В 1903 получил диплом инженера-металлурга и уехал в Германию, где продолжил свое обучение в Гёттингенском университете под руководством В.Нернста.

Изучая свойства нити в электрической лампочке, он в 1916 обнаружил, что вольфрамовая нить проявляет лучшие качества, если ее покрыть слоем оксида тория толщиной всего в одну молекулу. Он подверг анализу узкую пластинку вольфрама, покрытую оксидом тория, чтобы установить ее способность испускать электроны. Это исследование побудило его обратиться к изучению поверхностных явлений – молекулярной активности, которая наблюдается в тонких покрытиях или на поверхностях. Он изучал адсорбцию и поверхностное натяжение, а также поведение тонких покрытий жидких и твердых тел.

Основываясь на имеющихся достижениях в области теории строения атома, Ленгмюр описал химическое поведение поверхностей как поведение отдельных атомов и молекул, которые, подобно фигурам на шахматной доске, занимают отдельные клетки – участки поверхности. Это привело его к выводу уравнения изотермы адсорбции, известного как уравнение Ленгмюра.

Он установил также, что в явлении адсорбции принимают участие кулоновские, дипольные межмолекулярные и валентные силы, вандерваальсовы силы притяжения и силы отталкивания, вызываемые непроницаемостью заполненных электронных оболочек.

В 1932 Ленгмюру была присуждена Нобелевская премия по химии «за открытия и исследования в области химии поверхностных явлений».

Его часто приглашали выступать в качестве популяризатора научных знаний, и он охотно делился своими взглядами на взаимоотношение науки и общества. Его любимая тема была: «Свобода, которая характерна для демократии и необходима для научных открытий».

Увлекался походами в горы, морскими путешествиями, авиацией, любил классическую музыку.

В 1936 Дебай получил Нобелевскую премию «за вклад в знание о структуре молекул своими исследованиями дипольных моментов, а также дифракции рентгеновских лучей и электронов в газах».

Дебай развил представления о структуре конденсированного состояния: предложил модель твердого тела, согласно которой его внутренняя энергия определяется не колебаниями отдельных атомов, а стоячими волнами (фононами), которые имеют конечный диапазон частот, соответствующий числу степеней свободы.

Он пересмотрел квантовую теорию Эйнштейна об удельной теплоемкости и вывел формулу для вычисления ассоциативной температуры, которую называют температурой Дебая ( ).

На основе электростатической теории сильных электролитов Дебай, Хюккель и Онзагер получили выражение для молярной электрической проводимости предельно разбавленных растворов сильных электролитов. Изменение молярной электрической проводимости растворов сильных электролитов с изменением концентрации электролита они объяснили торможением движения ионов в электрическом поле из-за их электростатического взаимодействия.

Интересы Джиока. концентрировались на свойствах и поведении материи при сверхнизких температурах, на тех областях науки, которые затрагивали принципы термодинамики. Третье начало термодинамики, сформулированное Вальтером Нернстом, гласит, что энтропия чистого кристаллического химического элемента равна нулю при температуре абсолютного нуля (обозначается как 0°К). В этих условиях молекулы вещества организованы определенным образом, и поэтому природные явления обычно не поддаются наблюдению.

В первом десятилетии XX в. температура около 1°К была достигнута в лабораторных условиях. В 1924 г. Джиок предложил метод, который позволил получать даже более низкие температуры и который основывался на феномене, известном как адиабатическое размагничивание.

В течение восьми лет Д. и его сотрудники в Беркли конструировали оборудование, необходимое для адиабатического размагничивания. В 1933 г., используя сульфат гадолиния, Джиок и его коллега Дункан Макдугол достигли температуры, равной 0, 25°К. Для измерения температуры ниже 1°К Д. изобрел термометр, основанный на измерении электрического сопротивления аморфного углерода. Этот метод магнитного охлаждения предоставил дополнительные доказательства правильности третьего начала термодинамики и имел самое различное промышленное применение, включая улучшение качества каучуков, бензина и стекла.

В 1949 г. Джиок был награжден Нобелевской премией по химии «за вклад в химическую термодинамику, особенно в ту ее область, которая изучает поведение веществ при экстремально низких температурах». По мнению члена Шведской королевской академии наук Арне Тиселиуса, который вручал награду, «достижения Д. в области химической термодинамики и особенно его работа по поведению материи при низких температурах... является одним из наиболее важных вкладов в современную физическую химию».

Кроме Нобелевской премии, Д. был награжден медалью Чарлза Фредерика Чендлера Колумбийского университета (1936), медалью Крессона Франклиновского института (1937) и медалями Уилларда Гиббса (1951) и Джилберта Ньютона Льюиса (1956) Американского химического общества. Он являлся членом американской Национальной академии наук, Американского философского общества, Американского химического общества, Американского физического общества и Американской академии наук и искусств. Ему были присвоены почетные степени Колумбийского и Калифорнийского университетов.

Полинг с детства увлекался наукой. Вначале он собирал насекомых и минералы. В 13-летнем возрасте один из друзей Полинга приобщил его к химии, и будущий ученый начал ставить опыты. Делал он это дома, а посуду для опытов брал у матери на кухне. Полинг посещал Вашингтонскую среднюю школу в Портленде, но не получил аттестата зрелости. Тем не менее он записался в Орегонский государственный сельскохозяйственный колледж в Корваллисе, где изучал главным образом химическую технологию, химию и физику. Чтобы поддержать материально себя и мать, он подрабатывал мытьем посуды и сортировкой бумаги.

В 1954 г. П. была присуждена Нобелевская премия по химии «за исследование природы химической связи и ее применение для определения структуры соединений». В своей Нобелевской лекции Полинг предсказал, что будущие химики станут «опираться на новую структурную химию, в т. ч. на точно определенные геометрические взаимоотношения между атомами в молекулах и строгое применение новых структуральных принципов, и что благодаря этой технологии будет достигнут значительный прогресс в решении проблем биологии и медицины с помощью химических методов».

Изучению кинетики химических реакций посвятили свои труды многие ученые. Наиболее сложной проблемой было описание кинетики тех реакций, которые протекают со взрывом. Для описания таких процессов невозможно было получить какие-то количественные показатели скорости их протекания. Оставалось только голова (моделирование процесса) и интуиция.

Нобелевский лауреат, русский физико-химик Николай Николаевич Семёнов родился в Саратове, в семье Николая и Елены Дмитриевны Семёновых.

Окончив Санкт-Петербургский университет в 1917 г., в год свершения русской революции, Семенов работал ассистентом на физическом факультете Томского университета в Сибири. В 1920 г. по приглашению Иоффе Семенов вернулся в Ленинград, став заместителем директора Петроградского (Ленинградского) физико-технического института и руководителем его лаборатории электронных явлений.

Семенов вел глубокие исследования цепных реакций. Они представляют собой серию самоинициируемых стадий в химической реакции, которая, однажды начавшись, продолжается до тех пор, пока не будет пройдена последняя стадия. Несмотря на то, что немецкий химик Макс Боденштейн впервые предположил возможность таких реакций еще в 1913 г., теории, объясняющей стадии цепной реакции и показывающей ее скорость, не существовало.

В 1926 г. два студента Семенова впервые наблюдали это явление, изучая окисление паров фосфора водяными парами. Эта реакция шла не так, как ей следовало идти в соответствии с теориями химической кинетики того времени. Семенов увидел причину этого несоответствия в том, что они имели дело с результатом разветвленной цепной реакции. Но такое объяснение было отвергнуто Максом Боденштейном, в то время признанным авторитетом по химической кинетике. Еще два года продолжалось интенсивное изучение этого явления Семеновым и Сирилом Н. Хиншелвудом, который проводил свои исследования в Англии независимо от Семенова, и по прошествии этого срока стало очевидно, что Семенов был прав.

В 1934 г. Семенов опубликовал монографию «Химическая кинетика и цепные реакции», в которой доказал, что многие химические реакции, включая реакцию полимеризации, осуществляются с помощью механизма цепной или разветвленной цепной реакции. В последующие десятилетия Семенов и другие ученые, признавшие его теорию, продолжали работать над прояснением деталей теории цепной реакции, анализируя относительные опытные данные, многие из которых были собраны его студентами и сотрудниками. Позднее, в 1954 г., была опубликована его книга «О некоторых проблемах химической кинетики и реакционной способности», в которой ученый обобщил результаты открытий, сделанных им за годы работы над своей теорией.

В 1956 г. Семенову совместно с Хиншелвудом была присуждена Нобелевская премия по химии «за исследования в области механизма химических реакций». В Нобелевской лекции Семенов сделал обзор своих работ над цепными реакциями: «Теория цепной реакции открывает возможность ближе подойти к решению главной проблемы теоретической химии – связи между реакционной способностью и структурой частиц, вступающих в реакцию... Вряд ли можно в какой бы то ни было степени обогатить химическую технологию или даже добиться решающего успеха в биологии без этих знаний... Необходимо соединить усилия образованных людей всех стран и решить эту наиболее важную проблему для того, чтобы раскрыть тайны химических и биологических процессов на благо мирного развития и благоденствия человечества».

За работу по созданию теории цепных реакций Семенов в 1941 г. был удостоен советской правительственной награды – Сталинской премии. Среди других его наград – орден Ленина, орден Трудового Красного Знамени, золотая медаль имени Ломоносова Академии наук СССР. Обладатель почетных степеней ряда европейских университетов, Семенов был избран почетным членом Лондонского королевского общества. В Академии наук СССР ученый занимал большое число официальных должностей. Кроме того, он был избран членом академий многих других стран, включая США.

В начале XX в. было экспериментально установленj, что для частиц атомно-молекулярных размеров наряду с корпускулярными свойствами характерно также наличие волновых свойств. Этот дуализм (двойственность) свойств микрочастиц создавал трудности в описании их поведения с помощью понятий классической механики. Работами Планка, Бора, Луи де Бройля, Шредингера и других выдающихся ученых была создана квантовая механика микрочастиц, включившая в себя классическую как частный случай. Квантовая механика представляет собой физическую основу теории строения и свойств атомов и молекул.

Заметный след в решении проблемы описания химической связи оставил Роберт Сандерсон Малликен. Получив в 1917 в Массачусетском технологическом институте степень бакалавра по химии, Малликен в течение двух лет знакомился с прозой жизни – работал в Горном бюро США, в войсках химической защиты и в «Нью-Джерси цинк компани».

В 1925 Малликен поехал в Европу учиться у ведущих специалистов по спектроскопии и квантовой механике. Это были будущие Нобелевские лауреаты по физике Луи де Бройль, Вернер Карл Гейзенберг, Эрвин Шрёдингер, Поль Адриен Морис Дирак, Макс Борн и Ханс Альбрехт Бете.

В 1927 Малликен, работая в Гёттингенском университете с Фридрихом Хундом (1896–1997), который одно время был ассистентом Борнa, предположил, что атомы соединяются в молекулы в процессе образования химических связей таким образом, что их внешние электроны ассоциируются с молекулой в целом. Следовательно, внешние электроны молекулы, которые определяют многие из ее важных свойств, находятся на молекулярных орбиталях, а не на орбиталях отдельных атомов, как это было принято в методе валентных связей. Тогда-то они и заложили основы теории молекулярных орбиталей, известной так же как теория Хунда – Малликена.

Термин «молекулярная орбиталь» был введен Малликеном в 1932. Он же писал: «…любая орбиталь простирается, по крайней мере в малой степени, на всю область атома и молекулы». Малликен и Хунд доказали, что молекулярные орбитали могут быть описаны с помощью точных математических формул, благодаря чему можно до значительных деталей предсказать физические и химические свойства вещества. Так возник метод описания связи в молекулах – метод молекулярных орбиталей (МО). В его создании кроме этих двух ученых принимал заметное участие и английский химик Джон Эдвард Леннард-Джонс (1894–1954).

Теория MO рассматривает взаимодействие между атомными ядрами и электронами в составе молекулы в терминах квантовой механики. Малликен показал, что сочетание расчетов MO с экспериментальными (спектроскопическими) данными служит мощным инструментом описания связи в сложных молекулах.

В 1966 Малликену была присуждена Нобелевская премия «за фундаментальные работы по химической связи и по электронной структуре молекул методом молекулярных орбиталей».

Он обладал широкими познаниями в ботанике, увлекался искусством, любил восточные ковры.

XX век стал веком многих научных открытий. К таким научным открытием следует отнести термодинамику неравновесных процессов, созданную Онсагером.

Онсагер интересовался химией и физикой электролитов. К этому времени в Швейцарии.Дебай разработали общую теорию растворов сильных электролитов. Работая независимо от них, Онсагер обнаружил в расчетах неточность. В 1925 22-летний Онсагер без приглашения явился к Дебаю в его лабораторию со словами: «Доброе утро, господин профессор. Ваша теория электропроводности совершенно ошибочна». Затем он представил Дебаю свои расчеты. Результатом явилось приглашение быть ассистентом в лаборатории Дебая, где Онсагер остался на два года. Он предложил уравнения, выражающие зависимость коэффициента проводимости, активности и некоторых других параметров электролита от изменения его концентрации, уравнения носят его имя.