Модуль 3. Теоретические основы методов электронной спектроскопии.

Раздел 1. Глубина выхода электронов и исследуемый объем вещества

Тема 1. Сведения из теории столкновений частиц

Общие сведения из теории прохождения ускоренных частиц через вещество

Схема процесса рассеяния частицы на рассеивающем центре, находящемся на поверхности твердого тела

 M_1 , E_0 — масса и энергия налетающей частицы, E_1 — энергия налетающей частицы после рассеяния, M_2 — масса рассеивающего центра, θ_1 — угол рассеяния, θ_0 — угол падения частицы на поверхность.

Иллюстрация понятия дифференциального сечения рассеяния. Регистрируются только частицы, рассеянные в пределах телесного угла Ω, определяемого входным отверстием детектора: 1 – падающий пучок частиц;

2 – мишень, содержащая N_s атомов/см²; 3 – рассеянные частицы; 4 – детектор; 5 – угол рассеяния θ ; 6 – телесный угол Ω захвата детектора. $\frac{d\sigma(\theta)}{d\Omega} \cdot d\Omega \cdot N_s = \frac{4ucno \ частиц, \ рассеянных \ в \ d\Omega}{\Pi on Hoe \ число \ налетающих \ частиц}$ $\sigma(\theta) = \frac{1}{\Omega} \int_{\Omega} \frac{d\sigma}{d\Omega} \cdot d\Omega$ 3 В эксперименте с геометрией, изображенной на предыдущ. слайде, число N_{c} атомов мишени на 1 см² связано с выходом рассеяния Yили числом Q_D зарегистрированных частиц (в идеальном, со 100%-й эффективностью детекторе с телесным углом захвата Ω) соотношением $Y = Q_D = \sigma(\theta) \cdot \Omega \cdot Q \cdot N_c$ где *Q* – полное число налетающих частиц. Значение *Q* определяется интегрированием по времени потока заряженных частиц, падающих на мишень.

Прицельный параметр b

расстояние между траекторией налетающей частицы и параллельной ей прямой, проходящей через рассеивающий центр.

Иллюстрация понятия прицельного параметра: при рассеянии частицы с прицельными параметрами b до b + db отклоняются в телесный угол $2\pi \sin\theta d\theta$

Для характеристики проникновения частиц в вещество вводят следующие параметры: \mathbf{v} – начальная скорость иона, E – его энергия, θ – угол падения иона на поверхность мишени, R – длина пути в веществе, R_p – проективный пробег, x — глубина проникновения.

Средняя энергия, теряемая на единице пути частицей, движущейся в однородном веществе, вычисляется по формуле

 $\frac{dE}{dx} = -NS_n(E)$

Средний пробег *R*(*E*) частицы в Иллюстрация определения параметров, веществе до ее остановки можно характеризующих проникновение частиц в вычислить как

 $R(E) = \int_{0}^{E} \frac{dE'}{NS(E')}$

характеризующих проникновение частиц в вещество. Средний проективный пробег $R_p(E)$ в общем случае меньше величины R(E) из-за рассеяния падающей частицы в веществе.

Кулоновы и атомные единицы измерения физических величин

В вычислениях, связанных с электромагнитным полем, часто используются вместо СИ, СГС, СГСМ и т.д. единицы измерениях величин, которые называют *кулоновыми единицами*. Именно, в качестве единиц измерения массы, длины и времени используются, соответственно

$$m, \frac{\hbar^2}{m\alpha}, \frac{\hbar^3}{m\alpha^2}.$$

Все остальные единицы выводятся отсюда; так, единицей энергии будет

ma²

Если $m = 9,1 \cdot 10^{-23}$ г - есть масса электрона, а $\alpha = e^2$ (e – заряд электрона), то кулоновы единицы совпадают с *атомными единицами*. Атомная единица длины:

- боровский радиус. Атомная единица энергии равна

$me^4/\hbar^2 = 4,36 \cdot 10^{-11} \operatorname{spr} = 27,21 \operatorname{sc}$

(половину этой величины называют *ридбергом*, Ry). Атомная единица заряда есть $e = 4,8\cdot10^{-10}$ эл.-стат. единиц. Переход в формулах к атомным единицам производится, формально, положив e=1, m=1, $\hbar=1$. При $\alpha=Z\cdot e^2$ кулоновы единицы отличаются от атомных.

Модуль 3. Раздел 1. Тема 2. Глубина выхода электронов и исследуемый объем вещества

Глубина выхода электронов: расстояние от поверхности вглубь образца, которое электроны определенной энергии Е могут пройти без потерь энергии

> Электроны, которые испытывают неупругие столкновения и теряют энергию δE при движении от точки их возникновения (рождения, ионизации) поверхности, покидают К твердое тело с меньшей энергией и дают вклад в фон сигнала.

Схема выхода характеристических электронов из твердого тела при падении фотонов высокой энергии на поверхность:

1 – налетающие фотоны;

2 – глубина выхода характеристических электронов.

Представим вещество как источник электронов с интенсивностью потока I_0 и строго определенной энергией E_c и рассмотрим воображаемый тонкий поглощающий электроны слой вещества, который пересекает исходящий поток вторичных электронов.

Любое неупругое столкновение в слое выводит электроны из группы частиц с энергией E_c . Пусть сечение неупругого столкновения равно σ , и в 1 см³ слоя содержится N' рассеивающих центров. Если интенсивность потока электронов в слое обозначить через I, то начальную группу покидают σI электронов в расчете на один рассеивающий центр, а убыль электронов dI на слое толщиной dx равна

 $dI = -\sigma \cdot I \cdot N' \cdot dx,$

(N' - dx - число рассеивающих центров в слое <math>dx единичной площади)

что дает: $I = I_0 \cdot e^{-\sigma \cdot N' \cdot x}$ Средняя длина свободного пробега λ по определению связана с сечением рассеяния соотношением

так, что: $1/\lambda = N' \cdot \sigma$, $I = I_0 \cdot e^{-x/\lambda}$.

Таким образом, число электронов, которые могут выйти за пределы поглощающей пленки, экспоненциально убывает с толщиной пленки. 9

Средняя длина свободного пробега в данном случае может рассматриваться как синоним глубины выхода, и обе величины обозначены одним и тем же символом λ. Средняя длина свободного пробега практически нечувствительна к веществу, в котором движутся электроны.

Универсальная кривая зависимости длины свободного пробега электронов λ от энергии *E*. На сл. Слайде то же, но в других единицах

Сечение неупругого электрон-электронного столкновения

может быть получено с помощью теории рассеяния заряженной частицы в поле центральной силы в импульсном приближении.

• В данном приближении для рассеяния на малые углы, для частиц с одинаковыми зарядами $Z_1 = Z_2 = e$ и одинаковых масс $M_1 = M_2 = m$, движущийся со скоростью *v* электрон передает электрону мишени $\Delta p = \frac{2e^2}{bv}$, где *b* – прицельный параметр. импульс, равный

Обозначим T – энергию переданную от электрона, движущегося с кинетической энергией $E = mv^2/2$ электрону атома мишени, тогда, поскольку

$$E_{kin} = \frac{mv^2}{2} = \frac{m^2v^2}{2m} = \frac{(mv)^2}{2m} = \frac{p^2}{2m}, \text{ то } T = \frac{(\Delta p)^2}{2m} = \frac{4e^4}{2mv^2b^2} = \frac{e^4}{Eb^2}. \quad (*)$$

Дифференциальное сечение $d\sigma(T)$ передачи энергии в
интервале от T до $T + dT$ определяется формулой
 $d\sigma(T) = -2\pi b db$
Из (*) следует: $2bdb = -(e^4/ET^2)dT$, так, что

$$d\sigma(T) = \frac{\pi e^4}{E} \cdot \frac{dT}{T^2}$$

• Полное сечение передачи энергии от движущегося электрона в интервале от $T_{_{MUH}}$ до $T_{_{Makc}}$ равно:

$$\sigma_e = \int_{T_{MUH}}^{T_{MAKC}} d\sigma(T) = \pi \frac{e^4}{E} \left(\frac{1}{T_{MUH}} - \frac{1}{T_{MAKC}} \right)$$

• Для электронов с энергией E порядка нескольких сотен эВ и выше максимальная передача энергии $T_{marc} = E$ намного больше величины T_{mun} . Поэтому

$$\sigma_e \cong \frac{\pi e^4}{E} \frac{1}{T_{_{\mathcal{M}\mathcal{U}\mathcal{H}}}} = \frac{6.5 \cdot 10^{-14}}{ET_{_{\mathcal{M}\mathcal{U}\mathcal{H}}}} \quad \left[c \mathcal{M}^2 \right]$$

[*см*²], если подставлено $e^2 = 14.4$ эВ·Å, а *E* и $T_{_{MUH}}$ в эВ.

Модуль 3.

Раздел 2. Процессы и эффекты при взаимодействии электронов с веществом

Тема 1. Ударная электронная ионизация.

Ударная электронная ионизация – процесс ионизации атома электронным ударом – процесс неупругого взаимодействия ускоренного (до определенных энергий) электрона с атомом в результате которого атом теряет свой электрон.

Сечение σ_{e} ударной ионизации можно оценить по формуле

 $\sigma_e \cong \frac{\pi e^4}{E} \frac{1}{T_{\text{max}}}$ положив $T_{_{MUH}} = E_B$ – энергия связи орбитального электрона, получим: $\sigma_e = \frac{\pi e^4}{EE_B} = \frac{\pi e^4}{UE_B^2},$ где *U*=*E*/*E*_{*B*}. При энергиях налетающих электронов меньше E_R , т. е. при U < 1, сечение ионизации должно быть равным е, произв. ед. нулю. Сечение ионизации имеет максимум при значениях приведенной энергии U ~ 3–4. При E_B =100 эВ и U=4 сечение равно 1.6.10-18 см². Эта величина хорошо 0 0 5 6 8 согласуется с экспериментальными *U*, отн. ед. значениями максимума сечения ударной Сечения ударной электронной иониионизации (измеренными около $U = \frac{14}{2}$). функция приведенной зации, как энергии **U**.

Модуль 3. Раздел 2.

Тема 2. Плазмоны.

Плазмоны – кванты плазменных осцилляций (волн плотности) электронов проводимости (электронного газа, электронного желе), имеют энергию $\hbar \omega_p$ около 15 эВ.

• Возбуждение плазмонов в твердом теле первичными электронами приводят к появлению дискретных пиков в потерях энергии электронов.

• С классической точки зрения плазменная частота ω_p определяется осцилляциями газа валентных электронов в металле по отношению к положительно заряженным остовам атомов.

• Если газ в результате флуктуации смещается наружу из равновесного положения r (т.е. из некоторого объема $4\pi r^3/3$) на величину δr , то в сферической оболочке, содержащей $\delta n = 4\pi r^2 \delta r \cdot n$ электронов, возникает электрическое поле E_p :

$$E_p = \frac{e}{r^2} \cdot \delta n = 4\pi n e \delta r$$

на электроны начинает действовать возвращающая сила:

$$F = -eE_p = -4\pi e^2 \delta rn \quad _{17}$$

Электронный газ из электронов вокруг положительного остова испытывает радиальное сжатие *бг*. Уравнение движения электрона на расстоянии r от ядра:

 $m\ddot{r} = -4\pi ne^2 r$ или $\ddot{r} = -\frac{4\pi e^2}{m} \cdot r$

Если обозначить: $\omega^2 = \frac{4\pi n e^2}{m} \equiv \omega_p^2$,

то получим уравнение гармонических колебаний: $\ddot{r} + \omega^2 r = 0$

Таким образом, частота плазменных колебаний электронного газа:

$$\omega_p = \left(\frac{4\pi e^2 n}{m}\right)^{1/2}$$

$$\boldsymbol{\omega}_{p} = \left(\frac{1}{4\pi\varepsilon_{0}} \frac{4\pi e^{2}n}{m}\right)^{1/2} = \left(\frac{\left(1,6\cdot10^{-19}\right)^{2}\cdot10^{29}}{8,85\cdot10^{-12}\cdot9,1\cdot10^{-31}}\right)^{1/2} = \left(\frac{2,56\cdot10^{-9}}{80,535\cdot10^{-43}}\right)^{1/2}$$

 $= \left(3 \cdot 10^{32}\right)^{1/2} \approx 1,7 \cdot 10^{16} c^{-1}, \quad \hbar \omega_p = 1,05 \cdot 10^{-34} \cdot 1,7 \cdot 10^{16} = 1,12 \cdot 10^{-18} \, \text{Дж}.$

- Плазменную частоту можно рассматривать как "естественную" частоту электрон-ионной системы, возбуждаемой внешними заряженными частицами.
- Измеренные значения энергии объемного плазмона составляют 10.6 эВ для Mg и 15.3 эВ для A1.
- Частота поверхностного плазмона ω_s связана с частотой объемного плазмона следующим соотношением:

$$\omega_s = \frac{1}{\sqrt{2}} \omega_p$$

нектр потерь энергии для
ектронов, отражающихся от
юминия. Начальная энергия
ектронов равна 2 кэВ. Пики
терь соответствуют возбуж-
нию комбинаций поверхностно-
и объемного плазмонов. 19

Модуль 3. Раздел 2.

Тема 3. Средняя длина свободного пробега электронов (расчёт).

Теоретически среднюю длину свободного пробега электронов в твердом теле, содержащем *n* электронов в единице объема, можно оценить в рамках общей теории потерь энергии в твердых телах:

$$-\frac{dE}{dx} = \frac{4\pi e^4 n}{mv^2} \ln B$$

где *B* – отношение энергии частицы к энергии возбуждения. Преобладающая часть потерь энергии электронов (при их начальной энергии 0,5-2 кэВ) в твердом теле приходится на возбуждение плазмонов посредством дальних столкновений. Потери энергии происходят дискретными порциями, равными величине кванта $\hbar \omega_p$. Таким образом, можно положить:

$$B = \frac{2mv^2}{\hbar\omega_n}$$

и с помощью формулы для ω_p выразить потери энергии как: $-\frac{dE}{dx} = \frac{\omega_p^2 e^2}{v^2} \ln \frac{2mv^2}{\hbar \omega_p}$ Боли плотисти и страниции с соверение с с

Если плазмоны главная причина потерь энергии при определении средней длины свободного пробега электронов λ, то можно записать

$$\frac{1}{\lambda} = \left(-\frac{dE}{dx}\right) \cdot \frac{1}{\hbar\omega_p}$$

21

Откуда:

$$\frac{1}{\lambda} = \frac{\omega_p e^2}{\hbar v^2} \ln \frac{2mv^2}{\hbar \omega_p}$$

Например, вычисленное по этой формуле значение $\lambda=9.2$ Å в Al для электронов с энергией 350 эВ ($\hbar\omega_p = 15$ эВ, $v^2 = 2E/m = 1.23 \cdot 10^{18}$ см²/с²) хорошо согласуется с данными, приведенными при демонстрации универсальной кривой зависимости $\lambda(E)$.

Модуль 3. Раздел 2.

Тема 3. Пробеги первичных электронов в твердых телах.

- При анализе материалов ускоренные электроны используются для создания на внутренних оболочках атома твердого тела вакансий, заполнение которых сопровождается ожеэлектронной эмиссией или рентгеновским излучением.
- В случае детектирования характеристического рентгеновского излучения (электронный микроанализ) имеют дело с толщиной приповерхностного слоя, в пределах которого генерируется рентгеновское излучение. Какова же эта глубина?
- Для зондирующих электронов с энергией от 1 до 50 кэВ ситуация представляется более сложной, чем для тяжелых ионов с теми же энергиями, траектория которых является относительно прямой на протяжении большей части пробега.

Траектории электронов, полученные методом Монте-Карло для пучка с энергией 20 кэВ в случае его нормального падения на Fe. Объемная плотность траекторий дает наглядное представление об упругом рассеянии.

Пробег первичного электрона R определяется как полное расстояние, которое электрон проходит в образце вдоль своей траектории, и может быть записано следующим образом: $\frac{0}{dE} = \frac{1}{dE} = \frac{1}$

$$R = \int_{E_0} \frac{dE}{dE/dx} = \int_{E_0} \frac{dE}{N \cdot S(E)}$$
$$\frac{dE}{dx} \sim \frac{NZ_2}{E} \ln \frac{E}{I} \sim \frac{\rho}{E} \ln \frac{E}{I}$$

где N – концентрация атомов, так что величина NZ_2 пропорциональна ρ , а I – средняя энергия ионизации: $I \sim 10 \cdot Z_2$ (эВ). Экспериментальная зависимость пробега от начальной энергии имеет вид:

$$R \cong \frac{K}{\rho} E_0^{\gamma}$$

где ρ – плотность (в г/см³), K – не зависящая от вещества константа, показатель γ имеет значение между 1,2 и 1,7. Удобно ввести массовый пробег ρR , который в первом приближении оказывается не зависящим от вещества мишени. Пробег электрона R как функция энергии представлен графически для K=0,064 и γ =1,68 на следующем слайде.

Массовый пробег электронов ρR_{X-ray} относительно генерации характеристического рентгеновского излучения имеет меньшую величину, чем массовый пробег ρR , так характеристическое как рентгеновское излучение может возбуждаться ТОЛЬКО при энергиях первичного электрона выше критической энергии возбуждения или энергии связи E_{R} электронов внутренних оболочек атомов. R_{X-ray} определяется формулой:

 $\rho R_{X-ray} = K \left(E_0^{\gamma} - E_B^{\gamma} \right)$

Экспериментальная аппроксимация параметров К и у дает

$$\rho R_{X-ray} = 0,064 \left(E_0^{1,68} - E_B^{1,68} \right)$$
где E_0 и E_B – в кэВ, ρ – в г/см³, R_{X-ray} – в мкм.

Эффективный пробег электронов в Cu и A1 относительно генерации рентгеновского излучения. Пробеги указывают конечную точку проникновения электронов при генерации характеристических излучений: 1 – пробег в алюминии; 2 – пробег в A1 относительно генерации линии AlK_a ; 3 – пробег в A1 с примесью меди относительно генерации линии CuK_a ; 4 – пробег в Cu относительно генерации линии CuK_a ; 5 – пробег в Cu относительно генерации линии CuK_a .