Адиабатическая система – это система, которая не получает теплоты извне и не отдает ее. Парамагнитные вещества, такие, как ионы редкоземельных и переходных металлов, содержат магнитные диполи благодаря спину неспаренных электронов. Джиок объяснял это так: «Их нормальное состояние – это состояние неупорядоченности, которое соответствует какой-то величине энтропии. Когда накладывается достаточно мощное магнитное поле, магнитики выстраиваются в линию и энтропия понижается». А так как любой процесс, сопровождающийся изменением энтропии, может быть использован для получения тепла или холода, то это привело Джиока к мысли, что адиабатическое размагничивание может дать возможность создать метод получения более низких температур, чем методы с использованием жидкого гелия.

В течение восьми лет Джиок и его сотрудники в Беркли конструировали оборудование, необходимое для адиабатического размагничивания. В 1933 г., используя сульфат гадолиния, Джиок и его коллега Дункан Макдугол достигли температуры, равной 0,25°К. Для измерения температуры ниже 1°К Джиок изобрел термометр, основанный на измерении электрического сопротивления аморфного углерода. Этот метод магнитного охлаждения предоставил дополнительные доказательства правильности третьего начала термодинамики и имел самое различное промышленное применение, включая улучшение качества каучуков, бензина и стекла.

В 1949 г. Джиок. был награжден Нобелевской премией по химии «за вклад в химическую термодинамику, особенно в ту ее область, которая изучает поведение веществ при экстремально низких температурах». По мнению члена Шведской королевской академии наук Арне Тиселиуса, который вручал награду, «достижения Джиока в области химической термодинамики и особенно его работа по поведению материи при низких температурах... является одним из наиболее важных вкладов в современную физическую химию».

Кроме Нобелевской премии, Джиок был награжден медалью Чарлза Фредерика Чендлера Колумбийского университета (1936), медалью Крессона Франклиновского института (1937) и медалями Уилларда Гиббса (1951) и Джилберта Ньютона Льюиса (1956) Американского химического общества. Он являлся членом американской Национальной академии наук, Американского философского общества, Американского химического общества, Американского физического общества и Американской академии наук и искусств. Ему были присвоены почетные степени Колумбийского и Калифорнийского университетов.

Началом эры современной физической химии принято (конечно, очень условно) считать

1887-й год. В этом году был основан первый журнал, посвященный физической химии, - «Zeitschrift für Physikalische Chemie». Местом, в котором было положено начало этому журналу, была Рига; основателями его были Вант-Гофф и Оствальд.

Несмотря на то, что отец посоветовал ему изучать инженерное дело, Вильгельм Оствальд увлекся химией и в 1872 г. стал студентом химического факультета Дерптского (ныне Тартуского) университета. Четыре года спустя он получил степень бакалавра и остался в Дерпте в аспирантуре, занимая одновременно должность приват-доцента (внештатного преподавателя).

Положения магистерской работы Оствальда в Дерптском университете касались изменений объема, которые происходят во время нейтрализации кислот основаниями в разбавленных растворах.

В 1884 г. Оствальд получил текст, вызвавшей горячие споры докторской диссертации Сванте Аррениуса, которая была представлена к защите в Упсальском университете. Работа Аррениуса получила низкий рейтинг в Упсальском университете. Оствальд, однако, счел его идеи достойными внимания и немедленно применил их для проверки результатов своих собственных исследований сродства кислот. «Воспользовавшись магазином сопротивлений, позаимствованным на несколько дней на телеграфе (дольше там без него не могли обойтись)... я вскоре провел опыты со всеми имевшимися под рукой кислотами, которые мне предоставили другие исследователи, – вспоминал позднее Оствальд – С все возрастающим волнением я обнаруживал, что результаты один за другим подтверждали предсказания и ожидания».

Оствальд, не только поддержал идеи Аррениуса, но и способствовал их распространению среди химиков. Более того, он добился, чтобы Аррениус получил постдокторскую стипендию (ее можно получать в течение года после защиты докторской диссертации. – Ред.) и, таким образом, смог продолжить свои исследования.

Интерес к теории ионной диссоциации позволил Оствальду увидеть в ней прекрасное объяснение многих химических реакций, в которых катализаторами служат слабые кислоты и основания. Когда существует химическое равновесие, скорость протекания прямой и обратной реакций одинакова. Оствальд доказал, что присутствие катализатора ускоряет реакцию в обоих направлениях в одинаковой степени. Он также продемонстрировал, что система переходит от менее устойчивого состояния к более устойчивому постепенно и не всегда достигает своего самого устойчивого состояния. Применив свои знания каталитических процессов в целях развития промышленности, ученый исследовал возможности синтеза аммиака из водорода, используя в качестве катализатора железную проволоку.

В 1890 г. Оствальд заинтересовался взглядами на энергию как на первооснову всего физического мира. Скептически относясь ко всем материалистическим концепциям, и особенно к атомно-молекулярной теории, Оствальд полагал, что природные явления могут объясняться превращениями энергии. В соответствии с этим подходом он вывел законы термодинамики на уровень философских обобщений.

В 1909 г. Оствальду была присуждена Нобелевская премия по химии «в знак признания проделанной им работы по катализу, а также за исследования основных принципов управления химическим равновесием и скоростями реакции». Представляя его от имени Шведской королевской академии наук, Ханс Хильдебранд указал на ценность открытий Оствальда не только для развития теории, но и для их практического применения, такого, как производство серной кислоты и синтез красителей на основе индиго. Хильдебранд также предсказал, что химия катализа во многом поможет понять функцию фермента.

В 1900 с участием Оствальда был разработан процесс получения азотной кислоты окислением аммиака на платиновом катализаторе. Используя этот процесс и предложенный Габером и Бошем дешевый способ производства аммиака, Германия смогла обеспечить себя взрывчатыми веществами во время Первой мировой войны. Эти же процессы используются сегодня для производства удобрений.

Широко известна деятельность Оствальда как организатора науки. В его лаборатории физической химии в Лейпцигском университете студенты и ученые-химики из разных стран изучали новую науку – физическую химию, многие из них получили впоследствии мировое признание. Среди них – Аррениус, Нернст, Рамзай, Габер.

Оствальду удалось провести реформу науки «Аналитическая химия», под которую он подвел фундамент физической химии.

Вопросы обратимости процессов развивались в работах Николай Николаевича Бекетова.

Бекетов, сын богатого помещика, родился в 1821 г. Окончив гимназию в Петербурге, он поступил в 1844 г. в Петербургский университет, из которого через два года перевелся в Казанский университет. По окончании университета в 1848 г. Бекетов возвратился в Петербург, где начал работать в лаборатории Зинина, лекции которого он слушал еще в Казани.

Работы Бекетова по вытеснению металлов водородом вошли в его докторскую диссертацию: "Исследования над явлениями вытеснения одних элементов другими" (1865 г.). В то время как вытеснение водорода металлами изучалось в течение столетий, обратные реакции были впервые осуществлены Бекетовым и привели его к очень важным выводам: он установил, что многие из реакций вытеснения одних элементов другими - реакции обратимые. Изучая условия, от которых зависит то или иное направление реакции, Бекетов развивает мысли Бертолле о действии масс, дальнейшая разработка которых привела норвежских ученых Гульдберга и Вааге к закону действия масс, который в настоящее время является одним из фундаментальных законов химической кинетики.

Свойства различных растворов будоражат умы ученых. Созданная Аррениусом теория электролитической диссоциации электролитов, позволила Вальтеру Герману Нернсту в 1889 г. создать свою знаменитую теорию электродвижущей силы электрохимического элемента и стать Нобелевским лауреатом.

В 1888–1989 Нернст изучал поведение электролитов при пропускании электрического тока, в результате чего вывел уравнение, которое устанавливает зависимость между электродвижущей силой и ионной концентрацией. Уравнение Нернста позволяет предсказать потенциал электрохимического взаимодействия, когда известны только давление и температура. Таким образом, этот закон связывает термодинамику с электрохимической теорией. Благодаря этой работе 25-летний Нернст завоевал всемирное признание.

В 1890–1891 занимался изучением веществ, которые при растворении в жидкостях не смешиваются друг с другом. Он установил закон их распределения как функцию концентрации. Оказалось, что закон Генри, который описывает растворимость газа в жидкости, – лишь частный случай более общего закона Нернста.

В 1891 Нернст стал адъюнкт-профессором физики Гёттингенского университета. В 1893 был опубликован его учебник физической химии Теоретическая химия с точки зрения закона Авогадро и термодинамики, который выдержал 15 переизданий и служил более трех десятилетий.

В 1894 Нернст стал профессором физической химии в Гёттингенском университете и создал Институт физической химии и электрохимии кайзера Вильгельма.

В 1905 Нернст стал профессором химии Берлинского университета. В том же году сформулировал «тепловую теорему». Он заключил, что энтропия химически однородного твердого или жидкого вещества при абсолютном нуле равна нулю. Это положение называют третьим началом термодинамики или тепловой теоремой Нернста.

В 1912 Нернст, исходя из выведенного им тепловой теоремы, обосновал недостижимость абсолютного нуля. «Невозможно, – говорил он, – создать тепловую машину, в которой температура вещества снижалась бы до абсолютного нуля». Он предположил, что по мере того, как температура приближается к абсолютному нулю, возникает тенденция к исчезновению физической активности веществ.

Нернст пришел к выводу, что соответствующие измерения нужно проводить при температуре, максимально близкой к абсолютному нулю, тогда тепловые эффекты, связанные с состоянием вещества, становятся независящими от температуры. Такой подход позволяет определить энтропию веществ путем точных измерений теплоемкости, а также теплоты и температуры фазовых переходов. В последующее десятилетие Нернст отстаивал и постоянно проверял правильность своей теоремы.

В Первую мировую войну Нернст служил водителем в автомобильном дивизионе работал над созданием химического оружия, которое считал гуманным, поскольку оно могло покончить с военным противостоянием. После войны вернулся в свою берлинскую лабораторию.

В 1921 Нернсту была вручена Нобелевская премия, присужденная в 1920 «в знак признания работ по термохимии». Впервые его выдвинули на Нобелевскую премию в 1906 и представляли регулярно, исключая 1918–1919. В качестве кандидата на премию по химии его предлагали более чем в 70 номинациях. Было достаточно номинаций и на Нобелевскую премию по физике (11 номинаций).

До конца профессиональной деятельности Нернст занимался изучением космологических проблем, возникших в результате открытия им третьего начала термодинамики (особенно так называемой тепловой смертью Вселенной, против которой он выступал), а также фотохимией и химической кинетикой. Это не мешало ему заниматься разными практическими проблемами. Он усовершенствовал электрическую лампочку и сконструировал электрическое пианино.

В начале 20 в. практические запросы промышленности и техники требовали налаживания производства аммиака, который были необходим для нужд сельского хозяйства и для военных целей. Решающий прогресс в разработке синтеза аммиака был достигнут в 1909 профессором химии Технического университета в Карлсруэ Ф.Габером .

В 1909 компания БАСФ (Badische Anilin & Soda-Fabrik) приобрела у Габера патент на разработанный им процесс синтеза и поставила перед своим сотрудником Бошем задачу превратить этот способ в промышленно рентабельный. Метод синтеза аммиака по Габеру требовал не только необычайно высоких давления и температуры, но и использования двух редких и дорогих катализаторов – осмия и урана.

Для решения поставленной задачи было необходимо располагать огромным количеством чистого и недорогого газообразного водорода, дешевыми, эффективными и имеющимися в достаточном количестве катализаторами, а также оборудованием, способным выдерживать высокие давления и температуры. Этой проблемой стал заниматься Карл Бош.

Бошу и его сотрудникам удалось получить необходимые объемы водорода, выделив его из водяного газа (смеси водорода и окиси углерода, которая образуется при пропускании паров воды над раскаленным углем). Затем они занялись поисками недорогих катализаторов, способных заменить предложенные Габером осмий и уран.

И, наконец, Бош усовершенствовал конструкцию аппаратуры, способной выдержать высокие давления и температуры, необходимые для осуществления процесса Габера.

Основная трудность заключалась в конструкции катализаторной реакционной колонны. При высоких давлениях и температурах водород проникает сквозь железные стены колонны, превращая железо в хрупкий сплав, который разрушается. Бош разделил воздействие температуры и давления, создав двухстенный контейнер, между стенками которого оставалось кольцевидное пространство. Водород диффундировал через внутренний цилиндр, но не через внешний. Металлурги БАСФ сварили мягкую, хромированную сталь с пониженным содержанием углерода для внутреннего цилиндра, а для внешнего – прочную углеродистую сталь. В то время как во внутреннем цилиндре при давлении в 200 атмосфер и температуре 500° С шла реакция между водородом и азотом, в пространство между цилиндрами подавалась смесь газообразных водорода и азота под давлением в 200 атмосфер. Таким образом, внутренняя стенка была защищена от резких перепадов давления, а внешняя подвергалась воздействию высокого давления, но не высокой температуры. В 1931 Бошу и Бергиусу совместно была присуждена Нобелевская премия «за заслуги по введению и развитию методов высокого давления в химии».

В 1919 Бош начал работать над неорганическим методом синтеза метанола. Метанол требовался для производства формальдегида, необходимого для получения многих органических соединений, особенно полимеров и удобрений. В 1923 Бош и его сотрудники синтезировали метанол, осуществив реакцию окиси углерода и водорода при высоком давлении в присутствии катализатора.

Бош коллекционировал насекомых, растения и минералы, вел наблюдения в собственной обсерватории в Гейдельберге и оказывал постоянную финансовую поддержку астрофизической обсерватории Альберта Эйнштейна (Нобелевская премия по физике, 1921) в Потсдаме.

В гетерогенном катализе химические превращения реактантов происходят на поверхности твердого катализатора, поэтому эффективность катализатора зависит от величины и состава его поверхности. Свойство адсорбировать исходное вещество и десорбировать продукты реакции и определяет качество катализатора.

Существует два принципиально разных подхода в построении термодинамики поверхностных явлений и корректном термодинамическом расчете величин адсорбции: метод слоя конечной толщины (Теория Лэнгмюра) и метод поверхностных избытков Гиббса.

Джозайе Уилларде Гиббсе внес не-оценимый вклад в создание термодинамики поверхностных явлений. Он родился в неболыпом городке Нью-Хейвен в штате Коннектикут 11.02.1839 г., почти 30 лет проработал профессором математической физики в Йельском университете того же штата, печатался в Известиях Коннектикутской академии и опубликовал всего 29 работ. Основные работы написаны в виде трех серий статей: «О равновесии гетерогенных ве-ществ» (1876—1878), «Элементы векторного анализа» (1881—1884) и «Основные принципы стати-тической механики» (1902). Публикаций немного, Гиббс вообще не любил собраний, публичных выступлений и просто публики. Говорил он мало, работал очень много и регулярно имел не более 2—3 учеников. Но зато какие это были работы! В них Гиббс предложил правило фаз, ввел понятие химического потенциала, разработал термодинамику поверхностных и электрохимических процессов, основы статистической механики и термодинамики. В результате Гиббс однозначно считается основоположником термодинамики гетерогенных систем и статистической механики.

Его современник Ле Шателье писал, что между решениями многих частных задач, существовавших до Гиббса, и предложенными Гиббсом общими решениями та же разница, что и между решениями задач на максимум и минимум древними греками и возможностями современного дифференциального исчисления. Первым работы Гиббса заметил Максвелл, пришедший в восторг от его подходов, далее популяризаторами идей Гиббса и активными участниками их развития стали Гельмгольц, Макс Планк, Релей, Ван-дер-Ваальс, Оствальд, Ле Шателье, Томсон, Рамзай... В России идеи Гиббса активно пропагандировали Менделеев, Коновалов и Каблуков.

Ирвинг Ленгмюр, став студентом Колумбийского университета, записался и в Горный институт, так как он полагал, что «знаний по физике там давали больше, чем на химическом отделении, по математике – больше, чем на физическом, а я хотел изучить все три эти дисциплины».