворительно совпадает с веберамперной характеристикой $\Psi(i_L)$ на интервале $\Psi_1 \leq \Psi \leq \Psi_2$.

4. При приближенной гармонической зависимости напряжения НИЭ $u_L(t) = \sqrt{2}U_L \cos(314t + \beta)$ для четырех значений U_L $(0 < U_L < E_\Gamma)$ рассчитываем действующие значения гармоник тока I_1 и I_3 , его действующее значение I_L , коэффициент гармоник k_{Γ} , причем берем такие U_L , чтобы $(0 < I_L < J_{\Gamma})$.

При этом заполняем таблицу 4.

	-		Т	Габлица 4.
U_L , B	30	70	100	135
$I_{1} = \frac{k_{1}U_{L}}{\omega} + \frac{3k_{3}U_{L}^{3}}{2\omega^{3}}, A$	-0,049	0,062	0,409	1,25
$I_3 = -\frac{k_3 U_L^3}{2\omega^3}, A$	-0,0056	-0,072	-0,209	-0,515
$I_L = \sqrt{I_1^2 + I_3^2}$, A	0,049	0,095	0,46	1,352
$k_{\Gamma} = \left \frac{I_3}{I_1} \right $	0,116	1,154	0,512	0,412

5. По результатам п.4 строим ВАХ $U_L(I_L)$ НИЭ

Задаваясь несколькими значениями тока $\dot{I}_{L} = I_{L} e^{j0^{\circ}}$ для одноконтурной схемы, определяем эквивалентное напряжение

$$\dot{U}_{\mathfrak{I}} = U_{\mathfrak{I}} e^{j\varphi_{\mathfrak{I}}} = \underline{Z}_{\Gamma} \dot{I}_{\Gamma} + \dot{U}_{L} = 158, 1e^{-j18.4^{\circ}} \cdot \dot{I}_{L} + U_{L} (I_{L}) e^{j90}$$

При этом I_L находим U_L по ВАХ $U_L(I_L)$ и заполняем таблицу 5. Таблица 5.

$\dot{I}_L = I_L$, A	0.3	0.6	1	1.35
U_L , B	90	105	123	135
$U_{\mathfrak{I}}$, B	87.5	117.2	166.9	213.517
φ _э , град	59	39.8	26	18.46

Строим эквивалентную ВАХ $U_{\ni}(I_L)$ и ФАХ $\varphi_{\ni}(I_L)$. По известной ЭДС $E_{\Gamma} = U_{\ni} = 212$ В и построенным характеристикам графически находим $I_L = 1,3$ А, $U_L \approx 135$ В, $\varphi_{\ni} = 19^{\circ}$ (рис. 2.7).

В результате:

$$\beta = \alpha_{\Gamma} - \varphi_{\Im} = 45 - 19 = 26^{\circ};$$

$$\dot{I}_{L} = I_{L} e^{j\beta} = 1, 3e^{j26^{\circ}}, A;$$

$$\dot{U}_{L} = U_{L} e^{j(\beta + 90^{\circ})} = 135e^{j116^{\circ}}, B.$$

Построим в принятых масштабах *m*^U и *m*^I векторную диаграмму:

$$\begin{split} \dot{E}_{\Gamma} &= E_{\Gamma} e^{j\alpha_{\Gamma}} = 212 e^{j45^{\circ}} \text{ B}; \\ \dot{I}_{L} &= I_{L} e^{j\beta} = 1, 3 e^{j26^{\circ}} \text{ A}; \\ \dot{U}_{L} &= U_{L} e^{j\left(\beta+90^{\circ}\right)} = 135 e^{j116^{\circ}} \text{ B}; \\ \dot{U}_{\Gamma} &= \underline{Z}_{\Gamma} \cdot \dot{I}_{L} = 158, 1 e^{-j18.4^{\circ}} \cdot 1, 3 e^{j26^{\circ}} = 205, 53 e^{j7.6^{\circ}}, \text{ B}; \end{split}$$

$$m_U = 5 B_{MM}$$
; $m_I = 0.05 A_{MM}$

6. Определяем потребляемую активную мощность:

 $P = E_{\Gamma}I_{L}\cos\varphi_{2} = 212 \cdot 1.3 \cdot \cos 19^{\circ} = 260.6$ BT.

По известной величине напряжение $U_L = 135$ В уточняем значе-

ния

$$I_{1} = \frac{k_{1} \cdot U_{L}}{\omega} + \frac{3k_{3} \cdot U_{L}^{3}}{2\omega^{3}} = 1,25 \text{ A};$$

$$I_{3} = -\frac{k_{3} \cdot U_{L}^{3}}{2\omega^{3}} = -0,515 \text{ A};$$

$$I_{L} = \sqrt{I_{1}^{2} + I_{3}^{2}} = 1,352 \approx 1,3 \text{ A} - \text{верно};$$

$$k_{\Gamma} = \left| \frac{I_{3}}{I_{1}} \right| = 0,412;$$

$$\beta = \alpha_{\Gamma} - \varphi_{9} = 26^{\circ};$$

$$i(t) = \sqrt{2} \cdot 1,25 \sin \left(314t + 26^{\circ} \right) - \sqrt{2} \cdot 0,515 \sin \left(942t + 78^{\circ} \right), \text{ A}.$$

7. Анализируем полученные результаты и формируем выводы по работе.

Ниже приводится расчет рассматриваемого примера при помощи программы *Mathcad*.

Документ MathCad
Дано:

$$E := 100$$
 $R := 100$ $[Eg] = 212.13$
 $J := 2$ $C := 31.847 \cdot 10^{-6}$ $\mu 0 := 4\pi \cdot 10^{-7}$ $Ig := \frac{Eg}{Zg}$
 $\alpha := 90 \cdot deg$ $\alpha := 314$ $Ig := \frac{100}{2}$ $Ig := \frac{100}{2}$
 $w1 := 2000$ $S1 := 1 \cdot 10^{-4}$ $I1 := 0.30$ $\delta I := 1 \cdot 10^{-3}$ $[Ig] = 1.342$
 $w2 := 0$ $S2 := 2 \cdot 10^{-4}$ $I2 := 0.15$ $\delta 2 := 0$ 2. Находим два значе
 $w3 := 1000$ $S3 := 1 \cdot 10^{-4}$ $I3 := 0.30$ $\delta I := 0$ $Ut = \sqrt{2}$ $[Ig]$

B:= (0 0.6 1 1.2 1.6 2 2.2 2.3 2.5)

H:= (0 250 500 1000 2000 6000 12000 30000 200000)

1. Определяем комплексное сопротивление емкости:

$$Zc := -i \cdot \frac{1}{\omega \cdot C}$$
 $Zc = -100i$

Определение E, Z, I генератора:

$E := E \cdot e^{i\alpha}$	E = 100i
$\mathbf{J} := \mathbf{J} \cdot \mathbf{e}^{\mathbf{i} \boldsymbol{\alpha}}$	J = 2i
$Zg := R + \frac{R \cdot Zc}{R + Zc}$	Zg = 150 - 50i
Zg = 158.11	arg(Zg) = -18.43deg

$$Eg := (E + J \cdot R) \cdot \frac{Zc}{R + Zc}$$

$$Eg = 150 + 150i$$

$$eg = 212.13$$

$$arg(Eg) = 45 deg$$

$$Ig := \frac{Eg}{Zg}$$

$$Ig = 0.6 + 1.2i$$

$$Ig| = 1.342$$

$$arg(Ig) = 63.44deg$$

ения тока:

$$I11 := \sqrt{2} \cdot \frac{|Ig|}{2} \qquad I12 := \sqrt{2} \cdot |Ig|$$

$$I11 = 0.949$$
 $I12 = 1.897$

Для каждого значения индукции и напряженности рассчитываем:

k := 0, 1 8		
2.1. потоки		
$\Phi 1 := \mathbf{B} \cdot \mathbf{S} 1$	$\Phi 2 := \mathbf{B} \cdot \mathbf{S} 2$	Φ 3 := B · S3

2.2. напряжения в зазорах

$1181 \cdot - \frac{\mathbf{B} \cdot \delta \mathbf{I}}{\mathbf{B} \cdot \delta \mathbf{I}}$	$1182 - \frac{B \cdot \delta 2}{\delta 2}$	$182 \cdot \frac{B \cdot \delta^2}{2}$
Uol :=	002 :=	Uœ := ───
μ0	μ0	μ0

2.3. напряжения магнитопроводов

$Um1 := H \cdot 11 \qquad Um2 := H \cdot 12 \qquad Um3 := H \cdot$	• 13
--	------

2.4. между узлами cd при первом значении тока

 $U11 := I11 \cdot w1 - U\delta1 - Um1$

$$U12:=-II1 \cdot w2 + U\delta 2 + Um2$$

 $U13 := I11 \cdot w3 - U\delta^2 - Um3$

2.5. напряжения между узлами сd при втором значении тока

 $U21 := I12 \cdot w1 - U\delta1 - Um1$

$$U22:= -I12 \cdot w2 + U\delta 2 + Um2$$

 $U23 := I12 \cdot w3 - U\delta^2 - Um3$

Сводная таблица данных 1

St1 := stack $(B, H, \Phi 1, \Phi 2, \Phi 3, U\delta 1, U\delta 2, U\delta 3, Um 1, Um 2, Um 3)$

		0	1	2	3	4	5	6	7
	0	0	1	1	1	2	2	2	2
	1	0	250	50C	1·1C ³	2·10 ³	6·103	1·1C ⁴	3.104
	2	0	6·10-5	1.10-4	1.10-4	2.10-4	2.10-4	2.10-4	2.10-4
	3	0	1.10-4	2·10-4	2·10-4	3.10-4	4·10-4	4·10-4	5·10-4
St1 =	4	0	6·10 ⁻⁵	1·1C-4	1.10-4	2.10-4	2·10-4	2·10-4	2·10-4
	5	0	477	796	955	1·1C ³	2·10 ³	2·10 ³	2·10 ³
	6	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0
	8	0	75	150	300	60C	2·10 ³	4·10 ³	9·10 ³
	9	0	38	75	150	30C	900	2·10 ³	5·10 ³
	10	0	75	150	300	60C	2·10 ³	4·10 ³	9·10 ³

Сводная таблица данных 2

St2 := stack(B,U11,U12,U13)

	(0	1	1	1	2	2	2	2	3)	١
St2 =		1897	1345	952	642	24	-1494	-3453	-8933	-60092	
		0	38	75	150	300	900	1800	4500	30000	
	l	949	874	799	649	349	-851	-2651	-8051	-59051	,

Сводная таблица данных 3

St2 := stack(B, U21, U22, U23)

	(0	1	1	1	2	2	2	2	3)	۱
St2 =		3795	3242	2849	2540	1921	403	-1556	-7036	-58195	
		0	38	75	150	300	900	1800	4500	30000	
	l	1897	1822	1747	1597	1297	97	-1703	-7103	-58103	,

Для построения графиков, необходимо выполнить следующее:

U11:= reverse
$$(U11^{T})$$
 U12:= U12^T U13:= reverse $(U13^{T})$
 $\Phi 1$:= reverse $(\Phi 1^{T})$ $\Phi 2$:= $\Phi 2^{T}$ $\Phi 3$:= reverse $(\Phi 3^{T})$
 $\Phi '1(Umcd)$:= linterp $(U11, \Phi 1, Umcd)$
 $\Phi '2(Umcd)$:= linterp $(U12, \Phi 2, Umcd)$
 $\Phi '3(Umcd)$:= linterp $(U13, \Phi 3, Umcd)$

 $\Phi'(\text{Umcd}) := \Phi' l(\text{Umcd}) + \Phi' 3(\text{Umcd})$

Определение точки пересечения:

Umcd := 1

Given

 $\Phi'(\text{Umcd}) - \Phi'2(\text{Umcd}) = 0$

Umcd1 := Find(Umcd) Umcd1 = 274.3

$\Phi'1 := \Phi'1(\text{Umcd}1)$	$\Phi'2 := \Phi'2(\text{Umcd1})$	$\Phi'3 := \Phi'3(\text{Umcd }1)$
$\Phi' 1 = 1.44 \times 10^{-4}$	$\Phi'2 = 3.06 \times 10^{-4}$	$\Phi'3 = 1.62 \times 10^{-4}$
Проверка: Ф'1 +	$\Phi'^3 = 3.06 \times 10^{-4}$	

Определяем величину потокосцепления:

Ψ1 := w1 • Φ'1 + w2 • Φ'2 + w3 • Φ'3 Ψ1 = 0.45

Сводная таблица данных 3

St3 := stack(B, U21, U22, U23)

3) 0 1 1 2 2 2 2 3795 3242 2849 2540 1921 403 -1556 -7036 -58195 St3 =4500 30000 0 38 75 150 300 900 1800 1897 1822 1747 1597 1297 97 -1703 -7103 -58103

Для построения графиков, необходимо выполнить следующее:

U21:= reverse $(U21^T)$ U22:= U22^T U23:= reverse $(U23^T)$ $\Phi''1(Umdc) := linterp(U21, \Phi1, Umdc)$ $\Phi''2(Umdc) := linterp(U22, \Phi2, Umdc)$

 Φ "3(Umdc) := linterp(U23, Φ 3, Umdc)

$$\Phi'(\text{Umdc}) := \Phi'' l(\text{Umdc}) + \Phi'' l(\text{Umdc})$$

Определение точки пересечения:

Umdc := 1

Given

 $\Phi''(\text{Umdc}) - \Phi''^2(\text{Umdc}) = 0$

$$Umdc1 := Find(Umdc)$$
 $Umdc1 = 693.57$

 Φ "1 := Φ "1(Umdc1) Φ "2 := Φ "2(Umdc1) Φ "3 := Φ "3(Umdc1)

$$\Phi'' 1 = 1.92 \times 10^{-4}$$
 $\Phi'' 2 = 3.72 \times 10^{-4}$ $\Phi'' 3 = 1.8 \times 10^{-4}$

Проверка: $\Phi''1 + \Phi''3 = 3.72 \times 10^{-4}$

Определяем величину потокосцепления:

 $\Psi 2 := w1 \cdot \Phi''1 + w2 \cdot \Phi''2 + w3 \cdot \Phi''3$ $\Psi 2 = 0.56$

3. Строим веберамперную характеристику Ψ (iL):

$$\begin{array}{c} \left(\begin{array}{c} 0 \end{array}\right) & \left(\begin{array}{c} 0 \end{array}\right) \\ \Psi := \Psi 1 & \text{iL} := \Pi 1 \\ \left(\begin{array}{c} \Psi 2 \end{array}\right) & \left(\begin{array}{c} \Pi 2 \end{array}\right) \end{array}$$

s := lspline(iL, Ψ) Ψ (IL) := interp(s, iL, Ψ , IL)

Заменяем зависимостью iL(Ψ):

Определяем коэффициенты:

$$\binom{k1}{k3} := \binom{\Psi_1 \ \Psi_1^3}{\Psi_2 \ \Psi_2^3} \cdot \binom{\Pi_1}{\Pi_2} \qquad k1 = -0.07 \qquad k3 = 10.75$$
$$iL(\Psi) := k1 \cdot \Psi + k3 \cdot \Psi^3$$

4. Определяем четыре действующих значений напряжения (для точности расчетов можно брать большее число точек К):

$$K := 7 \quad j := 1.. K$$
$$h := \frac{|Eg|}{K+4} - mar \qquad Ud_j := round(j \cdot h)$$

Находим гармоники тока:

$$\operatorname{Igr}_{j} := k1 \cdot \frac{\operatorname{Ud}_{j}}{\omega} + 3 \cdot k3 \cdot \frac{\left(\operatorname{Ud}_{j}\right)^{3}}{2 \cdot \omega^{3}} \qquad \qquad \operatorname{Igr}_{j} := -k3 \cdot \frac{\left(\operatorname{Ud}_{j}\right)^{3}}{2 \cdot \omega^{3}}$$

Вычисляем действующие значения тока:

$$Id_{j} := \sqrt{\left(Igr1_{j}\right)^{2} + \left(Igr3_{j}\right)^{2}}$$

Вычисляем коэффициент гармрнок: $kgr_j := \left| \frac{Igr_j}{Igr_j} \right|$

Сводная таблица данных 4

St4 := stack $\left(Ud^T, Igr1^T, Igr3^T, Id^T, kgr^T \right)$ (0 19 58 77 96 116 135 39 0.02 0.09 0.22 0.44 0.79 1.25 0 -0 -0.01 -0.03 -0.08 -0.15 -0.27 -0.43 St4 = 0 - 00.02 0.09 0.23 0.47 0.83 1.32 0 - 0 0 1.77 0.46 0.38 0.36 0.35 0.34 0.34

5. Строим BAX UL(IL), BAXUэ(IL)и ФАХ Фэ(IL):

5.1. UL(IL) := linterp(Id, Ud, IL)

5.2. Заполняем таблицу 5

 $U_j := Zg \cdot Id_j + Ud_j \cdot e^{i90 \cdot deg}$ $Ue_{j} := \left| U_{j} \right| \qquad \phi e_{j-1} := \frac{\arg(U_{j})}{\deg}$ $iL_{j-1} := Id_j$ $uL_{j-1} := Ud_j$ $uE_{j-1} := Ue_j$ St5 := stack (iL^T, uL^T, uE^T, qe^T) 0.02 0.09 0.23 0.47 0.83 1.32 0 77 116 39 58 96 135 19 St5 =18.93 37.95 55.12 74.15 100.81 145.33 209.95 89.38 84.45 75.03 61.7 46.17 30.78 19.16 UE(IL) := linterp(Id, Ue, IL) $\varphi E(IL) := linterp(iL, \varphi e, IL)$

По известной Ег находим:

a) ток ll:

IL:= 0.1

Given

$$\mathrm{UE}(\mathrm{IL}) - \left|\mathrm{Eg}\right| = 0$$

 $IL1 := Find(IL) \qquad IL1 = 1.34$

б) напряжение UL:

UL(IL1) = 135.64

в) фазу напряжения U_Э:

 $\phi E(IL1) = 18.76$

г) фазу тока IL:

$$\beta := \frac{\arg(Eg)}{\deg} - \varphi E(IL1) \qquad \beta = 26.24$$

IL := IL1 ·
$$e^{i\beta \cdot deg}$$

IL = 1.2 + 0.59i $|IL| = 1.34$ arg(IL) = 26.24deg
UL := UL(IL1) · $e^{i(\beta+90) \cdot deg}$

UL = -59.97 + 121.67i |UL| = 135.64 arg(UL) = 116.24deg Строим векторную диаграмму:

Ug := IL∙ Zg

$$\varphi a := \begin{pmatrix} 0 \\ Eg \end{pmatrix}$$
 $\varphi b := \begin{pmatrix} 0 \\ UL \end{pmatrix}$ $\varphi := \begin{pmatrix} Eg \\ UL \end{pmatrix}$ $I := \begin{pmatrix} 0 \\ IL \end{pmatrix} \cdot 100$

Определяем потребляемую цепью активную мощность:

$$P := |Eg| \cdot |IL| \cdot \cos(\arg(Eg) - \arg(IL)) \qquad P = 268.89$$

По известной величине напряжения уточняем значения гармоник тока:

$$|UL| = 135.64$$

$$Igr1 := k1 \cdot \frac{|UL|}{\omega} + 3 \cdot k3 \cdot \frac{(|UL|)^3}{2 \cdot \omega^3} \qquad Igr3 := -k3 \cdot \frac{(|UL|)^3}{2 \cdot \omega^3}$$

$$Igr1 = 1.27 \qquad Igr3 = -0.43$$

Вычисляем действующие значения тока:

$$IL := \sqrt{Igrl^2 + Igr3^2} \qquad IL = 1.34$$

Вычисляем коэффициент гармрнок:

kgr :=
$$\left| \frac{\text{Igr3}}{\text{Igr1}} \right|$$
 kgr = 0.34

<u>Пример 3.</u> Методические указания к заданию № 6 «Расчет длин-

Puc. 3.1

Дано:

$$\begin{split} R_0 &= 0,12 \; \frac{\text{Om}}{\text{Km}}; \quad L_0 = 10^{-3} \; \frac{\text{G}_{\text{H}}}{\text{Km}}; \\ G_0 &= 10^{-6} \; \frac{\text{Cm}}{\text{Km}}; \quad C_0 = 1,11 \cdot 10^{-8} \; \frac{\Phi}{\text{Km}}; \\ U_2 &= 330 \,\text{KB}; \qquad \psi_{u_2} = 45^0; \qquad l = 1500 \; \text{Km}; \\ R &= 600 \; \text{Om}; \qquad C = 2,654 \,\text{MK}\Phi; \qquad \omega = 314 \; \frac{1}{\text{c}}. \end{split}$$

1. В установившемся режиме при заданном фазном напряжении $u_2(t) = \sqrt{2} \cdot U_2 \sin(\omega t + \psi_{u2}) = \sqrt{2} \cdot 330 \cdot 10^3 \sin(314t + 45^0)$ В, в конце линии определяем следующие величины. 1.1. Волновое сопротивление:

$$\underline{Z}_B = \sqrt{\frac{R_0 + j\omega L_0}{G_0 + j\omega C_0}} = \sqrt{\frac{0,12 + j314 \cdot 10^{-3}}{10^{-6} + j314 \cdot 1.11 \cdot 10^{-8}}} =$$

= 304,195 - *j*13,032 = 304,474*e*^{-*j*2,45⁰} Ом.
1.2. Постоянная распространения:

$$\begin{split} \underline{\gamma} &= \sqrt{\left(R_0 + j\omega L_0\right)\left(G_0 + j\omega C_0\right)} = \sqrt{\left(0, 12 + j314 \cdot 10^{-3}\right)\left(10^{-6} + j314 \cdot 1.11 \cdot 10^{-8}\right)} = \\ &= 3,496 \cdot 10^{-4} + j1,047 \cdot 10^{-3} = \alpha + j\beta \frac{1}{\kappa_M}. \end{split}$$

$$rge \ \alpha &= 3,496 \cdot 10^{-4} \frac{1}{\kappa_M} - \kappa os \phi \phi u u uent затухания; \\\beta &= 1,047 \cdot 10^{-3} \frac{pa\partial}{\kappa_M} \approx 1,047 \cdot 10^{-3} \frac{180}{\pi} = 0,06 \frac{rpa\pi}{\kappa_M} \\ &- \kappa os \phi \phi u u uent \phi as u. \\1.3. \ \Phi asobas a c coports: \\v &= \frac{\omega}{\beta} = \frac{314}{1,047 \cdot 10^{-3}} = 2,999 \cdot 10^5 \frac{\kappa_M}{c}. \\1.4. \ Длина волны: \\\lambda &= \frac{2\pi}{\beta} = \frac{6,28}{1,047 \cdot 10^{-3}} = 5998 \ \kappa_M. \\1.5. \ Komnnek choe comportubenetue harpysku mpu \\X_C &= \frac{1}{\omega C} = \frac{1}{314 \cdot 2,654 \cdot 10^{-6}} = 1200 \ Om: \\Z_H &= \frac{R(2R - jX_C)}{R + (2R - jX_C)} = \frac{600(1200 - j1200)}{1800 - j1200} = \\ &= 461,538 - j92,308 = 470e^{-j11,31^0} \ Om. \\1.6. \ Komnnek c aeŭ crisponiero значения тока в harpyske: \\\dot{I}_2 &= \frac{\dot{U}_2}{Z_H} = \frac{U_2 e^{iW_{R_2}}}{Z_H} = \frac{330 \cdot 10^3 e^{j45^0}}{470,679e^{-j11,31^0}} = 701,11e^{j56,31^0} \ A. \\1.7. \ Hocrosnhuse unterpuposahus: \\\dot{A}_1 &= \frac{\dot{U}_2 + Z_B \dot{I}_2}{2} = \\ &= \frac{330 \cdot 10^3 e^{j45^0} + 304,474e^{-j2,45^0} \cdot 701,11e^{j56,31^0}}{2} = \\ &= 179,6 \cdot 10^3 + j202,9 \cdot 10^3 = 271 \cdot 10^3 e^{j48,48^0} \ B; \\\dot{A}_2 &= \frac{\dot{U}_2 - Z_B \dot{I}_2}{2} = 53,72 \cdot 10^3 + j30,48 \cdot 10^3 = 61,76 \cdot 10^3 e^{j29,6^0} \ B. \\ \end{aligned}$$

1.8. Комплексы действующих значений напряжения и тока в начале линии при $x = l = 1500 \, \kappa M$:

$$\begin{split} \dot{U}_1 &= \dot{A}_1 e^{\gamma l} + \dot{A}_2 e^{-\gamma l} = 271 \cdot 10^3 e^{j48.48^0} e^{(3.496 \cdot 10^{-4} + j1.047 \cdot 10^{-3})1500} + \\ &+ 61,76 \cdot 10^3 e^{j29.6^0} e^{-(3.496 \cdot 10^{-4} + j1.047 \cdot 10^{-3})1500} = \\ &= 271 \cdot 10^3 e^{j48.48^0} e^{0.5244} e^{j90^0} + 61,76 \cdot 10^3 e^{j29.6^0} e^{-0.5244} e^{-j90^0} = \\ &= -324,7 \cdot 10^3 + j271,7 \cdot 10^3 = 423,4 \cdot 10^3 e^{j140^0} \text{ B}; \\ \dot{I}_1 &= \frac{\dot{A}_1}{\underline{Z}_B} e^{\gamma l} - \frac{\dot{A}_2}{\underline{Z}_B} e^{-\gamma l} = -1231 + j1049 = 1618 e^{j139.5^0} \text{ A}. \\ &1.9. \quad \text{Активные мощности:} \\ &\text{в конце линии} \\ P_2 &= U_2 I_2 \cos(\psi_{u_2} - \psi_{I_2}) = 330 \cdot 10^3 \cdot 701,11\cos(45^0 - 56,31^0) = \\ &= 2,269 \cdot 10^8 \text{ Bt} = 226,9 \text{ MBt}; \end{split}$$

в начале линии

 $P_1 = U_1 I_1 \cos(\psi_{u_1} - \psi_{I_1}) = 423, 4 \cdot 10^3 \cdot 1618 \cos(140^0 - 139, 5^0) = 684, 8 \text{ MBT},$ а так же эффективность передачи энергии по линии

$$\eta = \frac{P_2}{P_1} = \frac{226,9}{684,8} = 0,33.$$

1.10. Изменяя координату *x* от 0 до l = 1500 км по уравнениям

$$\begin{cases} \dot{U}(x) = \dot{A}_1 e^{\gamma x} + \dot{A}_2 e^{-\gamma x}; \\ \dot{I}(x) = \frac{\dot{A}_1}{\underline{Z}_B} e^{\gamma x} - \frac{\dot{A}_2}{\underline{Z}_B} e^{-\gamma x} \end{cases}$$

рассчитываем с использованием программы Mathcad действующие значения напряжения $\dot{U}(x)$ и тока $\dot{I}(x)$, а так же активную мощность U(u) I(u) = z(u + u)

	_		_
$P(x) = U(x)I(x)\cos(\psi_{II} - \psi_{II})$). Результаты р	асчётов заносим	в таблицу.
	, r		

х, км	0	300	600	900	1200	1500
U(x), кВ	330	336	337,1	346	373,6	423,4
I(x), A	701,11	895,9	1112	1313	1482	1618
P(x), MBT	226,9	283,1	353,6	441,6	550,7	684,8

По данным таблицы строим совмещённые графики U(x), I(x) и P(x).

Ниже приводится расчет программой Mathcad.

 $c0 := 1.11 \cdot 10^{-8}$

L:= 1500 км

Γн

КМ

R0 := 0.12
$$\frac{O_M}{\kappa_M}$$
 L0 := 1.10⁻³

См

км

Ом

рад

С

 $g0 := 1 \cdot 10$

R := 600

ω := 314

 $c := 2.65410^{-6}$

$$h(z) := x_{1,1} \leftarrow Re(z)$$

$$x_{1,2} \leftarrow Im(z)$$

$$U2 := 330 \times 10^3 \cdot e^{45i \cdot deg} B$$

$$L := 1500 \quad \text{KM}$$

$$h(z) := x_{1,1} \leftarrow Re(z)$$

$$x_{1,2} \leftarrow Im(z)$$

$$x_{2,1} \leftarrow |z|$$

$$x_{2,2} \leftarrow \frac{\arg(z)}{\deg}$$

$$x$$

1.1. Волновое сопротивление z (Ом) и коэффициент распростронения γ (1/км):

$$Z_{B} := \sqrt{\frac{R0 + j \cdot \omega \cdot L0}{g0 + j \cdot \omega \cdot c0}} \quad O_{M} \qquad h(Z_{B}) = \begin{pmatrix} 304.195 & -13.032 \\ 304.474 & -2.453 \end{pmatrix}$$

1.2. Постоянная распростронения γ (1/км):

$$\gamma := \sqrt{\left(\mathrm{R0} + \mathrm{j} \cdot \omega \cdot \mathrm{L0}\right) \cdot \left(\mathrm{g0} + \mathrm{j} \cdot \omega \cdot \mathrm{c0}\right)} \quad \frac{1}{\mathrm{KM}}$$
$$\gamma = 3.496 \times 10^{-4} + 1.047 \mathrm{i} \times 10^{-3}$$

Коэффициент затухания α (Нп/км) и коэффициент фазы β (рад/км):

$$\alpha := \operatorname{Re}(\gamma) \qquad \beta := \operatorname{Im}(\gamma)$$

$$\alpha = 3.496 \times 10^{-4} \frac{\operatorname{Hn}}{\operatorname{KM}} \qquad \beta = 1.047 \times 10^{-3} \qquad \frac{\operatorname{pan}}{\operatorname{KM}}$$

1.3. Фазовая скорость V (км/с)

$$v := \frac{\omega}{\beta}$$
 $v = 2.998 \times 10^5$

1.4. Длина волны λ (км)

$$\lambda := \frac{2 \cdot \pi}{\beta}$$
 $\lambda = 6 \times 10^3$
Комплексное сопротивление нагрузки (Ом) $xc := \frac{1}{\beta}$

 $\omega \cdot c$

1.5. Комплексное сопротивление нагрузки (Ом)

$$Z_{\rm H} := \frac{\mathbf{R} \cdot (2 \cdot \mathbf{R} - \mathbf{i} \cdot \mathbf{x} \mathbf{c})}{\mathbf{R} + 2 \cdot \mathbf{R} - \mathbf{i} \cdot \mathbf{x} \mathbf{c}} \qquad \qquad \mathbf{h}(Z_{\rm H}) = \begin{pmatrix} 461.536 & -92.307 \\ 470.676 & -11.31 \end{pmatrix}$$

1.6. Комплекс действующего значения тока в нагрузке(А)

I2 :=
$$\frac{U2}{Z_H}$$
 h(I2) = $\begin{pmatrix} 388.911 & 583.366 \\ 701.119 & 56.31 \end{pmatrix}$ A

1.7. Постоянные интегрирования (В)

A1 :=
$$\frac{U2 + Z_B \cdot I2}{2}$$

A2 := $\frac{U2 - Z_B \cdot I2}{2}$
h(A1) = $\begin{pmatrix} 1.796 \times 10^5 & 2.029 \times 10^5 \\ 2.71 \times 10^5 & 48.477 \\ 6.372 \times 10^4 & 3.048 \times 10^4 \\ 6.176 \times 10^4 & 29.569 \end{pmatrix}$

1.8. Комплексы действующих значений напряжения(В) и тока (А) в начале линии

$$U(x) := A1 \cdot e^{\gamma \cdot x} + A2 \cdot e^{-\gamma \cdot x}$$

$$I(x) := \frac{A1}{Z_{B}} \cdot e^{\gamma \cdot x} - \frac{A2}{Z_{B}} \cdot e^{-\gamma \cdot x}$$

$$U(L) = -3.247 \times 10^{5} + 2.717i \times 10^{5} |U(L)| = 4.234 \times 10^{5} B$$

$$I(L) = -1.231 \times 10^{3} + 1.049i \times 10^{3} |I(L)| = 1.618 \times 10^{3} A$$

$$I.9. A \kappa \tau u B h u e M o III (B1) B h a u a ne л u h u u P(x) := Re(U(x) \cdot \overline{I(x)}) P(L) = 6.848 \times 10^{8} BT$$

 $P(0) = 2.269 \times 10^8$ в конце линии Вт

1.10. Эффективность передачи энергии по линии

$$r := \frac{P(0)}{P(L)}$$
 $r = 0.331$

- 2. В переходном режиме для линии без потерь ($R_0 \approx 0$; $G_0 \approx 0$) при подключении к источнику постоянного напряжения $U_0 = \sqrt{2} \cdot U_1 \sin(\psi_{u1}) = \sqrt{2} \cdot 423, 4 \cdot 10^3 \sin(140^0) = 384, 9$, кВ определяем следующие величины.
- 2.1. Волновое сопротивление:

$$Z_B = \sqrt{\frac{L_0}{C_0}} = \sqrt{\frac{10^{-3}}{1.11 \cdot 10^{-8}}} = 300 \text{ Om}.$$

2.2. Фазовая скорость:

1

$$\rho = \frac{1}{\sqrt{L_0 C_0}} = \frac{1}{\sqrt{10^{-3} \cdot 1.11 \cdot 10^{-8}}} = 3 \cdot 10^5 \,\frac{\text{KM}}{\text{c}} \,.$$

2.3. Падающие волны напряжения и тока

$$U_{na\partial} = U_0 = 384,9 \text{ kB}; \ I_{na\partial} = \frac{U_0}{Z_B} = 1,283 \text{ kA}.$$

2.4. Напряжение $u_2(t)$ и ток $i_2(t)$ в нагрузке, воспользовавшись, например, классическим методом (цепь первого порядка).

- 2.4.1. Определяем независимые начальные условия (ННУ) при $t = 0-: u_C(0-) = 0$.
- 2.4.2. Зависимые начальные условия (ЗНУ) при t = 0 + (схема после коммутации ключа), когда $u_C(0-) = u_C(0+) = 0$.

2.4.3. Определяем принуждённую составляющую при *t* = ∞: схема после коммутации ключа, установившейся режим, постоянный источник, *C* – разрыв, *L* – закоротка.

2.4.4. Определяем корень характеристического уравнения: p = ?. Используем метод сопротивления цепи после коммутации:

$$(C \rightarrow \frac{1}{Cp}; L \rightarrow Lp)$$
, причём $R_E = 0$.
 $z(p) = \frac{1}{pC} + 2R + \frac{RZ_B}{R + Z_B} = 0 \Rightarrow p = -\frac{1}{\left(2R + \frac{RZ_B}{R + Z_B}\right)C} = -269 \frac{1}{c}$

2.4.5. Постоянные интегрирования

$$A = i_2(0+) - i_{2np} = 0,245 \text{ kA};$$

$$B = u_2(0+) - u_{2np} = -73,2$$
 кВ.

2.4.6. Окончательный результат

$$i_2(t) = i_{2np} + Ae^{pt} = 0,855 + 0,245e^{-269t}$$
 KA;

$$u_2(t) = u_{2np} + Be^{pt} = 513, 2 - 73, 2e^{-269t}$$
 KB

2.5. Отраженные от конца линии волны напряжения

$$u_{omp}(t) = u_2(t) - U_{na\partial} = 128, 3 - 73, 2e^{-269t}$$
 KB;
 $i_{omp} = -\frac{u_{omp}(t)}{Z_B} = -0,428 + 0,244e^{-269t}$ KA.

2.6. Рассчитываем распределение напряжения и тока вдоль линии

для момента времени $t_0 = \frac{3l}{2\nu} = 7,5 \cdot 10^{-3}$ с, после подключения источ-

ника, когда отражённые от конца линии волны напряжения и тока достигли середины линии.

Для этого заполняем таблицу.

Точка	А	Б	В	Г
	Середина			нагрузка
	линии			
<i>t</i> , c	$t_A = 0$	$t_{\rm E} = \frac{(l/2)}{3v} =$	$t_E = \frac{2}{3} \frac{(l/2)}{v} =$	$t_{\rm E} = \frac{(l/2)}{v} =$
		$=0,833 \cdot 10^{-3}$	$=1,66 \cdot 10^{-3}$	$=2,5\cdot10^{-3}$
<i>и_{отр}</i> , кВ	$u_{omp}(t_A) =$	$u_{omp}(t_E) =$	$u_{omp}(t_B) =$	$u_{omp}(t_{\Gamma}) =$
	=55,1	=69,795	=81,464	=90,936
<i>i_{omp}</i> , кА	$i_{omp}(t_A) =$	$i_{omp}(t_E) =$	$i_{omp}(t_B) =$	$i_{omp}\left(t_{\varGamma}\right) =$
	=-0,184	=-0,233	=-0,272	=-0,303
u(x,t), кВ	$u(t_A) =$	$u(t_{\mathcal{B}}) =$	$u(t_B) =$	$u(t_{\Gamma}) =$
	=440	=454,7	=466,36	=475,84
<i>i</i> (<i>x</i> , <i>t</i>), кА	$i(t_A) =$	$i(t_{\mathcal{B}}) =$	$i(t_B) =$	$i(t_{\Gamma}) =$
	=1,1	=1,051	=1,012	=0,98

Расчёт ведётся следующим образом

 $u_2(t_E) = 513, 2 - 73, 2e^{-269 \cdot 0,833 \cdot 10^{-3}} = 454, 7 \text{ kB}.$

Далее строим графики для $t = t_0$ (рис. 3.6).

3. Анализируем полученные результаты, графики и формулируем выводы по работе.

Ниже приводится расчет программой Mathcad.

Документ Mathcad

2. Переходный режим в линии без потерь

Uo :=
$$||U(L)| \sqrt{2} \sin(\arg(U(L)))|$$
 Uo = 3.842× 10⁵
2.1. Волновое сопротивление z (Ом)

$$Z_{\mathbf{B}} := \sqrt{\frac{L_0}{C_0}} \qquad \qquad Z_{\mathbf{B}} = 300.15$$

2.2. Фазовая скорость V (км/с)

$$V := \frac{1}{\sqrt{L_0 C_0}} \qquad V = 3.002 \times 10^5 \qquad t_0 := \frac{3 L}{2 V} \qquad t_0 = 7.496 \times 10^{-3}$$

2.3 Падающие волны напряжения и тока

Unag := Uo Inag :=
$$\frac{Unag}{Z_B}$$
 Inag = 1.28×10^3

2.4.1. Начальные условия

$$I_{0} := \frac{2 \text{ Uo}}{Z_{B} + \frac{2}{3} \text{ R}} \qquad \qquad U2_{0} := I_{0} \left(\frac{2}{3} \text{ R}\right)$$
$$I_{0} = 1.097 \times 10^{3} \qquad \qquad U2_{0} = 4.39 \times 10^{5}$$

2.4.2. Определяем принуждённые составляющие

$$Inp := \frac{2 \text{ Uo}}{Z_B + R} \qquad Inp = 853.649$$
$$U2np := Inp R \qquad U2nr = 5.122 \times 10^5$$

2.4.3. Определяем корень характеристического уравнения

p :=
$$\frac{1}{c p}$$
 + 2 R + $\frac{R Z_B}{R + Z_E}$ solve , p → -269.12271380813932938
p = -269.123

2.4.4. Постоянные интегрирования

$$A := I_{\text{C}} - \text{Inp} \qquad \qquad B := U2_{\text{C}} - U2\text{np}$$

2.4.5. Ток и напряжение в нагрузке

$$I2(t) := Inp + A e^{p t} U2(t) := U2np + B e^{p t}$$

2.5. Определяем отраженные волны

Uorp(t) := U2(t) - Unan Iorp(t) :=
$$\frac{-\text{Uorp}(t)}{Z_B}$$

Строим графики распределения напряжения и тока вдоль линии как сумму падающих и отраженных волн, когда отраженная волна достигла середины линии

$$\begin{aligned} x_0 &:= V t_0 \\ N &:= 3 \quad i := 0. N \qquad \delta L &:= \left(x_0 - L \right) \frac{1}{N} \qquad L l_i &:= L + \delta L i \\ t_i &:= \frac{3 L}{2 V} - \frac{L l_i}{V} \end{aligned}$$

$Uotp(t_i) =$	Іотр (t _i) =	$U2(t_i) =$	$I2(t_i) =$
9.062·10 ⁴	-301.927	4.748 [.] 10 ⁵	978.12
8.124 [.] 10 ⁴	-270.651	4.654 [.] 10 ⁵	1.009 1C ³
6.949 [.] 10 ⁴	-231.517	4.537·10 ⁵	1.049 · 10 ³
5.479 [.] 10 ⁴	-182.55	4.39 [,] 1C ⁵	1.097 · 10 ³

Список литературы

- Бессонов, Лев Алексеевич. Теоретические основы электротехники.
 Электрические цепи: учебник / Л. А. Бессонов. 10-е изд. М. : Гардарики, 1999. 638 с.
- 2. Теоретические основы электротехники : учебник для вузов в 3 т. / К. С. Демирчян, Л. Р. Нейман, Н. В. Коровкин, В. Л. Чечурин. 4-е изд., доп. для самостоятельного изучения курса. СПб. : Питер, 2003.
- Основы теории цепей : учебное пособие / Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. — 5-е изд., перераб. — М. : Энергоатомиздат, 1989. — 528 с.
- 4. Гурский, Дмитрий Анатольевич. Mathcad для студентов и школьников / Д. А. Гурский, Е. Турбина. СПб. : Питер, 2005. 400 с.
- 5. Кирьянов, Дмитрий Викторович. Mathcad 11 / Д. Кирьянов. СПб. : БХВ-Петербург, 2003. 560 с.

Содержание

Требования к оформлению	3
Задание № 4	5
Задание № 5	8
Задание № 6	12
Пример выполнения задания № 4	15
Пример выполнения задания № 5	
Пример выполнения задания № 6	63
Список литературы	75

Расчетно-графические работы по теоретическим основам электротехники

Часть 2

Методические указания по самостоятельной работе для студентов ЭЛТИ

Составители: Носов Геннадий Васильевич Колчанова Вероника Андреевна Кулешова Елена Олеговна

Подписано к печати Формат 60х84/16. Бумага офсетная. Печать RISO. Усл. печ. л. Уч.-изд.л. . Тираж экз. Заказ . Цена свободная. Издательство ТПУ. 634050, Томск, пр. Ленина, 30.