# Консультация 1

Требования к оформлению и особенности выполнения лабораторных работ по химии

Преподаватель: Мирошниченко Юлия Юрьевна

| Учебные недели                                                      | 05 -11<br>октября              | 12-18<br>октября   | 19-25<br>октября      | 26<br>октября-<br>01 ноября | 02-08<br>ноября       | 09-15<br>ноября    | 16-22<br>ноября                           | 23-29<br>ноября    | 30<br>ноября-<br>06<br>декабря | 7-13<br>декабря-                          | 14-20<br>декабря      | 21-27<br>декабря | 28<br>декабря-<br>03<br>января- | 4-10<br>января | 11-17<br>января    | 18-24<br>января | 25-31<br>января | 01-06<br>февраля | Всего<br>баллов |
|---------------------------------------------------------------------|--------------------------------|--------------------|-----------------------|-----------------------------|-----------------------|--------------------|-------------------------------------------|--------------------|--------------------------------|-------------------------------------------|-----------------------|------------------|---------------------------------|----------------|--------------------|-----------------|-----------------|------------------|-----------------|
| Темы для изучения                                                   | Tema 1                         | <b>і</b><br>Тема 2 | <b>і</b> іі<br>Тема 3 | <b>і</b><br>Тема 4          | <b>і</b> іі<br>Тема 5 | <b>і</b><br>Тема 6 | <b>і</b><br>Тема 7                        | <b>і</b><br>Тема 8 | <b>і</b><br>Темы 9             | <b>і</b><br>Темы 10                       | <b>Т</b> ема 11       | Тема 12          |                                 |                | Зачетная<br>неделя | 31              | AMHRR CECCI     | R                |                 |
| Разделы / главы<br>учебного пособия<br>(соответствующие темам)      | ■1                             | <b></b> 2          | <b>■</b> 3            | ■3                          | <b>■</b> 4            | <b>■</b> 5         | <b></b> 6                                 | <b>=</b> 6         | <b></b> 6                      | <b>■</b> 6                                | <b>■</b> <sub>7</sub> | <b>□</b>         |                                 |                |                    |                 |                 |                  |                 |
| <u>Видеолекции</u><br>учебные видеофильмы                           | Бидео-<br>лекция 1             |                    |                       |                             |                       |                    |                                           |                    |                                |                                           |                       |                  |                                 |                |                    |                 |                 |                  |                 |
| Дополнительные<br>интернет-ресурсы                                  | <b>©</b><br>Ссылка<br><u>1</u> |                    |                       |                             |                       |                    |                                           |                    |                                |                                           |                       |                  |                                 |                |                    |                 |                 |                  |                 |
| Учебные занятия (вебинары) —<br>лекции (ЛК), практики ( <u>ПР</u> ) |                                | <u>@</u><br>₽.1    | <u>©</u><br>ЛК 1      | <u>@</u><br>∏.2             | <u>©</u> ,<br>ЛК 2    | ©<br>∏p3           |                                           | <u>(а)</u><br>ЛК 3 | <u>©</u><br>ЛК 4               |                                           |                       |                  |                                 |                |                    |                 |                 |                  |                 |
| Консультации (вебинары)                                             |                                | ( <u>)</u><br>KC 1 |                       |                             |                       | EC 2               |                                           |                    |                                |                                           |                       |                  |                                 | EC 3           |                    |                 |                 |                  |                 |
| Индивидуальные<br>домашние задания                                  |                                |                    |                       |                             |                       |                    | <b>В</b><br>Отправка<br>ИДЗ 1             |                    |                                | ■ <u>⊸</u><br>Отправка<br>ИД32<br>15 бал. |                       |                  |                                 |                |                    |                 |                 |                  | 30              |
| Лабораторные работы                                                 |                                |                    |                       | Отправка<br>ЛБ 1<br>10 бал. |                       |                    | ■ <u>⊸</u><br>Отправка<br>ЛБ 2<br>10 бал. |                    |                                | ■ <u>⊸</u><br>Отправка<br>ЛБ 3<br>10 бал. |                       |                  |                                 |                |                    |                 |                 |                  | 30              |
| Рубежный контроль                                                   |                                |                    |                       |                             |                       |                    |                                           |                    |                                |                                           |                       |                  |                                 |                |                    |                 |                 |                  |                 |
| Промежуточный<br>контроль                                           |                                |                    |                       |                             |                       |                    |                                           |                    |                                |                                           |                       |                  |                                 |                |                    |                 | Экзамен         |                  | 22-40           |

|  | 40 |  |
|--|----|--|
|  |    |  |
|  |    |  |
|  |    |  |

| Учебная работа                                | Обозначение             | Кол-во баллов | Всего баллов | Оценки                                                            |
|-----------------------------------------------|-------------------------|---------------|--------------|-------------------------------------------------------------------|
| Учебные занятия – лекции (дебунады), практики | ЛК 1,2,3,4<br>ПР, 1,2,3 | 0             | 0            | Не оцениваются                                                    |
| Индивидуальные домашние задания               | идзц, 2                 | 15            | 22-30        | 22 < - неудово, 22-24- удово, 25-27 - хорошо, 28-30 - отлично     |
| Лабораторные работы                           | ЛБ 1,2,3                | 10            | 15 - 30      | 22 < - неудово, 22-24- удово, 25-27 - хорошо, 28-30 - отлично     |
| Итого баллов к зачётной неделе                |                         |               | 33-60        | ≥ 33 — «допуск» к экзамену (сданы все ИДЗ и ЛБ)                   |
| Экзаменационная/зачётная работа               |                         |               | 22-40        | < 22 — неуддел, 22-31 — уддел, 32-35 — хорошо, 36-40 — отлично    |
| Итого баллов по дисциплине                    |                         |               | 55-100       | < 55 - неудава,, 55-69 - удава,, 70-89 - хорошо, 90-100 - отлично |
|                                               |                         |               | 55-100       | ≥ 55 – зачтено, < 55 – не зачтено                                 |

Внимание! Студент допускается к сдаче экзамена/зачёта, если до начала зачётной недели он выполнил и сдал все ИДЗ и ЛБ и набрал 33 и более баллов. Экзаменационная/зачётная работа считается сданной, если студент набрал за неё 22 и более баллов.

#### Темы для изучения:

- Тема 1. Основные химические понятия и законы
- Тема 2. Строение атома и Периодическая система химических элементов
- Тема 3. Строение молекул и химическая связь
- Тема 4. Комплексные соединения
- Тема 5. Элементы термодинамики
- Тема 6. Химическая кинетика
- Тема 7. Способы выражения концентрации растворов
- Тема 8. Свойства разбавленных растворов неэдектродитов
- Тема 9. Свойства растворов электролитов
- Тема 10. Гидролиз солей
- Тема 11. Окислительно-восстановительные реакции
- Тема 12. Электрохимические процессы (химические источники электроэнергии и электролиз)

#### Учебное пособие:

Савельев Г.Г., <u>Смолова</u> Л.М. Общая и неорганическая химия. Часть І. Общая химия. – Томох:

Томский политехнический университет, 2003. – 220 с.

(см. раздел «Студенту — Учедные материалы»)

#### Разделы учебного пособия:

- Раздел 1, ОСНОВНЫЕ ХИМИЧЕСКИЕ ПОНЯТИЯ И ЗАКОНЫ, СОСТАВ ВЕЩЕСТВА
- Раздел 2. СТРОЕНИЕ ВЕЩЕСТВА
- Раздел 3. СТРОЕНИЕ МОЛЕКУЛ И ХИМИЧЕСКАЯ СВЯЗЬ
- Раздел 4. ЭЛЕМЕНТЫ ТЕРМОДИНАМИКИ
- Раздел 5. ХИМИЧЕСКАЯ КИНЕТИКА Раздел 6. РАСТВОРЫ
- Раздел 7. ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ
- (см. раздел «Студенту Учедные материалы»)

#### Видео-лекции:

Видео-лекция 1. Общвя химия (Видеофильм).

Автор: Годущкова Евгения Борисовна. Продолжительность: 2 ч 55 мин.

Данный учебный видеофильм предназначен для студентов нехимических специальностей, изучающих

дисциплину «Химия». В нем представлен основной теоретический материал курса общей химии. Рассмотрены вопросы строения атомов и химической связи, термодинамики и кинетики химических

процессов, химии растворов и электрохимических процессов.

(су. раздел «Студенту — Учейные материалы или Медуатека»)

Дополнительные интернет-ресурсы: Ссылка 1. Стась Н.Ф. Введение в химию: Учебное пособие. - Томск: Томский политехнический

университет, 2008. – 134 с. Полный текст на

http://www.lib.tpu.ru/fulltext/m/2007/m24.pdf

#### Учебные занятия – лекции (вебинары):

ЛК 1. Строение атомов и химическая связь

ЛК 2. Закономерности химических реакций

ЛК 3. Растворы

ЛК4. Электрохимические процессы

(су, раздел «Студенту — Расписание занятий или Календарь обучения»)

#### Учебные занятия – практики (вебинары):

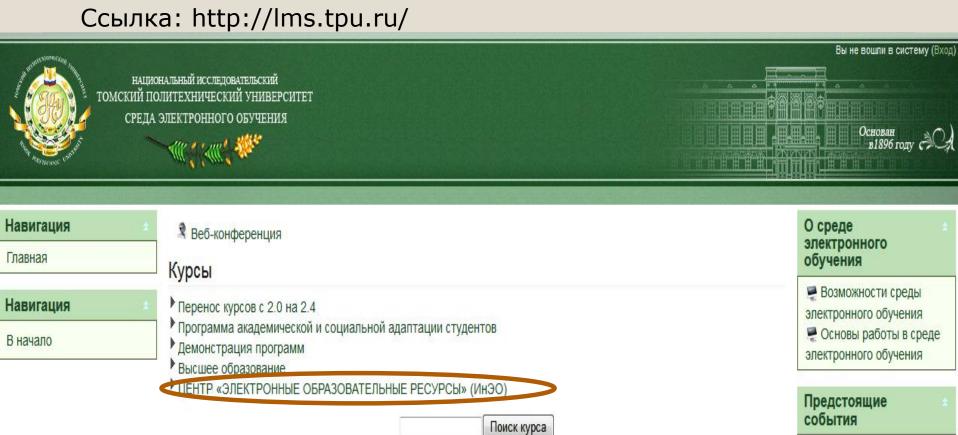
- ПР.1 Решение задач по теме «Строение вещества».
- ПР.2. Решение задач по теме «Способы выражения концентраций растворов».
- ПР.3.Решение задач «Закономерности протекания реакциц».

#### Консультации (вебинары):

- КС 1. Консультация по выполнению лабораторных работ
- КС 2. Консультация выполнение индивидуального домашнего задания (ИДЗ 1)
- КС.3. Консультация выполнение индивидуального домашнего задания (ИДЗ 2)
- КС 4. Консультация на форуме
- КС 5. Консультация на форуме
- (см. разбел «Стубенту Расписание занятий или Каленбарь обучения»)

#### Индивидуальные домашние задания:

- ИДЗ1. Индивидуальное домашнее задание по общей химии 1.
  - ИДЗЗ Индивидуальное домашнее задание по общей химии 2.
- (см. раздел «Студенту Учедные материалы»)


#### Лабораторные работы:

ЛБ1. Окислительно - востановительные реакции

ЛБ2 Определение скорости химической реакции

ЛБ 3. Гидролиз солей

(см. раздел «Студенту – Учебные материалы»)



Нет предстоящих событий Перейти к календарю...





# Основан в1896 году 💫

Вы не вошли в систему (Вход

Навигация

🔻 Веб-конференция

Курсы

Навигация

Перенос курсов с 2.0 на 2.4

В начало

Главная

- Программа академической и социальной адаптации студентов
- Демонстрация программ Высшее образование
- ▼ ЦЕНТР «ЭЛЕКТРОННЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ» (ИНЭО)
  - ОТКРЫТЫЕ ДЕМОНСТРАЦИОННЫЕ МАТЕРИАЛЫ
- Виртуальные лабораторные комплексы
  - Образовательные видеоресурсы
  - Установочные видеолекции
- Учебно-методические комплексы
- Электронные учебные пособия



🎑 [ МЕДИАТЕКА ]



МК «Разработка интерактивного PDF-документа»

Поиск курса

О среде электронного обучения

Возможности среды электронного обучения

🥊 Основы работы в среде электронного обучения

Предстоящие события

Нет предстоящих событий

Перейти к календарю...

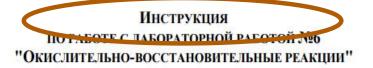
Сервера MOODLE










сервер разработки dev.lms.tpu.ru

mdl.lcg.tpu.ru

| В начало ▶ Категории курсов ▶ ЦЕНТР «ЭЛЕКТРОННЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ» (ИнЭО) ▶ Виртуальные лабораторные комплексы |                                                                                                                                          |           |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| Навигация                                                                                                             | Страница: 1 2 3 4 (Далее)                                                                                                                |           |  |  |  |  |  |
| Главная                                                                                                               | Vivos i                                                                                                                                  |           |  |  |  |  |  |
| Церигония                                                                                                             | Курсы                                                                                                                                    | _         |  |  |  |  |  |
| Навигация 🛕                                                                                                           | Прикладная механика                                                                                                                      | <b>[]</b> |  |  |  |  |  |
| В начало                                                                                                              | [ ИНСТРУКЦИЯ ПО РАБОТЕ ВИРТУАЛЬНЫМИ ЛАБОРАТОРНЫМИ УСТАНОВКАМИ ]                                                                          | 8         |  |  |  |  |  |
|                                                                                                                       | Аналитическая химия                                                                                                                      |           |  |  |  |  |  |
|                                                                                                                       | Аналитическая химия и физико-химические методы анализа. Приготовление стандартных и рабочих растворов в титриметрических методах анализа | <b>B</b>  |  |  |  |  |  |
|                                                                                                                       | Газохимия                                                                                                                                | <b>I</b>  |  |  |  |  |  |
|                                                                                                                       | Конструкционное материаловедение. Определение твёрдости металлов и сплавов                                                               | <b>I</b>  |  |  |  |  |  |
|                                                                                                                       | Концепции современного естествознания                                                                                                    | <b>I</b>  |  |  |  |  |  |
|                                                                                                                       | Материаловедение и TKM                                                                                                                   | <b>I</b>  |  |  |  |  |  |
|                                                                                                                       | Метрология, стандартизация и сертификация (150700)                                                                                       | <b>B</b>  |  |  |  |  |  |
|                                                                                                                       | Метрология, стандартизация и сертификация, подтверждение соответствия (для направления 140100)                                           | <b>₽</b>  |  |  |  |  |  |
|                                                                                                                       | Метрология, стандартизация и сертификация, подтверждение соответствия (для направления 140400)                                           | <b>I</b>  |  |  |  |  |  |
|                                                                                                                       | Общая и неорганическая химия                                                                                                             | <b>B</b>  |  |  |  |  |  |
|                                                                                                                       | Органическая химия и основы биохимии. Получение азокрасителей                                                                            | •         |  |  |  |  |  |

общего порядка реакции, энергии активации. Исследуется реакция между тиосульфатом натрия и серной кислотой. О скорости протекания химической реакции судят по изменению оптической плотности раствора с течением времени.

Исследования проводятся в фотоколориметре.



#### 1. Общее описание лабораторной работы

#### 2. Элементы лабораторной работы

Штатив для пробирок Пробирка Капельница с реактивом Ёмкость с микрошпателем Лучина Спиртовка

#### 1. Общее описание лабораторной работы

Лабораторная работа имеет две основных составляющих: теоретическую часть и практическую часть.



| - 1 | _ "   |     |        |       |
|-----|-------|-----|--------|-------|
|     | OTHET | ΛТ  | ) A T/ | TT    |
|     | ОТЧЁТ | U I | Άbι    | ) I L |
|     |       | _   |        |       |

| Работу выполнил:                                                                                                          |                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| фамилия 🛮                                                                                                                 |                                                                                        |
| п кми                                                                                                                     |                                                                                        |
| отчество                                                                                                                  |                                                                                        |
| группа 🛘                                                                                                                  |                                                                                        |
| Опыт 1. Окислительные свойства KMnO <sub>4</sub>                                                                          | В РАЗНЫХ СРЕДАХ                                                                        |
| Осуществляемое взаимодействие:                                                                                            |                                                                                        |
| КМnO <sub>4</sub> (p-p) + H <sub>2</sub> SO <sub>4</sub> (p-p) + Na <sub>2</sub> SO <sub>3</sub> (κ) 10 капель + 1/2 м-шп | Вопросы и упражнения  1. В чем заключается отличие средней и истинной (мгновенной)     |
| Наблюдение:                                                                                                               | скорости реакции? Как при помощи графического способа можно найти                      |
|                                                                                                                           | среднюю и истинную скорости?                                                           |
| Формула недостающего продукта в уравнении реакции:                                                                        |                                                                                        |
|                                                                                                                           |                                                                                        |
| Реакция, уравненная методом электронного баланса:                                                                         |                                                                                        |
|                                                                                                                           | 2. Какие реакции называют простыми и сложными? Какой признак позволяет это определить? |
| Окислитель:                                                                                                               | позволяет это определить:                                                              |
|                                                                                                                           |                                                                                        |
| Восстановитель:                                                                                                           |                                                                                        |

ed.

#### [1/3] Теоретический материал



Окислительно-восстановительные реакции (ОВР) — это реакции, при протекании которых происходит изменение степеней окисления элементов. Например:

$$0 + 1 + 2 0$$
  
 $Zn+H_2SO_4=ZnSO_4+H_2$ .

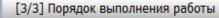
Вещество, в состав которого входит элемент, понижающий свою степень окисления в ходе реакции, называется окислителем. Вещество, в состав которого входит элемент, повышающий свою степень окисления при протекании реакции, называется восстановителем. В приведенной реакции Zn является восстановителем, а серная кислота — окислителем.

#### Степень окисления

**Степень окисления** — это условный заряд атома в молекуле, вычисленный исходя из предположения, что все связи являются ионными. Степени окисления могут быть положительными, отрицательными или равными нулю, причём знак ставится перед числом: -1, -2, +3 (в отличие от заряда иона, где знак ставится после числа). Для того чтобы определить степень окисления элемента в соединении, нужно помнить, что алгебраическая сумма степеней окисления элементов с учётом числа их атомов в молекуле (формульной единице вещества) равна нулю. Например, для расчета степени окисления марганца в соединении  $K_2MnO_4$  составим уравнение, учитывая, что степень окисления калия равна +1, а кислорода -2:

$$2(+1)+x+4(-2)=0$$
.

Отсюда x=+6.


Характерные степени окисления элементов можно определить исходя из их расположения в Периодической системе (ПС). Элементы, расположенные в первых трёх группах (главных подгруппах) ПС, имеют постоянную степень окисления, которая совпадает с номером группы. Например, Li, Na, K проявляют в

#### Лабораторная работа №6

Окислительно-восстановительные реакции































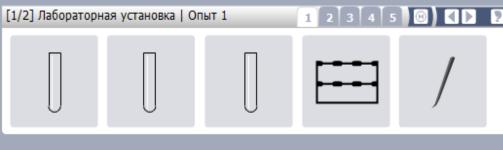




# Реакции межмолекулярного окислениявосстановления

## Опыт 1. Окислительные свойства KMnO<sub>4</sub> в разных средах

В перманганате калия марганец находится в высшей степени окисления +7, поэтому КМпО4 в ОВР проявляет только окислительные свойства, которые зависят от рН среды, в которой протекает окислительно-восстановительная реакция. Наиболее сильные окислительные свойства КМпО4 проявляет в кислой среде, в которой он восстанавливается до Mn<sup>2+</sup>. В нейтральной среде восстановление происходит до Мп4+, при этом образуется нерастворимый MnO2. В наименьшей степени окислительные свойства КМnO4 проявляет в щелочной среде, в которой он восстанавливается до Mn6+, образуя манганат калия


K2MnO4.


### 1.1. Проведите реакцию:

| KMnO <sub>4</sub> (p-p) + 5 капель + | H <sub>2</sub> SO <sub>4</sub> (p-p) + 10 капель + | Na <sub>2</sub> SO <sub>3</sub> (к)<br>1/2 м-шп |
|--------------------------------------|----------------------------------------------------|-------------------------------------------------|
|--------------------------------------|----------------------------------------------------|-------------------------------------------------|

- 1.2. Опишите наблюдения.
- 1.3. Вставьте недостающую формулу продукта в уравнение реакции:  $KMnO_4+Na_2SO_3+H_2SO_4\rightarrow...+Na_2SO_4+K_2SO_4+H_2O.$
- 1.4. Уравняйте реакцию методом электронного баланса.
- 1.5. Укажите окислитель и восстановитель.
- Укажите тип ОВР.
- **1.7.** Проведите реакцию:

| КМпО <sub>4</sub> (p-p)<br>5 капель | + | H <sub>2</sub> O<br>10 капель | + | Na <sub>2</sub> SO <sub>3</sub> (к)<br>1/2 м-шп |
|-------------------------------------|---|-------------------------------|---|-------------------------------------------------|
|-------------------------------------|---|-------------------------------|---|-------------------------------------------------|





#### Лабораторная работа №6

Окислительно-восстановительные реакции



[3/3] Порядок выполнения работы

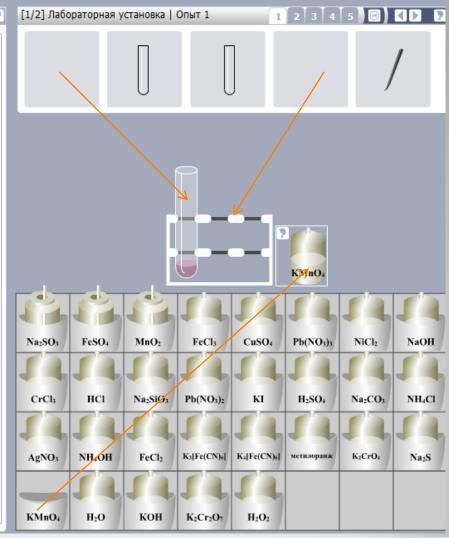


#### Реакции межмолекулярного окислениявосстановления

#### Опыт 1. Окислительные свойства KMnO<sub>4</sub> в разных средах

В перманганате калия марганец находится в высшей степени окисления +7, поэтому КМnO4 в ОВР проявляет только окислительные свойства, которые зависят от рН среды, в которой протекает окислительно-восстановительная реакция. Наиболее сильные окислительные свойства KMnO<sub>4</sub> проявляет в кислой среде, в которой он восстанавливается до Mn<sup>2+</sup>. В нейтральной среде восстановление происходит до Мп4+, при этом образуется нерастворимый MnO2. В наименьшей степени окислительные свойства КМnO4 проявляет в щелочной среде, в которой он восстанавливается до Mn6+, образуя манганат калия

K2MnO4.


#### 1.1. Проведите реакцию:

| KMnO <sub>4</sub> (p-p) | ١. | H <sub>2</sub> SO <sub>4</sub> (p-p) |   | Na <sub>2</sub> SO <sub>3</sub> (κ) |  |  |
|-------------------------|----|--------------------------------------|---|-------------------------------------|--|--|
| 5 капель                | +  | 10 капель                            | + | 1/2 м-шп                            |  |  |

- 1.2. Опишите наблюдения.
- 1.3. Вставьте недостающую формулу продукта в уравнение реакции:  $KMnO_4+Na_2SO_3+H_2SO_4\rightarrow...+Na_2SO_4+K_2SO_4+H_2O.$
- 1.4. Уравняйте реакцию методом электронного баланса.
- 1.5. Укажите окислитель и восстановитель.
- 1.6. Укажите тип ОВР.

#### 1.7. Проведите реакцию:

| KMnO <sub>4</sub> (p-p) | + | H <sub>2</sub> O |   | $Na_2SO_3$ (K) |
|-------------------------|---|------------------|---|----------------|
| 5 капель                |   | 10 капель        | + | 1/2 м-шп       |



### Лабораторная работа №6

Окислительно-восстановительные реакции



[3/3] Порядок выполнения работы

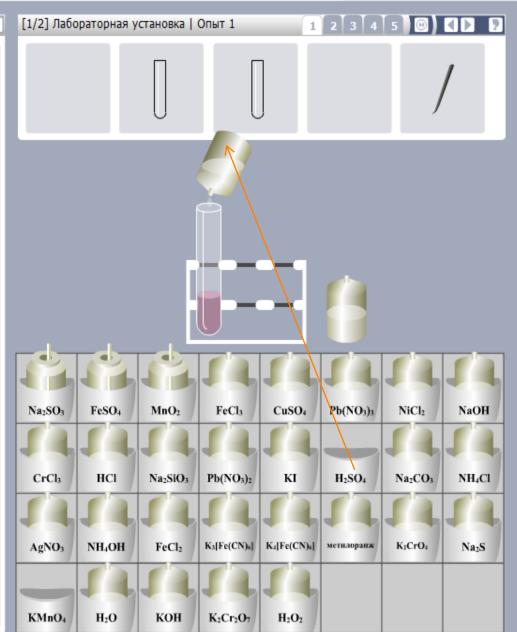
# 

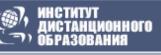
## Реакции межмолекулярного окислениявосстановления

# Опыт 1. Окислительные свойства $KMnO_4$ в разных средах

В перманганате калия марганец находится в высшей степени окисления +7, поэтому  $KMnO_4$  в OBP проявляет только окислительные свойства, которые зависят от pH среды, в которой протекает окислительно-восстановительная реакция. Наиболее сильные окислительные свойства  $KMnO_4$  проявляет в кислой среде, в которой он восстанавливается до  $Mn^{2+}$ . В нейтральной среде восстановление происходит до  $Mn^{4+}$ , при этом образуется нерастворимый  $MnO_2$ . В наименьшей степени окислительные свойства  $KMnO_4$  проявляет в щелочной среде, в которой он восстанавливается до  $Mn^{6+}$ , образуя манганат калия

+6 K<sub>2</sub>MnO<sub>4</sub>.


#### 1.1. Проведите реакцию:


| KMnO <sub>4</sub> (p-p) | ) . | H <sub>2</sub> SO <sub>4</sub> (p-p) |   | Na <sub>2</sub> SO <sub>3</sub> (K) |
|-------------------------|-----|--------------------------------------|---|-------------------------------------|
| 5 капель                | +   | 10 капель                            | + | 1/2 м-шп                            |

- 1.2. Опишите наблюдения.
- **1.3.** Вставьте недостающую формулу продукта в уравнение реакции:  $KMnO_4 + Na_2SO_3 + H_2SO_4 \rightarrow ... + Na_2SO_4 + K_2SO_4 + H_2O$ .
- 1.4. Уравняйте реакцию методом электронного баланса.
- Укажите окислитель и восстановитель.
- 1.6. Укажите тип ОВР.

#### 1.7. Проведите реакцию:

| KMnO <sub>4</sub> (p-p) | + H <sub>2</sub> O<br>10 капель | _         | $Na_2SO_3$ (K) |          |  |
|-------------------------|---------------------------------|-----------|----------------|----------|--|
| 5 капель                |                                 | 10 капель | _              | 1/2 м-шп |  |





#### Лабораторная работа №6 Окислительно-восстановительные реакции









[3/3] Порядок выполнения работы

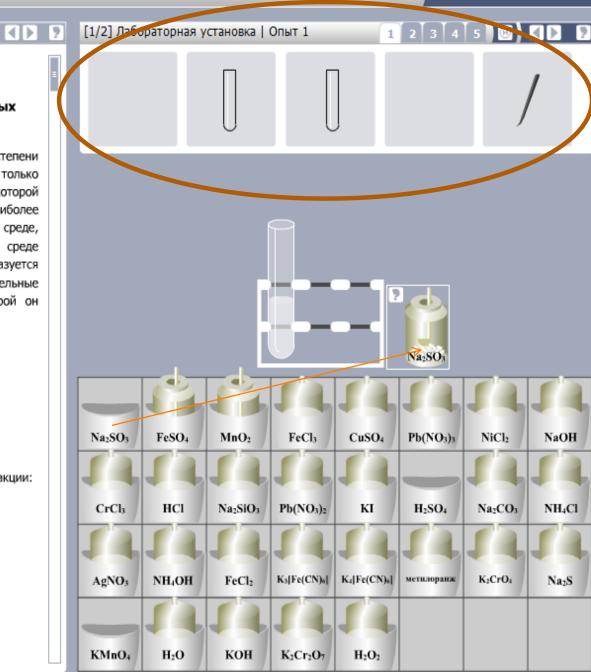
# восстановления

# Опыт 1. Окислительные свойства KMnO<sub>4</sub> в разных средах

В перманганате калия марганец находится в высшей степени

окисления +7, поэтому КМпО4 в ОВР проявляет только окислительные свойства, которые зависят от рН среды, в которой протекает окислительно-восстановительная реакция. Наиболее сильные окислительные свойства КМnO4 проявляет в кислой среде, в которой он восстанавливается до Mn2+. В нейтральной среде восстановление происходит до Mn<sup>4+</sup>, при этом образуется нерастворимый MnO2. В наименьшей степени окислительные KMnO<sub>4</sub> проявляет в щелочной среде, в которой он восстанавливается до Mn6+, образуя манганат калия

K2MnO4.


# 1.1. Проведите реакцию:

| KMnO <sub>4</sub> (p-p)<br>5 капель + H <sub>2</sub> SO <sub>4</sub> (p-p)<br>10 капель + Na <sub>2</sub> SO <sub>3</sub><br>1/2 м-ш |
|--------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------|

- 1.2. Опишите наблюдения.
- 1.3. Вставьте недостающую формулу продукта в уравнение реакции:  $KMnO_4+Na_2SO_3+H_2SO_4\rightarrow...+Na_2SO_4+K_2SO_4+H_2O.$
- 1.4. Уравняйте реакцию методом электронного баланса.
- Укажите окислитель и восстановитель.
- 1.6. Укажите тип ОВР.

## 1.7. Проведите реакцию:

| КМnO <sub>4</sub> (p-p) + 5 капель + | H <sub>2</sub> O<br>10 капель | + | Na <sub>2</sub> SO <sub>3</sub> (к)<br>1/2 м-шп |
|--------------------------------------|-------------------------------|---|-------------------------------------------------|
|--------------------------------------|-------------------------------|---|-------------------------------------------------|



# ОТЧЁТ О РАБОТЕ

| Работу выполнил:                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| фамилия 🔲                                                                                                                                                                                          |
| RMH                                                                                                                                                                                                |
| отчество                                                                                                                                                                                           |
| группа                                                                                                                                                                                             |
| ОПЫТ 1. ОКИСЛИТЕЛЬНЫЕ СВОЙСТВА КМNО₄ В РАЗНЫХ СРЕДАХ<br>Осуществляемое взаимодействие:                                                                                                             |
| KMnO <sub>4</sub> (p-p) H <sub>2</sub> SO <sub>4</sub> (p-p) Na <sub>2</sub> SO <sub>3</sub> (κ)                                                                                                   |
| 12.2004 (P P) _ 122004 (P P) _                                                                                                                                                                     |
| 5 капель Т 10 капель Т 1/2 м-шп                                                                                                                                                                    |
| 5 капель 10 капель 1/2 м-шп<br>Наблюдение:                                                                                                                                                         |
| 5 капель 10 капель 1/2 м-шп                                                                                                                                                                        |
| 5 капель 10 капель 1/2 м-шп                                                                                                                                                                        |
| 5 капель 10 капель 1/2 м-шп Наблюдение:                                                                                                                                                            |
| 5 капель 10 капель 1/2 м-шп Наблюдение:                                                                                                                                                            |
| 5 капель 10 капель 1/2 м-шп Наблюдение:  Формула недостающего продукта в уравнении реакции:                                                                                                        |
| 5 капель 10 капель 1/2 м-шп Наблюдение:  Формула недостающего продукта в уравнении реакции:                                                                                                        |
| 5 капель       10 капель       1/2 м-шп         Наблюдение:       П         Формула недостающего продукта в уравнении реакции:         П         Реакция, уравненная методом электронного баланса: |

- Оценка за выполнение работы:
- Максимальная 10 баллов.
- Баллы за работу будет складываться из:
- 1. Правильности написания уравнений реакций, расстановки коэффициентов
- 2. Правильного выполненного расчета
- 3. Подробной записи наблюдений
- 4. Детальности ответов на поставленные вопросы
- 5. Своевременности выполнения работы (сроки сдачи указаны в плане – графике работы)

- ОБЯЗАТЕЛЬНО НЕОБХОДИМО ВЫПОЛНИТЬ ВСЕ РАБОТЫ ЗАПЛАНИРУЕМЫХ В УЧЕБНОМ ГРАФИКЕ!!!
- Принимается работа оформленная в соответствии с размещенным шаблоном на сайте (отчет).
- Отчет по лабораторной работе прикрепляете и высылаете на проверку (не забывайте проверить соответствие названий в отчете и прикрепляемом окне.

• ЖЕЛАЮ УСПЕХОВ В ВЫПОЛНЕНИИ ЛАБОРАТОРНЫХ РАБОТ!!!

• Если возникают трудности, то вопросы можно задавать на форуме.