МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Инженерная школа природных ресурсов Специальность 21.05.02. Прикладная геология Отделение геологии

КУРС ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ «ЛИТОЛОГИЯ»

ЛЕКЦИЯ 3 ЛИТОГЕНЕЗ. ТИПЫ ЛИТОГЕНЕЗА

> Лектор: к.г-м.н., доцент Отделения геологии Недоливко Н.М.

Томск – 2022 г.

СОДЕРЖАНИЕ ЛЕКЦИИ ЛИТОГЕНЕЗ. ТИПЫ ЛИТОГЕНЕЗА

3. ТИПЫ ЛИТОГЕНЕЗА

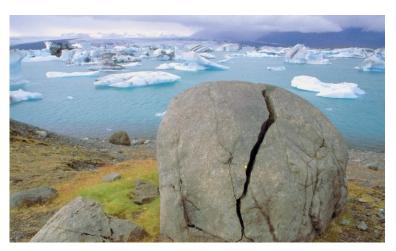
- 3.1 Нивальный
- 3.2 Гумидный
- 3.3 Аридный
- 3.4 Вулканогенно-осадочный
- 3.5. Океанский

Тип литогенеза – это совокупность факторов и процессов, определяемых особенностями климатической зональности на поверхности Земли и спецификой этих процессов в районах вулканической деятельности и на дне океанов

Типы литогенеза – это самые крупные естественные комплексы условий, которые определяют формирование осадков и пород, качественно отличающихся в различных комплексах

Нивальный тип литогенеза (от лат. nivalis – снежный, холодный)

Полярные области Земли



Высокогорные области Земли

Условия

- **Расположение:** полярные зоны Земли и высокогорные области с ледовым покровом
- **Температурный режим:** господство отрицательных среднегодовых температур воздуха
- Вода в твердом состоянии
- **Органический мир** крайне бедный (мхи, лишайники, травянистые растения), скудная животная жизнь

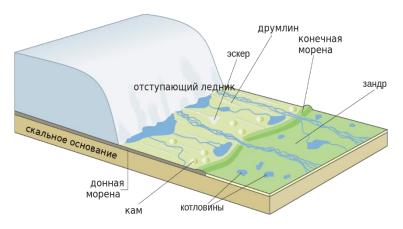
Нивальный тип литогенеза Гипергенез

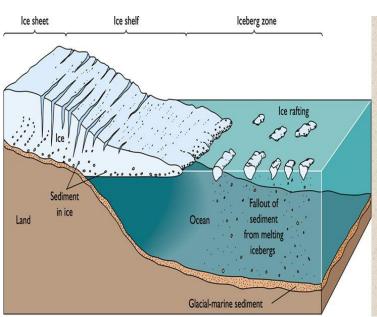
Морозное выветривание

Морозное выветривание

о Выветривание:

- преимущественно механическое (морозное)
- химическое и биологическое подавлено


Продукты выветривания: разноразмерные обломки пород и минералов:


- на суше продукты механического выветривания материнских пород
- на море продукты абразии берег

Свойства исходных продуктов:

- осадки весьма грубые,
- несортированные,
- химически незрелые: свежие,
 невыветрелые.

Нивальный тип литогенеза Седиментогенез. Транспортировка материала

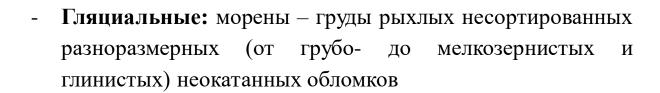
Агенты переноса:

- лёд главный,
- сила тяжести, вода, ветер второстепенные

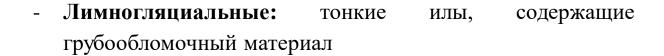
о Транспортировка

- на суше ледниками и талыми водами (временные потоки)
- в море айсбергами и припайными льдами

о Переносимые осадки


• несортированный обломочный материал

о Дифференциация


- только в периферических областях в отложениях:
 - талых потоков
 - ледниковых озер
 - морей

Нивальный тип литогенеза Седиментогенез. Осаждение и аккумуляция материала

Гляциальные отложения

Флювиогляциальные осадки

Лимногляциальные осадки

Нивальный тип литогенеза Диагенез и полезные ископаемые

Особенности диагенеза:

•отсутствует физико-химическое уравновешивание осадка (в связи с подавленностью химических и биологических процессов)

Процессы:

- •основной уплотнение
- •слабо проявлено вторичное минералообразование: гидрослюдизация и кальцитизация

Полезные ископаемые

- о строительные материалы:
 - конгломераты,
 - брекчии,
 - пески,
 - глины

Гумидный тип литогенеза (от лат. Humidus – влажный)

Тропический пояс

Экваториальный пояс

Умеренный пояс

Условия

• Расположение:

• влажные зоны Земли: умеренный, тропический, субтропический пояса

• Температурный режим:

 господство круглогодичных положительных температур воздуха

Вода:

положительный баланс влаги;
 транзитный сток воды, участки переувлажнения

• Органический мир:

- сплошной растительный покров,
- богатый и разнообразный животный мир

Гумидный тип литогенеза. Гипергенез

Почвенный слой – результат биологического выветривания

Химическая (ферраллитная) кора выветривания

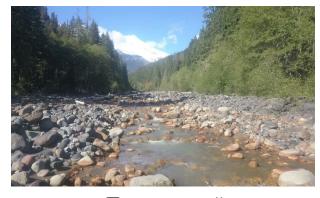
Обломочная кора выветривания

о Выветривание:

- физическое
- химическое
- биологическое
- Коры выветривания мощные с зональным строением и остаточными продуктами (глинами, оксидами железа, марганца, алюминия), почвой

о Продукты выветривания:

- обломочный материал
- коллоидные и растворенные химические вещества
- органические вещества и продукты жизнедеятельности


Осадочный процесс незавершенный:

 легко растворимые хлориды, сульфаты, карбонаты и др. выносятся

Гумидный тип литогенеза. Седиментогенез. Перенос материала

Перенос силой тяжести

Перенос водой

Перенос ветром. Речные дюны

Агенты переноса:

- сила тяжести (гравитации)
- вода
- животные и растительные организмы
- ветер

о Транспортировка

- под действием силы тяжести
- водой (временные и постоянные водотоки)
- растительными и животными организмами
- ветром

о Переносимые осадки

- обломочный материал
- химические вещества в виде коллоидов и растворов
- органические вещества

о Дифференциация материала

• по крупности, плотности, окатанности, химическим свойствам

Интеграция (смешивание)

• обломков, органических и химических веществ

Гумидный тип литогенеза. Седиментогенез. Осаждение и аккумуляция материала

Терригенные осадки. Конгломераты

Хемогенные осадки. Железные руды

Биогенные осадки. Торф

Осуществляются:

- **на суше** (коры выветривания, континентальные территории)
- в водных системах: бассейнах (озера, болота), речных системах

о Тип осадков:

- **терригенные** крупнообломочные, песчаные, алевритовые, глинистые, россыпи тяжелых минералов
- **хемогенные** глиноземистые, железистые, марганцевые, глинистые: каолиновые, нонтронитовые и др.
- хемобиогенные фосфатные
- биогенные торф, сапропель

Гумидный тип литогенеза. Диагенез

Кремневая конкреция

Конкреция пирита

Конкреции фосфатов

о Особенности:

• физико-химическое уравновешивание механических, химических и органических веществ в насыщенном водой осадке

о Процессы:

- аутигенез вторичное минералообразование (фосфаты, глауконит, каолинит, гидрослюды, монтмориллонит, цеолиты, кремнеземистые минералы, карбонаты, сульфаты, сульфиды и др.)
- уплотнение
- Литификация переход рыхлых пород в твердые: песок песчаник; алеврит алевролит; ил уплотненная глина

Гумидный тип литогенеза. Полезные ископаемые

- строительные материалы: щебень, гравий, галька, песок, алеврит, глина, известняк
- **рудное сырье:** бокситы, железные и марганцевые руды; триада Al-Fe-Mn является индикатором гумидного типа литогенеза
- **сырье для керамической и стекольной промышленности:** каолиновые глины, кварцевый песок и др.
- сырье для химической промышленности: фосфориты
- **россыпи:** касситерита (Sn), золота, платины, титанистых минералов, ильменита, циркона, алмазов, гранатов, янтаря и др.
- **горючие полезные ископаемые:** торф (на стадии катагенеза переходит в бурый, каменный уголь, антрациты), сапропель (а также образованные при катагенезе из органического вещества природные горючие газы и нефть)

Аридный тип литогенеза (от лат. aridus – сухой, иссохший)

Жаркие годовые температуры

Разреженная растительность

Условия

- Расположение:
 - сухие зоны Земли: пустыни, полупустыни
- Температурный режим:
 - господство жарких годовых температур воздуха
- Ветер:
 - энергичная деятельность
- Вода:
 - Баланс метеорных вод отрицательный: дефицит влаги, испарение намного превышает количество выпадающих осадков
- Органический мир:
 - разреженная растительность,
 - отсутствует сплошной растительный покров

Аридный тип литогенеза. Гипергенез

Эоловые останцы и разноразмерный обломочный материал с железистыми пленками

Солончак

о Выветривание:

- физическое преобладает
- химическое развито слабо
- биологическое развито слабо

О Продукты выветривания:

- обломочные: от глыб до алевритов (реже глинистых пород) часто с железистыми пленками
- химические:
- соляные,
- железистые,
- марганцевые,
- кремнистые,
- карбонатные,
- гипсовые,
- скопления тяжелых металлов и хлоридов

Аридный тип литогенеза. Седиментогенез. Перенос материала на суше

Перенос материала ветром

о Агенты переноса:

- ветер
- сила тяжести
- капиллярный подток близповерхностных выпаривающихся растворов

о Транспортировка

- воздушный перенос
- капиллярный перенос

о Переносимые осадки

- преимущественно обломочный материал
- химические вещества остаются на месте

о Дифференциация материала

• по крупности, плотности, окатанности, шлифовке

Аридный тип литогенеза. Седиментогенез. Осаждение и аккумуляция материала на суше

Эоловые пески

о Образуются:

- обломочные осадки:
- эоловые пески
- лёссы (нем. Löß или Löss однородные желтые известковистоглинисто-алевритовые и известковопесчано-глинистые тонкопористые породы
- такыры глинистые засолоненные осадки высохших озер

о Форма тел:

- песчаные поля с ветровой рябью, валами, барханами, распространенные на огромные территории
- лёссы покровы по периферии песчаных полей

Аридный тип литогенеза. Седиментогенез. Осаждение и аккумуляция материала в водоёмах

Соленое озеро. Египет
https://pics.photographer.ru/nonstop/pics/pictures/940/94087

Meртвое море. Израиль. https://ocean-media.su/wp-content/uploads/2017/03/Mertvoe-more.jpg

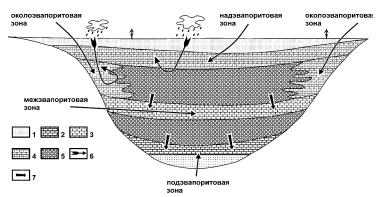
Источники осадочного материала:

- терригенный и карбонатный зона гипергенеза аридного литогенеза
- терригенный и химический (коллоиды и растворы) – соседние гумидные зоны

Участки осадконакопления:

• замкнутые (озера) или полузамкнутые (заливы, лагуны, лиманы) непроточные водоемы, изолированные или слабо сообщающиеся с морем

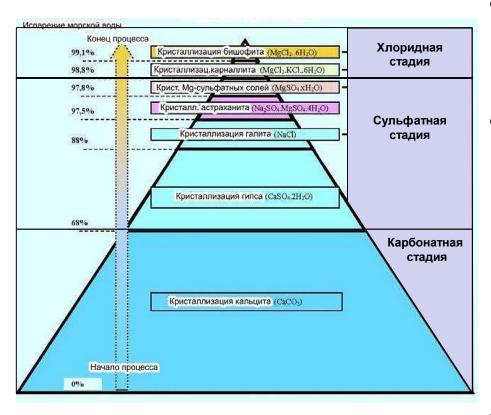
Условия осаждения:


• высокая испаряемость воды и увеличение концентрации химических веществ в бассейнах седиментации

Аридный тип литогенеза. Седиментогенез. Осаждение и аккумуляция материала в водоёмах

Пласты каменной соли.

https://check in time.ru/wp-content/uploads/2020/01/d2e97eef3c464c0cd800569ffe10d5e6.


Схема эвапорит-содержащего осадочно-породного бассейна:

1 – глинисто-алевритовые породы; 2 – известняк; 3 – доломит;
 4 – глинисто-мергельные породы с прослоями известняков;
 5 – эвапориты; 6 – направление движения пресных инфильтрационных вод, превращающихся в рассолы выщелачивания; 7 – направление движения рапы, превращающейся в седиментогенные рассолы

о Осадок:

- **рапа** высокоминерализованный солевой раствор (карбонатов, сульфатов, хлоридов и др.)
- терригенный алеврит-глинистый материал
- о Осаждение:
 - физико-химическим путем (биологическая жизнь подавлена из-за высокой солености)
- Цикл осадконакопления полный:
 - завершенная химическая седиментация: осаждаются все вещества, привнесенные из аридной и гумидной зон
- Образованные породы:
 - **эвапориты** (лат. Evaporo испаряю) ассоциация хемогенных осадков:
 - *труднорастворимых* (кальцит, доломит, магнезит, гипс)
 - *легкорастворимых* (галит, сильвин, карналлит, глауберит, мирабиллит, сода и др.)

Аридный тип литогенеза. Седиментогенез. Осаждение и аккумуляция материала в водоёмах

Последовательность кристаллизации эвапоритовых осадков из морской воды. https://mypresentation.ru/documents_6/8d62a1154e62a2 b6b89702614d5ee0b3/img4.jpg

Химическая дифференциация:

• по степени растворимости: раньше осаждаются труднорастворимые соли, позднее – легкорастворимые

Стадийность седиментации:

- *1 стадия карбонатная:* осаждаются труднорастворимые соли магнезит, доломит, кальцит,
- 2 стадия сульфатная: осаждаются легкорастворимые сульфаты гипс, ангидрит, барит;
- *3 стадия хлоридная:* осаждаются легко растворимые соли галит, сильвин, карналлит, бишофит

Терригенные осадки:

- пески
- алевриты
- глины гидрослюдистые и монтмориллонитовые

Аридный тип литогенеза. Диагенез. Полезные ископаемые

о Диагенез:

- обменные реакции между выделившимися из раствора минералами и рапой:
- дегидратация отщепление воды

Полезные ископаемые

- **химическая промышленность и медицина**: соды, соли, гипс, фтор, бром, бор, йод;
 - производство удобрений: калийные соли;
 - пищевая промышленность: каменная соль галит;
- цветная металлургия полиметаллические руды: стратиформные месторождения меди, свинца и цинка, образующие *аридную рудную триаду Си-Рь-* **Z**n; а также стронций, рубидий, цезий и др.;
 - энергетические ресурсы залежи концентрации урана;
 - строительные материалы песок, известняк, гипс;
 - россыпные месторождения.

Вулканогенно- осадочный тип литогенеза

Твердые выбросы вулкана.

https://cdn.bielousov.com/wp-content/uploads/2020/01/castle-geyser-960x640.jpg

Гейзер. Термальные воды

https://cdn.bielousov.com/wp-content/uploads/2020/01/castle-geyser-960x640.jpg

оРасположение:

• районы вулканической деятельности

оОсобенности:

- аномален по отношению к широтной климатической зональности
- характерен для суши и океанов

оУсловия поступления материала:

- эксплозивная деятельность вулканов
- термальные минерализованные источники

оПоставляемый материал:

- **твердые и рыхлые вещества**: (ювенильный материал)
- растворы термальные минерализованные воды
- **газы** и пары (эксгаляции) рассеиваются, в осадочном процессе практически не участвуют

оОсадки:

- пирокластика (от греч. руг огонь и klao ломаю): вулканические бомбы, лаппили, вулканический песок, пепел, и др.
- **химические** твердый (сера) и растворенный (карбонатные, кремнистые воды) материал

Вулканогенно- осадочный тип литогенеза. Гипергенез. Седиментогенез. Транспортировка материала

Гипергенез

*Гипергенез п*рактически отсутствует: осадочный материал практически сразу же вовлекается в перенос и осаждение, минуя выветривание.

Седиментогенез. Перенос материала

•Агенты переноса:

- сила взрыва,
- сила тяжести,
- ветер,
- вода,
- лед;
- термальные растворы

•Интеграция:

смешивается вулканогенный и осадочный материал (нивального, гумидного и аридного литогенеза

•Дифференциация механическая:

осуществляется уже в воздухе:

- более крупные тяжелые обломки оседают вблизи вулканов,
- вулканический пепел переносится на огромные расстояния сотни и тысячи км

Вулканогенно- осадочный тип литогенеза. Седиментогенез. Осаждение и аккумуляция материала

Вулканический туф
https://upload.wikimedia.org/wikipedia/commons/thu
mb/f/fc/Tuff_with_kaersutite.jpg/1200pxTuff with kaersutite.jpg

Туфопесчаник http://paleostratmuseum.ru/file s/402-18.jpg

Кремнистый туф

http://geo.web.ru/druza/m-geyz_11-1.JPG

Известковый туф

http://paleostratmuseum.ru/files/389_13_02.jpg

Cepa

http://www.masteraurala.net/files/img/big/1277697717mi.jpeg

Опал

http://insminerals.ru/Sale12/ Sp581847.jpg

о Породы вулканогенно-осадочные:

- обломочные смешанного состава:
 - туфы (>90% пирокластики),
 - туффиты (от 50 до 90%),
 - туфогены (менее 50%)

Цемент: пепловый, глинистый, карбонатный и др.

• химические:

- карбонатные туфы
- кремнистые туфы

глинистые породы:

- каолинитовые глины
- хлоритовые глины

• минералы:

- сульфаты
- самородная сера
- сульфиды
- опал

Вулканогенно- осадочный тип литогенеза. Диагенез

о Особенность:

• протекает быстрее, чем диагенез нормально осадочных пород

о Процессы:

- уплотнение осадка,
- вторичное минералообразование,
- перекристаллизация
- литификация

о Вторичное минералообразование:

- вулканическое стекло растрескивается, раскристаллизовывается, гидратируется, замещается хлоритом, карбонатами, опалом, халцедоном;
- обломки минералов (кристаллокласты) и вулканических пород (литокласты) замещаются глинистыми (каолинитом, монтмориллонитом) и карбонатными минералами, цеолитами, хлоритом, оксидами и гидроксидами железа, марганца и др.

Вулканогенно- осадочный тип литогенеза. Полезные ископаемые

- **строительные материалы** туфы
- **минеральные удобрения** пеплы
- **химическое сырье**: сульфиды (пирит и др.), арсенаты, соединения сурьмы, редкие и рассеянные элементы: Cu, V, Si, Pb, Zn, Be, Sn, Co, Ni и др.
- нерудные:
 - *связанные с термальными растворами:* самородная сера, сульфаты, каолиновые глины, опал, флюорит, гипс, оникс, алунит, бор
 - связанные с подводным вулканизмом: яшмы
- рудные: железа, марганца
- термальные воды.