МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «НЕФТЕГАЗОВАЯ ЛИТОЛОГИЯ»

НАПРАВЛЕНИЕ (СПЕЦИАЛЬНОСТЬ) ООП

05.04.01 ГЕОЛОГИЯ

ПРОФИЛЬ ПОДГОТОВКИ (СПЕЦИАЛИЗАЦИЯ)

«Нефтегазопромысловая геология»

КВАЛИФИКАЦИЯ: магистр

Разработчик Н.М. Недоливко, к.г.-м.н., доцент кафедры Геология и разведки полезных ископаемых

Лабораторная работа 3 ОПИСАНИЕ СЕДИМЕНТОГЕННЫХ И СИНГЕНЕТИЧНЫХ ТЕКСТУР 2 часа, 2 балла

Седиментогенез (om лam. sedimentum — ocedanue и ...генез — от греч. genesis — происхождение, возникновение) — стадия литогенеза, при которой осуществляется перенос, осаждение и аккумуляция осадка на дне различных водоёмов и на суше.

На стадии седиментогенеза закладываются многие особенности осадочных толщ, которые в последующем определяют коллекторские и экранирующие свойства пород. К ним относится и текстура, которая определяется взаиморасположением частей породы, их ориентировкой относительно друг друга, поверхности напластования и породы в целом.

Текстура является выражением анизотропии породы, отражающей анизотропию пространства – среды, в которой образовалась порода. Она имеет исключительно большое генетическое значение и без учета текстуры пород нельзя оценить ее фильтрационные свойства.

Различают первичные и вторичные седиментогенные текстуры (таблица 3.1).

Первичные (седиментационные, седиментогенные) текстуры образуются в момент осаждения осадка и отражают характер и динамику среды осадконакопления. Седиментогенные текстуры можно разделить на два основных типа: 1) неслоистые (массивная, беспорядочная, пятнистая, узловатая, комковатая, гранулированная), образованные в условиях стабильного режима седиментации; 2) слоистые, образованные в условиях меняющейся динамики среды.

Слоистость бывает сплошная и прерывистая. Для определения масштабов и степени выраженности слоистости применяют термины «слои», «слойки», «слойчатость», «слоеватость».

Слои — геологические тела существенно однородного литологического состава (часто с одинаковой окраской), обладающие ясно выраженными подошвой и кровлей.

Слойки выделяются внутри слоев – первичные элементы слоистости, обособленные в теле слоя элементы более мелкого масштаба, имеющие визуально различимые границы ограничения.

Слойчатость – первично-горизонтальное или наклонное расположение слойков и их серий в пределах слоя.

Слоеватость — наличие ориентированных компонентов породы в однородных слоях: растительного детрита, слюдистых минералов, раковин, гравия, гальки и т.д.

По толщине слоев, выделяют текстуры: массивнослоистые — более 50 см; крупнослоистые — от 10 до 50 см; среднеслоистые — от 2 до 10 см; тонкослоистые — от 0.2 до 0.2 см; листоватые (микрослоистые) — менее 0.2 см.

В породах встречаются также линзы – укороченные тела, в которых мощность резко уменьшается к периферии.

По способу образования слоистых текстур выделяются три основных морфологических типа (табл. 3.1):

- -горизонтальнослоистые,
- -волнистослоистые,
- -косослоистые.

В текстурах горизонтально- и косослоистых слойки прямолинейные, в волнистослоистых текстурах – изогнутые.

Таблица 3.1 Первичные (седиментогенные) текстуры пород

Тип и способ	Вид	Тип и способ	Вид
образования	текстуры	образования	текстуры
текстуры	в керне	текстуры	в керне
Биогенная		Массивная	
представлена раковинным и растительным детритом и их целыми экземплярами, захороненными на дне, располагающимися беспорядочно или послойно.	0	(однородная) — характеризуется равномерным распределением частей. Образуется в слабо изменчивых обстановках: дно озер (низкая динамика), прибрежные бары (высокая динамика).	
Беспорядочная – образуется при меняющихся условиях осадконакопления (изменение динамики, обрушение и т.д.), характеризуется незакономерным, хаотичным, не ориентированным расположением частей		Горизонтальносло истая — образуется при отсутствии движения воды или при ламинарном движении; осадок осаждается в вертикальном направлении под действием силы тяжести.	
Косослоистая однонаправленная — образуется в высокодинмичных средах с поступательными, направленными, потоковыми, движениями или воздушным перемещением	Косая однонаправленная	Косослоистаяразн онаправленная (клиновидная) — образуется при возвратно-поступательном движении воды	Косая разнонаправленная

Волнистослоистая – Волнистообразуется линзовидная колебательных образуется при (волновых) волнении, или пульсационных сопряженном c (порывы) движениях размывом И воды ИЛИ воздуха наложении волн (ветра). друг на друга. Косоволнистая Косоволнистая образуется при разнонаправленна волнении, **я** – образуется при сопряженном c возвратнопоступательным поступательном перемещением воды движении воды течениями

Волнистослоистые текстуры с симметричными волнами характерны отложений, сформированных в среде с возвратно-поступательным движением (рябь волнений); с асимметричной — для поступательных движений воды (рябь течений) и ветра (рябь эоловых песков). Волнистая слоистость указывает на глубины не более 100 м; характерна для прибрежно-морских, заливных, озерных, реже — пойменных отложений.

В косослоистых текстурах углы наклона слойков по отношению к плоскости напластования могут быть пологими ($<20^\circ$), средними (30– 20°) и крутыми ($>30^\circ$); а направление слойков — однонаправленным (параллельным) и разнонаправленным (клиновидным). Чем круче наклон слойков, тем сильнее наклон дна или сильнее динамическая активность среды седиментации.

Кроме основных типов слоистости в породах часто отмечаются комбинации различных типов слоев, дающих текстуры сложного типа (например: волнистолинзовиднослоистые, косоволнистослоистые).

Слойки и группы слойков (серии) характеризуются морфологическими признаками, присущими самим слойкам (и сериям): формой, взаимоотношением, наклоном, ориентировкой, выдержанностью и четкостью границ, так и признаками, связанными с веществом породы (таблица).

Схема описания слоистости и серий, предложенная Л.М. Ботвинкиной, приведена в таблице 3.2.

Таблица 3.2 Схема описания слоистости по основным признакам, по Л.Н. Ботвинкиной

Схема описания слоистости по основным признакам, по л.п. вотвинкиной			
Предмет	Морфологические	Признаки, связанные с	
описания	признаки	веществом породы	
		(обусловленность)	

	1. Форма (прямолинейные,	1. Состав в пределах серии
ИИ	криволинейные, S-образные) и	(однородный, неоднородный)
ebi	мощность, см	2. Характер сортировки зерен
Z	2. Взаимоотношения (параллельные,	3. Приуроченность
НО	сходящиеся)	включений или примесей
То	3. Наклон (пологие, крутые), типичный	(растительный детрит, остатки
Слойки одной серии	4. Выдержанность границ	фауны, слюдистые минералы,
10 <u> </u>	(непрерывные, прерывистые)	галька и др.)
\bar{C}	5. Четкость границ (резкие, отчетливые,	4. Окраска
	неотчетливые, постепенный переход).	
	1. Форма (горизонтальные, прямые,	1. Изменение размера зерен в
	изогнутые, волнистые, мульдообразные,	серии и приуроченность
<u> </u>	косоклиновидные)	наиболее грубого материала
Серии слойков	2. Взаимоотношения (параллельные,	2. Изменение зернового
10 <u> </u>	перекрестные)	состава в ряде серий по разрезу
] S	3. Ориентировка слойков в смежных	снизу вверх
ИИО	сериях (однонаправленные,	3. характер включений и их
Get C	разнонаправленные)	приуроченность к
	4. Четкость границ серий (резкие,	определенной части серии
	отчетливые, неотчетливые, постепенный	4. Окраска
	переход)	

Вторичные (ранние наложенные, сингенетичные) текстуры образуются после осаждения первичного осадка, отражают изменение среды седиментации, изменения физических свойств осадка, проявления жизнедеятельности.

Если неконсолидированный осадок после накопления взмучивается, размывается, переотлагается, проседает в подстилающий слой, сползает под действием собственной силы тяжести по склону, перерабатывается донными организмами и корневыми системами, формируются сингенетические текстуры (таблица 3.3).

Таблица 3.2 Вторичные (сингенетичные) текстуры

Тип и способ	Вид текстуры	Тип и способ	Вид
образования текстуры		образования	текстуры
		текстуры	в керне
Биогенные текстуры — остатки корневых систем — образуются на зарастающих поймах, побережьях, болотистых участках		Текстуры биотурбационные — обусловленные наличием в породе следов жизнедеятельности донных организмов.	

Текстуры гидроразрыва образуются при резком возрастании гидродинамики, размыве осадка (подстилающего или бокового выполнения).	Текстуры размыва образуются при усилении динамики, выражены в несогласном залегании слоев неровным контактом.	
Текстуры взмучивания образуются при слабом изменении динамики водной среды на дне водоемов.	Текстуры оползания образуются при сползании насыщенного водой осадка под действием силы тяжести.	
Текстуры затекания образуются при внедрении более тяжелого полувязкого осадка в нижележащие отложения	Текстуры нагрузки и оседания — образуются при проникновении более тяжелого осадка в нижележащие отложения	

Ход работы

- 1) Определить литологический состав пород, слоев, включений.
- 2) Установить тип седиментогенной текстуры.
- 3) Установить тип сингенетичной текстуры.
- 4) Установить основной тип и подтипы слоистости.
- 5) Выполнить анализ переходов одних слойков в другие.
- 6) Установить характер переслаивания (частое, редкое, ритмичное и т.д.) и степень выраженности слоев.
- 7) Произвести измерения текстурных элементов, которые можно оценить метрически (углы наклона слойков, толщину, размеры включений и т.д.).
- 8) Установить масштаб слоистости.
- 9) Определить причину образования слоистости (неравномерность поступления материала, изменение динамики среды) и характер движения среды седиментации.
- 10) Выполнить описание текстурных особенностей пород и установить генетическую природу формирования седиментогенной и сингенетичной текстур.