«Комплексные соединения»

Комплексными называются такие соединения, в узлах кристаллических решеток которых находятся комплексные ионы, устойчивые как в твердом состоянии, так и в растворах.

Комплексными ионами называется сложные ионы, в состав которых входят катионы или атомы металлов, связанные с несколькими полярными молекулами или анионами.

Рассмотрим типичный состав комплексных соединений на примере $[Cu(NH_3)_4]SO_4$.

Частица $[Cu(NH_3)_4]^{2+}$ называется *комплексным ионом* (другие названия: комплекс, внутренняя сфера), а SO_4^{2-} – внешней сферой.

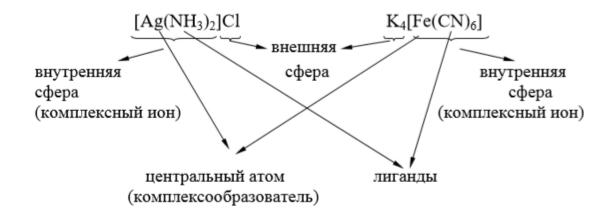
Катион Cu^{2+} в комплексе называется *комплексообразователем*.

Комплексообразователь — частица (атом, ион или молекула), обладающая электронно-акцепторными свойствами, которая координирует вокруг себя другие ионы или молекулы.

Комплексообразователями могут быть почти все элементы периодической системы, даже инертные газы. Так, например, получен октафтороксенат (VI) цезия $Cs_2[XeF_8]$, устойчивый при нагревании до 400 °C.

Наиболее типичными комплексообразователями являются катионы d-металлов (Ag $^+$, Au $^+$, Cu $^+$, Cu $^{2+}$, Hg $^{2+}$, Zn $^{2+}$, Fe $^{2+}$, Fe $^{3+}$, Co $^{3+}$, Pt $^{4+}$ и др.), также комплексообразователями могут быть р-металлы (Al $^{3+}$, Sn $^{2+}$, Sn $^{4+}$, Pb $^{2+}$) и Be $^{2+}$, Si $^{4+}$.

Ионы d-элементов имеют вакантные атомные орбитали валентного уровня (ns, np, (n-1)d), поэтому они проявляют ярко выраженные электронно-акцепторные свойства. Реже способность к комплексообразованию проявляется у p- и еще реже у s-элементов.


Молекулы NH₃ – *лиганды* – это частицы (ионы или молекулы), обладающие электронно-донорными свойствами и координируются вокруг комплексообразователя.

Лигандами могут быть – полярные молекулы (NH₃, H₂O) или анионы – кислотные остатки (F-, Cl⁻, Br⁻, I⁻, CN⁻, NO₂⁻, SCN⁻), а также гидроксид-ион OH⁻.

Координационное число (К.ч.) — число свободных (вакантных) атомных орбиталей у атома комплексообразователя, которые может занять лиганд.

Если заряд лиганда равен единице, то координационное число совпадает с числом лигандов — для рассматриваемого соединения = 4.

Координационное число чаще всего равно 6, 4 или 2, реже 3, 5, 7.

Классификация комплексных соединений

По заряду комплекса (комплексного иона) эти соединения подразделяются на:

катионные, например $[Zn(H_2O)_4]Cl_2$,

анионные – $K_3[Co(CN)_6]$,

двойные (катион-анионные) – $[Ni(NH_3)_6]_2[Fe(CN)_6]$

нейтральные – $[Pt(NH_3)_2Cl_4]$.

По виду лигандов комплексные соединения подразделяются так:

- 1) аквакомплексные, лигандами являются молекулы воды, например $[Cr(H_2O)_6]Cl_3;$
- 2) амминокомплексные, лигандами являются молекулы NH_3 , например $[Cd(NH_3)_6](NO_3)_2$;
- 3) гидроксокомплексные, лигандами являются OH-ионы, например $Na_3[Al(OH)_6]$;
- 4) ацидокомплексные, лигандами являются кислотные остатки, например $K_4[FeCl_6]$;
- 5) смешанные, лигандами являются различные частицы, например $[Pt(NH_3)_2(H_2O)_2Br_2]SO_4$.

По принадлежности к определенному классу соединений (по составу внешней сферы):

Комплексные кислоты – $H_2[SiF_6]$, $H[AuCl_4]$;

Комплексные основания – $[Ag(NH_3)_2]OH;$

Комплексные соли – $K_2[HgI_4]$, $[Cr(H_2O)_6]Cl_3$.

Комплексных оксидов не существует.

По электролитической диссоциации:

Электролиты – диссоциируют на ионы;

Неэлектролиты – не диссоциируют на ионы.

Номенклатура комплексных соединений.

Названия комплексных соединений строятся по общим правилам систематической номенклатуры — справа налево. Первым в именительном падеже называется анион, а затем в родительном падеже катион. При названии комплексного иона сначала указывают лиганды, а затем комплексообразователь.

Нейтральные лиганды указывают названиями соответствующих молекул, кроме воды и аммиака, которые соответственно называют «аква» и «аммин».

К анионным лигандам прибавляют окончание «о» (хлоро, сульфато). Число лигандов, если их больше одного, указывают греческими числительными: ди, три-, тетра-, пента-, гекса-, гепта-, окта-, нона-, дека-и.т.д.

Если *комплексообразователь* — *катион*, то используют <u>русское</u> <u>название элемента</u> и указывают его степень окисления (в скобках римской цифрой).

Если *комплексообразователь* — *анион*, то используют <u>латинское</u> название элемента, к которому прибавляют окончание «ат», и указывают римской цифрой в скобках степень окисления комплексообразователя.

У нейтральных комплексов (без внешней сферы) комплексообразователь называют в именительном падеже, а его заряд не указывают.

Примеры названий комплексных соединений:

 $K_3[Fe(CN)_6]$ – гексацианоферрат (III) калия;

 $K_4[Fe(CN)_6]$ – гексацианоферрат (II) калия;

 $K_2[PtCl_6]$ – гексахлороплатинат (IV) калия;

 $K_2[Be(CO_3)_2]$ — дикарбонатоберрилат калия

 $[Pt(NH_3)_6]Cl_4 - хлорид гексаамминплатины (IV);$

 $[Pt(NH_3)_2Cl_4]$ — тетрахлородиамминплатина (IV).

Устойчивость комплексных соединений.

При растворении комплексные соединения (кроме нейтральных) диссоциируют на комплексные ионы и ионы внешней сферы по типу диссоциации сильных электролитов:

$$K_3[Fe(CN)_6] = 3K^+ + [Fe(CN)_6]^{3-}$$

Эта диссоциация называется первичной.

Образующиеся при растворении комплексных солей, кислот и оснований комплексные ионы в растворах диссоциируют незначительно – вторичная диссоциация.

Константы их диссоциации (K_{H}) называются константами нестойкости:

$$[Fe(CN)_6]^{4-} \Leftrightarrow Fe^{2^+} + 6CN^-, \qquad K_H = \frac{[Fe^{2^+}][CN^-]^6}{[[Fe(CN)_6]^{4-}]} = 1 \cdot 10^{-24}$$

Константа нестойкости — это мера прочности комплексного иона. Если ее значения малы, комплексы являются прочными, если велики, то нестойкими.

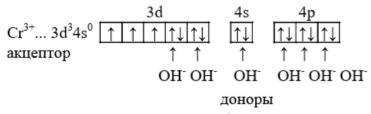
Иногда вместо констант нестойкости пользуются обратными их величинами – константами устойчивости, относящимися к процессу образования комплексного иона: $KH = 1/K_{ycr}$.

Химическая связь в комплексных соединениях

В настоящее время общепринятой является квантовомеханическая концепция о природе химических связей, согласно которой при образовании комплексных (координационных) соединений наиболее распространенным является донорно-акцепторное взаимодействие комплексообразователя и лигандов.

Согласно методу валентных связей между комплексообразователем и лигандами возникает донорно-акцепторная связь, в которой доноры — лиганды, а акцептор — комплексообразователь. Рассмотрим более подробно механизм образования иона $[Cr(OH)_6]^{3-}$, в котором ион хрома (Ш) является комплексообразователем. Нейтральный атом хрома имеет 6 валентных электронов, распределенных в пределах внешнего и предвнешнего валентных энергетических подуровней следующим образом:

$$Cr^0...3d^54s^1$$
 \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow


Катион ${\rm Cr}^{3+}$ образуется при потере электронейтральным атомом трех валентных электронов, т. е. ${\rm Cr}^0 - 3 \, \bar{\rm e} = {\rm Cr}^{3+}$. При этом имеем:

$$Cr^{3+}$$
... $3d^54s^1$ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow

Свободные s-, p- и d-орбитали подвергаются d^2sp^3 -гибридизации, структура комплекса — октаэдр.

Из схемы видно, что катион хрома (III) имеет шесть вакантных атомных орбиталей: две на 3d-, одну на 4s- и три на 4p-подуровне. Координационное число (КЧ) равно числу свободных орбиталей. Роль акцепторов электронных пар играют именно эти свободные орбитали. И при образовании комплекса от шести ионов-доноров

 OH^- , т. е. лигандов, электронные пары заполняют эти свободные орбитали – 3d, 4s, 4p:

Координационное число иона ${\rm Cr}^{3+}$ в этом комплексном ионе равно 6, так как ион-комплексообразователь присоединяет шесть лигандов ${\rm OH}^-$.

Выводы по схеме метода ВС:

 $Tun гибридизации - d^2sp^3;$

Строение комплекса – октаэдр;

Магнитные свойства – **парамагнитен** (есть неспаренные электроны);

Внутриорбитальный – в образовании связей участвует предвнешний (3d, а не 4 d) d-подуровень.

<u>Примечание:</u> внутриорбитальные комплексы более прочные, чем внешнеорбитальные.