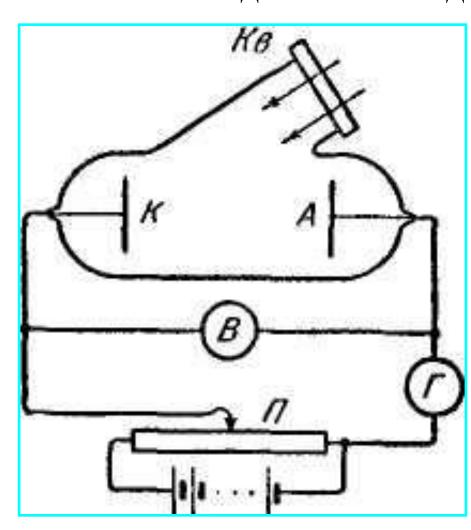
7. Фотоэффект

Фотоэффектом называется испускание электронов веществом под действием света. Явление было открыто в 1887 г. Герцем.

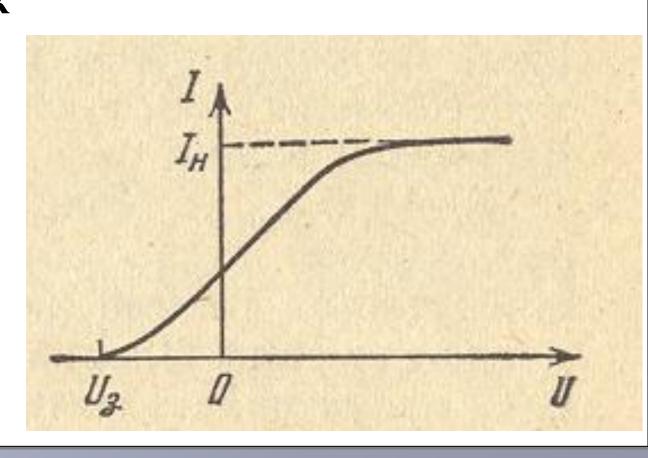
- В 1888-1889 гг. Столетов установил, что:
- 1) испускаемые под действием света заряды имеют отрицательный знак
- 2) наибольшее действие оказывают ультрафиолетовые лучи
- 3) величина испущенного телом заряда пропорциональна поглощенной им световой энергии

В 1898 г. Ленард и Томсон показали, что испускаемые частицы являются электронами.


Схема установки для изучения фотоэффекта.

Свет проходит через кварцевое окно K_{θ} и попадает на катод

K.


Испущенные электроны движутся под действием электрического поля к аноду A. Фототок измеряется гальванометром Γ .

Потенциометром Π меняют напряжение между анодом и катодом. Напряжение измеряют вольтметром B.

На рисунке показана зависимость фототока I от напряжения U при неизменном потоке света Φ . Фототок достигает насыщения I_H когда все электроны, испущенные катодом, попадают на анод. При U=0 фототок

не исчезает. Чтобы фототок стал равным нулю, нужно приложить задерживающее напряжение U_3 .

При напряжении U_3 ни один электрон, даже обладающий максимальной скоростью \mathcal{V}_{max} , не может преодолеть задерживающее поле и достигнуть анод. Поэтому можно написать

$$\frac{mv_{max}^2}{2} = eU_3 \tag{7.1}$$

где m - масса электрона. Таким образом, измерив задерживающее напряжение U_3 , можно определить максимальное значение скорости фото электронов \mathcal{U}_{max} .

- Экспериментально установлено:
- 1) Фототок насыщения пропорционален падающему световому потоку
- 2) Для каждого металла существует максимальная длина волны $\lambda_{\rm kp}$ (красная граница фотоэффекта), при которой еще происходит вырывание электронов. Если же длина волны больше $\lambda_{\rm kp}$, то испускание фотоэлектронов отсутствует даже при большой интенсивности света.
- 3) Максимальная кинетическая энергия T_{max} фотоэлектронов линейно зависит от частоты облучающего света и не зависит от интенсивности света.
- 4) Фотоэффект возникает почти мгновенно после освещения (< 10⁻⁹ c).

Кроме 1 закона волновая теория света объяснить остальные законы не смогла.

В 1905 г. Эйнштейн объяснил законы фотоэффекта предположив, что свет представляет собой совокупность квантов - фотонов, энергии которых равны

$$\varepsilon = h \nu$$

При поглощении фотона его энергия мгновенно и целиком передается одному электрону, которая частично затрачивается на освобождение электрона из металла, а остальная часть переходит в кинетическую энергию электрона. Из закона сохранения энергии

$h \nu = A + T max$

где A – работа выхода металла – минимальная энергия, необходимая для освобождения электрона из металла.

Из формулы Эйнштейна вытекают все законы фотоэффекта.

Если $\varepsilon = h \nu < A$, то электроны не могут выйти из металла. Минимальная частота света, при которой фотоэффект возможен

$$v_{\kappa p} = A/h$$

Отсюда максимальная длина волны (красная граница эффекта)

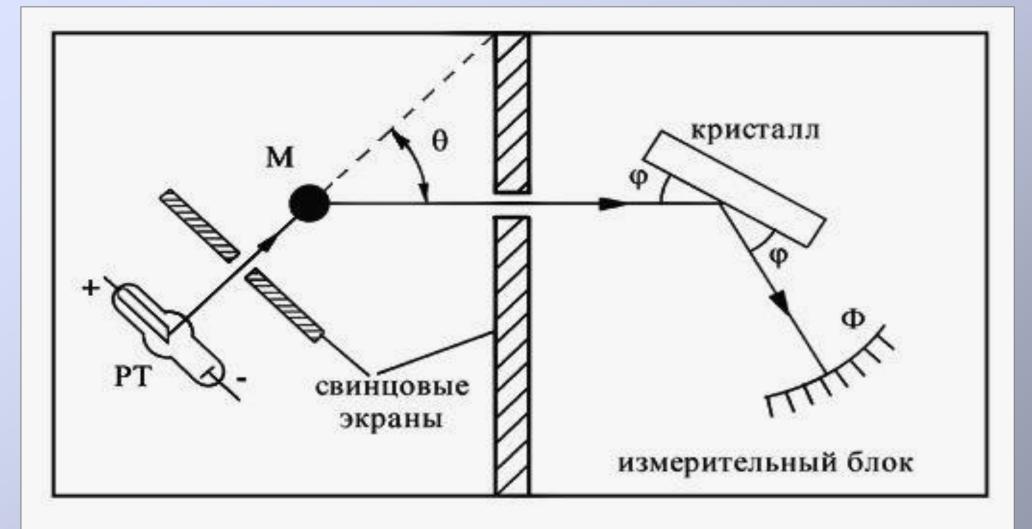
$$\lambda_{\kappa p} = hc/A$$

Внутренний фотоэффект — вызванные электромагнитным излучением переходы электронов внутри полупроводников и диэлектриков из связанных состояний в свободные без вылета наружу. Следствием является появление фототока.

Вентильный фотоэффект (разновидность внутреннего) — возникновение э.д.с. (фото-э.д.с.) при освещении контакта двух разных полупроводников или полупроводника и металла при отсутствии внешнего электрического поля. Применение — солнечные батареи.

8. Эффект Комптона

Фотон с энергией E = hv обладает импульсом $p = E/c = hv/c = h/\lambda$


При фотоэффекте импульс фотона передается всему образцу и испущенному электрону. Приобретенный образцом импульс слишком мал и не поддается измерению.

Но при столкновении фотона со свободным электроном величину передаваемого импульса можно измерить.

Этот процесс – рассеяние фотона на свободном электроне

называется эффектом Комптона.

Исследуя рассеяние рентгеновского излучения на парафине, Комптон в 1923 г. обнаружил, что в рассеянном излучении присутствуют волны с длиной волны λ' большей длины волны падающего излучения λ

Схема эксперимента Комптона

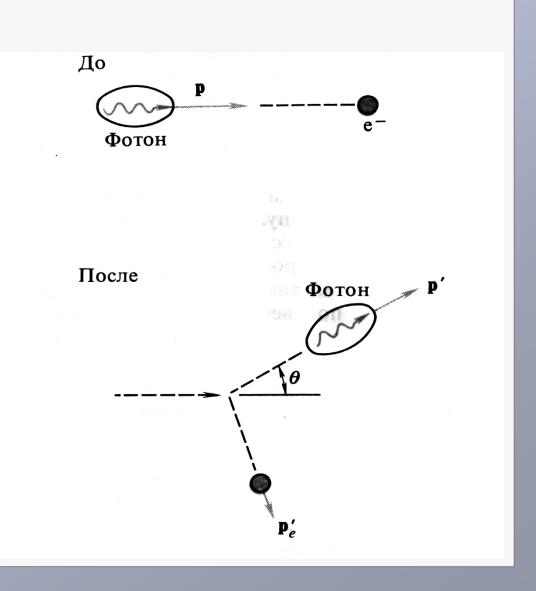
PT- рентгеновская трубка; M - мишень–рассеивателя; θ - угол рассеяния излучения; Длина волны рассеянного излучения λ' определялась с помощью его дифракции на кристалле.

Комптон установил, что разность длин волн рассеянного и падающего излучения $\Delta\lambda$ не зависит от материала рассеивателя, а определяется только величиной угла рассеяния θ :

$$\Delta \lambda = \lambda' - \lambda = \lambda_c (1 - \cos \theta)$$

– формула Комптона

Значение постоянной $\lambda_c = 2,426 \cdot 10^{-12}$ м Комптон определил экспериментально.


Выведем формулу Комптона

Фотон с импульсом **р** и энергией Е=рс сталкивается с неподвижным электроном.

Энергия покоя электрона равна mc^2 .

После соударения фотон с импульсом \mathbf{p}' вылетает под углом θ .

Импульс электрона отдачи - $\mathbf{p'}_{e}$, его полная релятивистская энергия $\mathbf{E'}_{e}$.

Запишем законы сохранения энергии и импульса.

Закон сохранения энергии:

$$pc + mc^2 = p'c + E'_e$$

откуда
$$(p-p'+mc)^2 = (E'_e/c)^2$$

Закон сохранения импульса

$$\mathbf{p} - \mathbf{p}' = \mathbf{p}'_e$$

$$\mathbf{p}^2 - 2\mathbf{p}\mathbf{p}'\cos(\theta) + (\mathbf{p}')^2 = (\mathbf{p}'_e)^2$$

Откуда находим

$$p' = \frac{p}{1 + \frac{p}{mc}(1 - \cos\theta)}$$

Воспользовавшись тем, что $p = h/\lambda$, получаем

$$\frac{1}{\lambda'} = \frac{1}{\lambda + \frac{h}{mc} (1 - \cos \theta)}$$

или $\lambda' - \lambda = \frac{h}{mc} (1 - \cos \theta) = \lambda_c (1 - \cos \theta)$

где
$$\lambda_{\rm c} = \frac{h}{mc} = 0,024 \ {\rm \AA} - {\rm комптоновская}$$
 длина волны.