УH	ВЕРЖДАЮ	
Дир	оектор ИФЕ	ЗТ
		А.Н. Яковлев
«	»	2015 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИН МЕХАНИКА 1.2: Механика 2.2

НАПРАВЛЕНИЯ ООП

- 12.03.01 Приборостроение
- 12.03.02 Оптотехника
- 12.03.04 Биотехнические системы и технологии
- 13.03.01 Теплоэнергетика и теплотехника
- 13.03.02 Электроэнергетика и электротехника
- 16.03.01 Техническая физика
- 16.03.02 Высокотехнологические плазменные и энергетические установки
- 18.03.01 Химическая технология
- 18.03.02 Энерго- и ресурсосберегающие процессы в химической

технологии, нефтихимии и биотехнологии

19.03.01 - Биотехнология

22.03.01 – Материаловедение и технологии материалов

29.03.04 – Технология художественной обработки материалов (нет набора)

14.05.02 – Атомные станции: проектирование, эксплуатация и

инжиниринг

КВАЛИФИКАЦИЯ: <u>БАКАЛАВР (12.03.01 – 29.03.04);</u> **ДИПЛОМИРОВАННЫЙ СПЕЦИАЛИСТ (14.05.02)**

БАЗОВЫЙ УЧЕБНЫЙ ПЛАН ПРИЕМА 2014 г.

КУРС – второй, третий СЕМЕСТР – 3, 4

КОЛИЧЕСТВО КРЕДИТОВ 6 (4 по механике 1.2, 2 – механике 2.2)

КОД ДИСЦИПЛИНЫ ДИСЦ.Б.13.1, ДИСЦ.Б.13.2 (12.03.01; 12.03.02; 12.03.04;

<u>13.03.01; 16.03.01; 16.03.02; 18.03.01; 18.03.02; 19.03.01; 22.03.01; 14.05.02);</u> ДИСЦ.Б.12.1, ДИСЦ.Б.12.2 (13.03.02)

Вид унобной подтольности	Временной ресурс		
Вид учебной деятельности	3 семестр	4 семестр	
Лекции, ч	32	_	
Лабораторные занятия, ч	-	_	
Практические занятия, ч	48	16	
Аудиторные занятия, ч	80	16	
Самостоятельная работа, ч	64	56	
ИТОГО. ч	144	72	

ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ:

(3 семестр – <u>экзамен</u>, 4 семестр – диф. зачет КП)

ФОРМА ОБУЧЕНИЯ очная

ОБЕСПЕЧИВАЮЩЕЕ ПОДРАЗДЕЛЕНИЕ кафедра ТПМ ИФВТ

СОГЛАСОВАНО:	
Заведующий кафедрой ТПМ ИФВТ	 Симанкин Ф.А.
Преподаватель	 /

Аннотация рабочей программы

Дисциплина **«Механика 1.2, Механика 2.2»** является компонентом учебного плана, ориентированным на начальную подготовку студентов к комплексной инженерной деятельности и входит в состав базовой части профессионального цикла дисциплин по направлениям:

12.03.01 – Приборостроение

12.03.02 - Оптотехника

12.03.04 – Биотехнические системы и технологии

13.03.01 - Теплоэнергетика и теплотехника

13.03.02 – Электроэнергетика и электротехника

16.03.01 - Техническая физика

16.03.02 – Высокотехнологические плазменные и энергетические установки

18.03.01 – Химическая технология

18.03.02 – Энерго- и ресурсосберегающие процессы в химической

технологии, нефтихимии и биотехнологии

19.03.01 - Биотехнология

22.03.01 - Материаловедение и технологии материалов

29.03.04 – Технология художественной обработки материалов (нет набора)

14.05.02 - Атомные станции: проектирование, эксплуатация и

инжиниринг

Дисциплина реализуется на кафедре Теоретической и прикладной механики Института физики высоких технологий Национального исследовательского Томского политехнического университета.

Содержание дисциплины способствует обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения; развитию научнотехнического мышления будущего специалиста.

Дисциплина нацелена на формирование ряда общекультурных компетенций и профессиональных компетенций выпускника:

согласно ООП «Приборостроение»: (ОК-), (ОК-), (ОК-), (ОК-), (ПК-), (ПК-), (ПК-);

согласно ООП «Теплоэнергетика и теплотехника»: (ОК-), (ОК-), (ОК-), (ПК-), (ПК-), (ПК-), (ПК-);

согласно ООП «Электроэнергетика и электротехника»: (ОК-), (ОК-), (ОК-), (ПК-), (ПК-), (ПК-), (ПК-);

согласно ООП «Высокотехнологические плазменные и энергетические установки»: (OK-), (OK-), (OK-), (OK-), (DK-), (DK-)

согласно ООП «Материаловедение и технологии материалов»: (ОК-), (ОК-), (ОК-), (ОК-), (ПК-), (ПК-), (ПК-), (ПК-);

согласно ООП «Оптотехника»: (ОК-), (ОК-), (ОК-), (ОК-), (ПК-), (ПК-), (ПК-), (ПК-); согласно ООП «Техническая физика»: (ОК-), (ОК-), (ОК-), (ОК-), (ПК-), (ПК-), (ПК-):

согласно ООП «Химическая технология»: (ОК-), (ОК-), (ОК-), (ОК-), (ПК-), (ПК-), (ПК-);

согласно ООП «Биотехнология»: (ОК-), (ОК-), (ОК-), (ОК-), (ПК-), (ПК-), (ПК-), (ПК-); согласно ООП «Энерго- и ресурсосберегающие процессы в химической

технологии, нефтихимии и биотехнологии»: (ОК-), (ОК-), (ПК-), (ПК-), (ПК-), (ПК-);

согласно ООП «Биотехнические системы и технологии»: (ОК-), (ОК-), (ОК-), (ПК-), (ПК-), (ПК-), (ПК-);

согласно ООП «Атомные станции: проектирование, эксплуатация и инжиниринг»: (ОК-), (ОК-), (ОК-), (ОК-), (ПК-), (ПК-), (ПК-), (ПК-).

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, семинары, самостоятельная работа студента, контрольные работы, консультации.

Программой дисциплины предусмотрены следующие виды контроля:

- ✓ <u>текущий контроль</u> успеваемости в форме выполнения домашних заданий, контроля за посещаемостью и оценки личностных качеств студента;
- ✓ *рубежный контроль* в формате мини-конференций в период 1-ой и 2-ой конференц-недели, предусмотренной линейным графиком учебного процесса;
- ✓ <u>промежуточный контроль</u> в форме экзамена в 3 семестре и в форме дифференцированного зачета за курсовой проект в 4 семестре.

Общая трудоемкость освоения дисциплины в 3 семестре составляет 4 зачетные единицы (кредиты), 144 часа. Программой дисциплины предусмотрены лекционные занятия в количестве 32 часов, практические занятия в количестве 48 часа, а также самостоятельная работа студента в количестве 64 часов.

Общая трудоемкость освоения дисциплины в 4 семестре составляет 2 зачетные единицы (кредиты), 72 часа. Программой дисциплины предусмотрены практические занятия в количестве 16 часов, а также самостоятельная работа студента в количестве 56 часов.

1. Цели и задачи освоения дисциплины

Целями и задачами освоения дисциплины в области обучения, воспитания и развития, соответствующие целям ООП являются:

- ✓ заложить основу для развития профессиональных и личностных навыков студента;
- ✓ сформировать набор базовых знаний (теоретическая подготовка), необходимых для решения инженерных задач в процессе практической деятельности на основе принципа неразрывного единства теоретического и практического обучения;
- ✓ овладение теоретическими основами механики методами составления и исследования уравнений статики, кинематики, динамики;
- ✓ изучение основных понятий и законов механики материалов и конструкций;
- ✓ освоение проектирования типовых механических устройств общего назначения.

2. Место дисциплины в структуре ООП

Дисциплина относится к профессиональному циклу базовых учебных планов основных образовательных программ по направлениям:

12.03.01 «Приборостроение» профили подготовки

«Информационно-измерительная техника и технологии»;

«Приборостроение»;

«Приборы и методы контроля качества и диагностики».

12.03.02 «Оптотехника»

профиль подготовки «Оптико-электронные приборы и системы».

12.03.04 «Биотехнические системы и технологии»

профиль подготовки «Биотехнические и медицинские аппараты и системы»;

13.03.01 «Теплоэнергетика и теплотехника» профили подготовки

«Тепловые электрические станции»;

«Промышленная теплоэнергетика»;

«Автоматизация технологических процессов и производств в теплоэнергетике и теплотехнике»;

13.03.02 «Электроэнергетика и электротехника» профили подготовки:

«Релейная защита и автоматизация электроэнергетических систем»;

Проект «Электрические станции»: «Высоковольтная электроэнергетика и электротехника»: «Электроэнергетические системы и сети»; «Электроснабжение»: «Электрические и электронные аппараты»; «Электромеханика»; «Электроизоляционная, кабельная и конденсаторная техника»; «Электропривод и автоматика»; «Электрооборудование и электрохозяйство предприятий, организаций и учреждений». 16.03.01 «Техническая физика» профиль подготовки «Пучковые и плазменные технологии». 16.03.02 «Высокотехнологические плазменные и энергетические установки» профиль подготовки «Плазменно-пучковые и электроразрядные технологии»: 18.03.01 «Химическая технология» профили подготовки: «Технология тугоплавких неметаллических и силикатных материалов»; «Химическая технология органических веществ»; «Технология и переработка полимеров»; «Химическая технология природных энергоносителей углеродных материалов»; «Химическая технология синтетических биологических активных веществ, химико-фармацевтических препаратов и косметических средств»; «Химическая технология неорганических веществ». 18.03.02 «Энерго- ресурсосберегающие процессы в химической технологии, **нефтехимии и биотехнологии»** профили подготовки «Машины и аппараты химических производств»: «Основные процессы химических производств и химическая кибернетика». 19.03.01 «Биотехнология» профиль подготовки «Биотехнология». 22.03.01 «Материаловедение и технологии материалов» профили подготовки «Материаловедение и технологии материалов в машиностроении»; «Наноструктурные материалы». 14.05.02 «Атомные станции: проектирование, эксплуатация и инжиниринг» профиль подготовки «Проектирование и эксплуатация атомных станций»; ООП согласно федеральным государственным реализуются в ТПУ образовательным стандартам высшего профессионального образования по направлениям подготовки: **12.03.01 «Приборостроение»** (введен в действие приказом № ___ от __ ____ 20 г.), **12.03.02 «Оптотехника»** (введен в действие приказом № от 20___ г.), 12.03.04 «Биотехнические системы и технологии» (введен в действие приказом № ___ от __ _20__ г.), 13.03.01 «Теплоэнергетика и теплотехника» (введен в действие приказом № ____ от ___ 20__ г.),

13.03.02 «Электроэнергетика и электротехника» (введен в действие приказом

16.03.01 «Техническая физика» (введен в действие приказом № от

16.03.02 «Высокотехнологические плазменные и энергетические установки»

18.03.01 «Химическая технология» (введен в действие приказом № от

(введен в действие приказом № ___ от __ _20_ г.),

№ ____ от ___ 20__ г.),

20___ г.),

____ 20__ г.),

18.03.02 «Энерго- ресурсосберегающие процессы в химической технологии,
нефтехимии и биотехнологии» (введен в действие приказом № от
20 г.),
19.03.01 «Биотехнология» (введен в действие приказом № от
20 <u></u> Γ.),
22.03.01 «Материаловедение и технологии материалов» (введен в действие
приказом № от20 г.),
14.05.02 «Атомные станции: проектирование, эксплуатация и инжиниринг»
(введен в действие приказом № от20_ г.).
Дисциплина необходима и обязательна для успешного освоения
последующих специальных дисциплин.
Пререквизиты:

Математика; Физика; Информатика; Начертательная геометрия и инженерная графика; Материаловедение; Материаловедение и технология конструкционных материалов.

Кореквизиты:

Метрология, стандартизация и сертификация.

3. Результаты освоения дисциплины

Согласно декомпозиции результатов обучения по ООП в процессе освоения требований ФГОС, критериев АИОР, согласованных с дисциплины с учетом требованиями международных стандартов EURACE и FEANI планируются следующие результаты:

- 1. Применять базовые математические, естественнонаучные, социальноэкономические знания и профессиональные знания в профессиональной деятельности.
- 2. Эффективно работать индивидуально и в коллективе, в том числе междисциплинарном, с делением ответственности и полномочий при решении комплексных инженерных задач.
- 3. Способность самостоятельно применять методы и средства познания, обучения и самоконтроля; осознавать перспективность интеллектуального, физического нравственного, профессионального культурного, И саморазвития и самосовершенствования; уметь критически оценивать свои достоинства и недостатки.
- 4. Понимать необходимость и уметь самостоятельно учиться и повышать квалификацию в течение всего периода профессиональной деятельности.

В результате освоения дисциплины студент должен:

знать:

- ✓ основные понятия и аксиомы механики, операции с системами сил, действующими на твердое тело;
- ✓ условия эквивалентности системы сил, уравновешенности произвольной системы сил, частные случаи этих условий;
- ✓ кинематические характеристики движения точки при различных способах задания движения:
- ✓ простейшие виды нагружения и основы расчетов на прочность;
- ✓ теорию напряженного состояния, надежности и устойчивости материалов и конструкций, прочности материалов при сложном напряженном состоянии, колебаний механических систем;
- ✓ основы проектирования и конструирования типовых деталей и узлов;
- ✓ систему допусков и посадок.

уметь:

- ✓ грамотно и аргументировано излагать собственные мысли;
- ✓ составлять уравнения равновесия для тела, находящегося под действием произвольной системы сил;
- ✓ вычислять скорости и ускорения точек тел и самих тел, совершающих поступательное, вращательное и плоское движения;
- ✓ применять методы расчета на прочность, жесткость и устойчивость элементов конструкций и систем;
- ✓ осуществлять поиск и анализ необходимой информации;
- ✓ обосновывать свои суждения;
- ✓ конструировать типовые детали, механизмы;
- ✓ рассчитывать соединения, передачи, опоры, валы, муфты.

<u>владеть:</u>

- ✓ методиками лабораторного определения свойств материалов;
- ✓ навыками применения методов теоретической механики (нахождение реакций связей, расчет кинематических параметров);
- ✓ основами расчета на прочность;
- ✓ методами решения проектно-конструкторских и технологических задач с использованием современных программных продуктов
- ✓ навыками сбора, обобщения и анализа информации;
- ✓ навыками самостоятельной работы.
- В процессе освоения дисциплины у студентов развиваются следующие компетенции:

3.1. Универсальные (общекультурные):

- ✓ способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей её достижения;
- ✓ способность логически верно, аргументировано и ясно строить устную и письменную речь;
- ✓ способность к работе в коллективе и кооперации с коллегами;
- ✓ способность к личностному развитию и повышению профессионального мастерства;
- ✓ способность критически оценивать свои достоинства и недостатки, наметить пути и выбрать средства развития достоинств и устранения недостатков;
- ✓ способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности.

3.2. Профессиональные:

- ✓ способность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь для их решения соответствующий физико-математический аппарат;
- ✓ способность собирать и анализировать научно-техническую информацию, учитывать современные тенденции развития и использовать достижения отечественной и зарубежной науки, техники и технологии в профессиональной деятельности;
- ✓ способность использовать системы стандартизации и сертификации, осознание значение метрологии в развитии техники и технологий;
- ✓ способность рассчитывать и проектировать элементы и устройства, основанные на различных физических принципах действия;
- ✓ готовность проектировать и конструировать типовые детали и узлы.

4. Структура и содержание дисциплины

4.1. Наименование разделов дисциплины:

4.1.1. Статика твердого тела.

Введение. Аксиомы статики. Простейшие теоремы статики. Связи и их реакции. Система сходящихся сил. Плоская система сил. Пространственная система сил. Приведение. Равновесие.

4.1.2. Кинематика.

- 4.1.2.1. Кинематика точки. Классификация видов движения твердых тел. Простейшие виды движения твердых тел.
- 4.1.2.2. Плоскопараллельное движение твердого тела. Построение планов скоростей. Мгновенный центр скоростей.
- 4.1.2.3. Плоскопараллельное движение твердого тела. Построение планов ускорений.

4.1.3. Динамика.

Основные понятия и определения. Законы динамики Галилея-Ньютона. Дифференциальные уравнения движения материальной точки. Введение в динамику механической системы. Принцип Даламбера (метод кинетостатики).

4.1.4. Основы сопротивления материалов.

- 4.1.4.1. Основные понятия и определения (деформация, прочность, жесткость, устойчивость). Задачи науки о сопротивлении материалов. Нагрузки. Классификация нагрузок. Внешние и внутренние силы. Дополнительные внутренние силы (усилия). Понятие о деформации и упругом теле. Основные допущения и гипотезы. Метод сечений. Виды деформаций: растяжение, сжатие, кручение, изгиб.
- 4.1.4.2. Растяжение-сжатие: построение эпюр продольных сил, напряжения в поперечных сечениях. Расчет на прочность.
- 4.1.4.3. Кручение: эпюры крутящих моментов, расчет на прочность.
- 4.1.4.4. Геометрические характеристики плоских сечений.
- 4.1.4.5. Изгиб: поперечные силы и изгибающие моменты в сечениях балок, эпюры поперечных сил и изгибающих моментов, нормальные напряжения при изгибе, расчет на прочность при изгибе.
- 4.1.5. Основы конструирования деталей и узлов механизмов и машин.
 - 4.1.5.1. Основы конструирования деталей и узлов машин. Структурный анализ механизма.
 - 4.1.5.2. Фрикционная передача. Ременная передача. Цепная передача.
 - 4.1.5.3. Валы и оси. Опоры скольжения и качения. Проектный расчет и конструирование валов. Проверочный расчет валов на усталостную прочность.
 - 4.1.5.4. Подшипники качения. Конструкции и назначение. Подбор и расчет подшипников. Способы регулировки подшипников. Уплотнительные устройства.
 - 4.1.5.5. Взаимозаменяемость. Технические измерения. Допуски и посадки.

4.2. Структура дисциплины по разделам и формам организации обучения в 3 семестре представлена таблицей 1.

Структура дисциплины по разделам и формам организации обучения

Таблица 1

Номор	Аудиторная	работа (час)	CPC	
Номер раздела/темы	Лекции	Практические занятия	(час)	Итого
4.1.1.	4	4	6	14
4.1.2.	6	10	14	30
в.т.ч. 4.1.2.1	2	2	2	6
в.т.ч. 4.1.2.2	2	4	4	10
в.т.ч. 4.1.2.3	2	4	8	14
4.1.3.	2	2	4	8
4.1.4.	10	16	20	46
в.т.ч. 4.1.4.1	2	2	4	8
в.т.ч. 4.1.4.2	2	4	4	10
в.т.ч. 4.1.4.3	2	4	4	10
в.т.ч. 4.1.4.4	2	2	4	8
в.т.ч. 4.1.4.5	2	4	4	10
4.1.5	10	16	20	46
в.т.ч. 4.1.5.1	2	2	4	8
в.т.ч. 4.1.5.2	2	4	4	10
в.т.ч. 4.1.5.3	2	4	4	10
в.т.ч. 4.1.5.4	2	2	4	8
в.т.ч. 4.1.5.5	2	4	4	10
ИТОГО	32	48	64	144

4.3. Структура дисциплины по разделам и формам организации обучения в 4 семестре представлена таблицей 2.

Структура дисциплины по разделам и формам организации обучения

Таблица 2

Номер	Аудиторная	CPC		
раздела/темы	Лекции	Практические занятия	(час)	Итого
4.1.5	0	16	56	72
в.т.ч. 4.1.5.1		4	14	18
в.т.ч. 4.1.5.2		4	14	18
в.т.ч. 4.1.5.3		4	14	18
в.т.ч. 4.1.5.4		4	14	18
ИТОГО	0	16	56	72

В 3 семестре студенты получают задание на курсовое проектирование, которое продолжает в 4 семестре. Итогом является защита студентом курсового проекта.

Курсовой проект выполняется после изучения теоретического материала и подразумевает его практическое применение при проектировании механизмов.

В качестве задания на курсовой проект предлагается проектирование механического привода общепромышленного назначения.

Содержание курсового проекта

- 1. Ознакомление с заданием, подбор литературы; изучение аналогичных приводов по литературе. Определение необходимой мощности на рабочем звене привода; выбор электродвигателя по каталогу (с учетом требуемой мощности и частоты вращения)
- 2. Уточнение передаточных чисел ступеней и кинематический расчет привода (определение частот вращения, угловых скоростей, мощностей и крутящих моментов по всем валам привода). Выбор материала и проектировочный расчет передач редуктора.
- 3. Уточнение и корректировка проведенных расчетов передач редуктора, вычерчивание их в масштабе (желательно 1:1 в электронном варианте). Согласование полученной компоновки с руководителем.
- 4. Ориентировочное определение диаметров валов. Вычерчивание валов и конфигурации внутренней полости редуктора на эскизной компоновке. Предварительный выбор подшипников качения в соответствии с размерами валов.
- 5. Расчет передач гибкой связью (ременной, цепной), открытой зубчатой передачи. Оформление пояснительной записки (ПЗ) по выполненной работе (выбор электродвигателя, кинематический расчет привода, расчет передач привода) в соответствии с ЕСКД и общепринятыми правилами.
- 6. Составление расчетных схем валов и проверка выбранных подшипников по динамической грузоподъемности.
- 7. Конструирование валов, зубчатых колес, корпуса редуктора, крышек подшипников и других деталей (втулки распорные, кольца мазеудерживающие, стаканы), необходимых для работы редуктора и его эксплуатации (конструирование целесообразно проводить на трех основных проекциях горизонтальной, фронтальной, профильной одновременно). Выбор и простановка посадок. Оформление ПЗ по п.п. 5-7.
- 8. Вычерчивание сборочного чертежа редуктора, составление спецификации, технической характеристики редуктора, технических условий на его сборку и эксплуатацию.
- 9. Выполнение, по указанию руководителя, рабочих чертежей 3-х типовых деталей редуктора (вал, колесо зубчатое, корпус или крышка редуктора) в соответствии со сборочным чертежом редуктора.
 - 10. Завершение выполнения проекта и сдача его на просмотр руководителю.

5. Образовательные технологии

Технология обучения - это способ реализации содержания обучения, предусмотренного учебными программами, представляющий систему форм, методов и средств обучения, обеспечивающую наиболее эффективное достижение поставленных целей.

При изучении дисциплины «Механика 1.2, Механика 2.2» используются следующие формы организации обучения: лекции, практические занятия, самостоятельная работа студентов (СРС). Перечень методов обучения и форм организации обучения (ФОО) представлен таблицей 3.

Таблица 3

ФОО Метод	Лекция	Практическое занятие	CPC
Проблемное обучение		+	
Работа в команде		+	+
Контекстное обучение	+	+	
Обучение на основе опыта		+	+
Информационно-			
коммуникационные технологии	+	+	+

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

Для реализации самостоятельной работы созданы следующие условия и предпосылки:

- 1. Студенты обеспечены информационными ресурсами (учебниками, справочникам, учебными пособиями, банком индивидуальных заданий);
- 2. Студенты обеспечены информационными ресурсами: на сайте НТБ в электронном виде выставлено методическое обеспечение дисциплины «Механика 1.2, Механика 2.2», имеется доступ к материалам, размещенным на персональных сайтах преподавателей (пример):

http://portal.tpu.ru:7777/SHARED/d/DROBCHIK/materiali/Posobiya/Tab1

- 3. Для проведения практических занятий разработаны учебно-методические указания. Студент имеет возможность заранее (с опережением) подготовиться к занятию, попытаться ответить на контролирующие вопросы, и обратиться за помощью к преподавателю в случае необходимости.
- 4. Разработаны контролирующие материалы в тестовой форме, позволяющие оперативно оценить уровень подготовки студентов.
 - 5. Организованы еженедельные консультации.

6.1. Текущая самостоятельная работа (СРС)

Текущая самостоятельная работа по дисциплине «Механика 1.2, Механика 2.2», направленная на углубление и закрепление знаний студента, на развитие практических умений, включает в себя следующие виды работ:

- работа с лекционным материалом;
- подготовка к практическим занятиям;
- изучение тем, вынесенных на самостоятельную проработку;
- выполнение индивидуальных домашних заданий;
- подготовка к самостоятельным и контрольным работам;
- выполнение курсового проекта;
- подготовка к экзамену/дифференцированному зачету.

6.2. Творческая проблемно-ориентированная самостоятельная работа (ТСР)

Творческая проблемно-ориентированная самостоятельная работа ПО дисциплине «Механика 1.2. Механика 2.2», направленная на развитие интеллектуальных умений, общекультурных и профессиональных компетенций, развитие творческого мышления у студентов, включает в себя следующие виды работ по основным проблемам курса:

- выполнение расчетных работ, обработка и анализ данных;
- решение задач повышенной сложности, в том числе комплексных и олимпиадных задач;
 - участие в олимпиадах по теоретической механике и сопротивлению материалов;
 - решение задач применительно к направлению подготовки;
 - проектирование привода технологического оборудования.

6.3. Содержание самостоятельной работы студентов по дисциплине

6.3.1. Темы индивидуальных домашних заданий

- 1. Равновесие плоской системы сил.
- 2. Кинематика простейших видов движения.
- 3. Кинематический анализ плоского механизма.
- 4. Растяжение-сжатие.
- 5. Кручение.
- 6. Изгиб.

7. Проектирование привода одновалковой зубчатой дробилки.

6.3.2. Темы, выносимые на самостоятельную проработку

- 1. Мгновенный центр скоростей и ускорений.
- 2. Центр тяжести тела.
- 3. Сложное движение твердого тела.
- 4. Принцип Гамильтона-Остроградского.
- 5. Принцип Даламбера.
- 6. Муфты соединительные. Общие сведения. Назначение. Классификация.
- 7. Конические зубчатые передачи. Достоинства и недостатки. Геометрия передачи.
 - 8. Червячные передачи. Достоинства и недостатки. Геометрия передачи.

6.4. Контроль самостоятельной работы (СР)

Контроль СР студентов проводится путем проверки ряда работ, предложенных для выполнения в качестве домашних заданий согласно разделу 6.3. и рейтинг-плану освоения дисциплины. Наряду с контролем СР со стороны преподавателя предполагается личный самоконтроль по выполнению СР со стороны студентов. Обязательная самостоятельная работа обеспечивает подготовку студента к текущим аудиторным занятиям. Результаты этой подготовки проявляются в активности студента на занятиях, выполненных контрольных работ, тестовых заданий и других форм текущего контроля. Баллы, полученные студентом по результатам аудиторной работы, формируют рейтинговую оценку текущей успеваемости студента по дисциплине.

Дополнительная самостоятельная работа (ДСР) направлена на углубление и закрепление знаний студента, развитие аналитических навыков по проблематике учебной дисциплины. Баллы, полученные по этим видам работы, формируют оценку по ДСР студента и учитываются при итоговой аттестации по курсу.

ДСР включает следующие виды работ:

- 1. Участие в научных студенческих конференциях.
- 2. Написание реферата по заданной теме.
- 3. Участие в олимпиадах.

6.5. Учебно-методическое обеспечение СР студентов

Преподавателями кафедры разработаны следующие учебно-методические пособия и указания:

- 1. Теоретическая механика: учебное пособие. Часть 1 / В.В. Дробчик, М.П. Шумский, В.А. Дубовик, Ф.А. Симанкин; Томский политехнический университет Томск: Изд-во Томского политехнического университета, 2010. 116 с.
- 2. Теоретическая механика: учебное пособие. Часть 2 / В.В. Дробчик, М.П. Шумский, Ф.А. Симанкин; Томский политехнический университет Томск: Издво Томского политехнического университета, 2012. 135 с.
- 3. Теоретическая механика. Сборник заданий и методические указания по их выполнению (для студентов всех специальностей технических вузов) / Соловьева Н.И., Шумский М.П. Томск: Изд-во ТПУ, 2006. 104 с.
- 4. Нестеренко В.П., Зитов А.И., Катанухина С.Л., Куприянов Н.А., Дробчик В.В. Техническая механика / учеб. пособие. Томск: Изд-во ТПУ, 2007. 176 с.
- 6. К.Н. Цукублина, Н.А. Куприянов. Основы расчетов на прочность. Методические указания. Томск: Изд-во ТПУ, 2002. 35 с.
- 7. Гурин В.В., Замятин В.М., Попов А.М. Детали машин. Курсовое проектирование: учебник / Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2009. Кн. 1. 367 с. (Гриф УМО АМ).

- 8. Гурин В.В., Замятин В.М., Попов А.М. Детали машин. Курсовое проектирование: учебник / Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2009. Кн. 2. 313 с. (Гриф УМО АМ).
- 9. Гурин В.В., Замятин В.М., Попов А.М. Механика: учеб. для вузов. Томск: Изд-во Томского политехнического университета, 2011. 665 с.

7. Средства текущей и итоговой оценки качества освоения дисциплины

Качество освоения дисциплины студентами контролируются защитой выполненных индивидуальных заданий, а также экзаменом/дифференцированным зачетом по дисциплине по окончании обучения.

Для контроля знаний и умений студентов используется рейтинговая система, т.е. при оценке работы учитываются успехи не только при сдаче экзамена/дифференцированного зачета, но и текущей работы. Ниже приведены виды контроля и максимально возможная оценка в баллах (по 100-бальной системе). В нее входят:

- 1. Рейтинг расчетно-графического задания (РГ3).
- 2. Рейтинг зачета (РЭ).

Рейтинг расчетно-графического задания (РГЗ) — это оценка за решение задач индивидуального задания. Если задача правильно решена и сдана в срок, то она оценивается в максимальное количество баллов. Задания, «сданные с опозданием», оценивается на 25-50% меньше в зависимости от срока выполнения и сдачи задания.

В конце семестра подсчитывается рейтинг семестра (РС), максимальное значение которого 60 баллов.

Студент допускается к сдаче зачета, если он выполнил все задания в семестре и если его рейтинг не менее 33 баллов.

Максимальный рейтинг зачета (P3) — 40 баллов. Форму проведения зачета (устно, письменно, по билетам, без билетов и т.д.) устанавливает лектор. Экзамен/дифференцированный зачет считается сданным, если оценка его не менее 22 баллов. Эта оценка суммируется с рейтингом семестра и подсчитывается общий рейтинг: OP=PC+P3; общий рейтинг не должен быть меньше 55 баллов, что соответствует «зачтено». Если оценка менее 22 баллов, экзамен/дифференцированный зачет считается не сданным.

Рейтинг поощряет активных студентов дополнительными баллами за участие в олимпиадах, написание рефератов, выполнение заданий повышенной сложности.

Шкалы оценивания

В целях приведения системы оценивания достижений студентов ТПУ в соответствие международной практике вводятся следующие шкалы соответствия балльных, литерных и традиционных оценок:

– для выведения итоговой оценки по дисциплине (таблица 4, 5, 6);

Таблица 4

Шкала оценивания для оформления <u>итоговой оценки</u> по дисциплине, курсовому проекту (работе)

Традиционная оценка	Литерная оценка (<i>ESTS</i>)*	Балльная оценка	Определение оценки
Отлично	A^+	96÷100 баллов	Отличное понимание предмета, всесторонние знания,
	Α	90÷95 баллов	отличные умения и владения
	B^{+}	80÷89 баллов	Достаточно полное понимание
Хорошо	В	70÷79 баллов	предмета, хорошие знания, умения и владения

Проект

Традиционная оценка	Литерная оценка (<i>ESTS</i>)*	Балльная оценка	Определение оценки
	C ⁺	65÷69 баллов	Приемлемое понимание
Удовлетворительно	С	55÷64 балла	предмета, удовлетворительные знания, умения и владения
Зачтено	D	55÷100 баллов	Результаты обучения соответствуют минимальным требованиям
Неудовлетворительно / не зачтено	F	0÷54 баллов	Результаты обучения не соответствуют минимальным требованиям

^{* -} European Credit Transfer and Accumulation System (ESTS) – Европейская система перевода и накопления кредитов

Таблица 5 Шкала оценивания при проведении <u>промежуточной аттестации</u> по дисциплинам (экзамен / зачет)

Соответствие традиционной оценке на экзамене	Рейтинговая оценка	Определение оценки
Отлично	36÷40 баллов	Отличное понимание предмета, всесторонние знания, отличные умения и владения
Хорошо	32÷35 баллов	Достаточно полное понимание предмета, хорошие знания, умения и владения
Удовлетворительно / зачтено	22÷31 балла	Приемлемое понимание предмета, удовлетворительные знания, умения и владения
Неудовлетворительно / не зачтено	0÷21 балла	Результаты обучения не соответствуют минимальным требованиям

Таблица 6 Шкала оценивания при проведении <u>защит</u> курсовых проектов (работ)

Соответствие традиционной оценке выполненной работы	Рейтинговая оценка	Определение оценки
Отлично	54÷60 баллов	Отличное понимание предмета, всесторонние знания, отличные умения и владения
Хорошо	42÷53 баллов	Достаточно полное понимание предмета, хорошие знания, умения и владения
Удовлетворительно	33÷41 балла	Приемлемое понимание предмета, удовлетворительные знания, умения и владения
Неудовлетворительно	0÷32 баллов	Результаты обучения не соответствуют минимальным требованиям

КОНТРОЛИРУЮЩИЕ МАТЕРИАЛЫ

Примеры контролирующих материалов по дисциплине:

Вопросы для самоконтроля и контроля по разделу «Статика»

- 1. Какими тремя параметрами определяется сила, действующая на твёрдое тело?
- 2. Какие силы по отношению к системе тел являются внешними, какие внутренними?
- 3. Сформулируйте аксиому отвердевания.
- 4. Сформулировать простейшие теоремы статики.
- 5. Перечислить типы связей.
- 6. Определение понятия равновесия точки в инерциальной системе отсчёта.
- 7. Какие системы сил называются статически эквивалентными?
- 8. Как перенести силу, параллельную самой себе?
- 9. Образуют ли действие и противодействие уравновешенную систему сил?
- 10. Что устанавливает правило параллелограмма сил?
- 11. В чём заключается пассивный характер реакции связи?

Вопросы для самоконтроля и контроля по разделу «Кинематика»

- 1. Что изучает кинематика?
- 2. Определения скорости и ускорения точки?
- 3. Какие существуют способы задания движения точки и в чём заключается каждый из них?
- 4. Что называется траекторией движения точки?
- 5. Что значит определить (задать) движение точки?
- 6. Какие параметры необходимо знать для задания движения точки естественным способом?
- 7. При каких условиях считается заданным способ определения движения точки в координатной форме?
- 8. Чему равен и как направлен в пространстве вектор скорости?
- 9. Чему равны проекции скорости точки на неподвижные оси декартовой системы координат?
- 10. Как по проекциям скорости найти её модуль и направление?
- 11. Чему равна проекция скорости точки на касательную к траектории?

Вопросы для самоконтроля и контроля по разделу «Динамика»

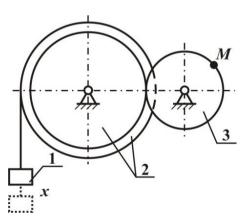
- 1. Что изучает раздел «динамика» в теоретической механике?
- 2. Что называется материальной точкой?
- 3. Что называется механической системой?
- 4. Что называется сплошным телом?
- 5. Что называется абсолютно твердым телом?
- 6. Что называется силой?
- 7. Что называется инерциальной системой отсчета?
- 8. Сформулировать закон инерции.
- 9. Сформулировать основной закон динамики точки.
- 10. Сформулировать закон равенства сил действия и противодействия.

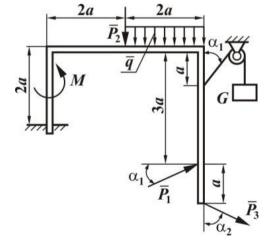
Вопросы для самоконтроля и контроля по разделу «Основы Сопротивления материалов»

- 1. Что изучает в разделе «Основы сопротивления материалов»?
- 2. Объясните метод сечений.
- 3. Назовите внутреннее усилие при деформации растяжение- сжатие?
- 4. Назовите внутреннее усилие при деформации кручение?
- 4. Назовите внутренние усилия при деформации изгиб?

- 5. Какие напряжения возникают при деформации растяжение- сжатие?
- 6. Какие напряжения возникают при деформации кручение?
- 7. Что такое сложное сопротивление?
- 8. Что такое эпюра?

Вопросы для самоконтроля и контроля по разделу «Основы конструирования деталей и узлов механизмов и машин»


- 1. Шпоночные соединения. Назначение шпоночного соединения.
- 2. Шлицевые соединения. Назначение шлицевого соединения.
- 3. Штифтовые соединения. Назначение штифтовых соединений.
- 4. Подшипники качения. Назначение подшипников качения.
- 5. Смазка подшипниковых узлов.
- 6. Допуски и посадки.
- 7. Шероховатость поверхностей деталей машин.
- 8. Фрикционные механизмы.
- 9. Ременные передачи. Геометрия ременной передачи.
- 10. Виды разрушений зубьев.
- 11. Определение составляющих силы в зацеплении окружной и радиальной.
- 12. Составляющие нормальной силы в зацеплении окружная, радиальная, осевая.
- 13. Ортогональные конические передачи. Геометрия конических прямозубых передач.
- 14. Ортогональная червячная передача с архимедовым червяком.
- 15. Вал. Ось. Их назначение. Разновидности валов и осей (по геометрическим характеристикам оси вала или оси и по назначению)
- 16. Виды соединений неразъемные и разъемные. Требования, предъявляемые к соединениям.


Образец индивидуального домашнего задания на тему «Статика»

Определить реакции связей, наложенных на раму. Система находится в

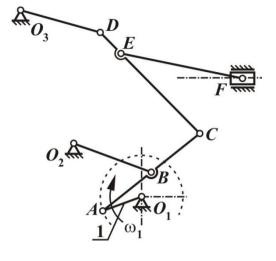
равновесии. Исходные данные для расчета:

$$G=8~H,~P_1=5~H,~P_2=3~H,~P_3=6~H,~q=2~H/M,$$
 $a=3~M,~M=4~H\cdot M,~\alpha_1=30^0,~\alpha_2=60^0.$

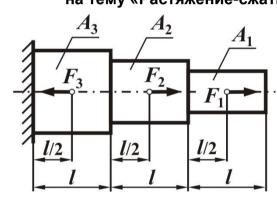
Образец индивидуального домашнего задания на тему «Кинематика»

Определить скорость, а

также

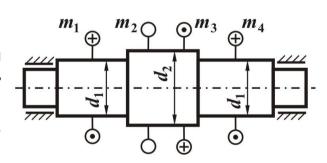

касательное, нормальное и полное ускорение точки M . Исходные данные: закон движения: x = 2+50 t^2 , t = 4 с, r_2 = 40 см, R_2 = 50 см, r_3 = 20 см

Образец индивидуального домашнего задания на тему «Кинематика»

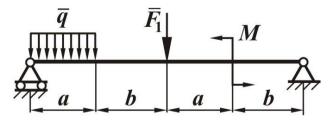

Требуется определить:

- 1) скорости всех точек механизма и угловые скорости всех его звеньев методом планов и с помощью МЦС;
- 2) ускорения точек A и B и угловое ускорение звена AB ;
- 3) ускорение точки M , делящей звено AB пополам.

Исходные данные: Кривошип O_1A вращается с постоянной угловой скоростью ω_1


Образец индивидуального домашнего задания на тему «Растяжение-сжатие»

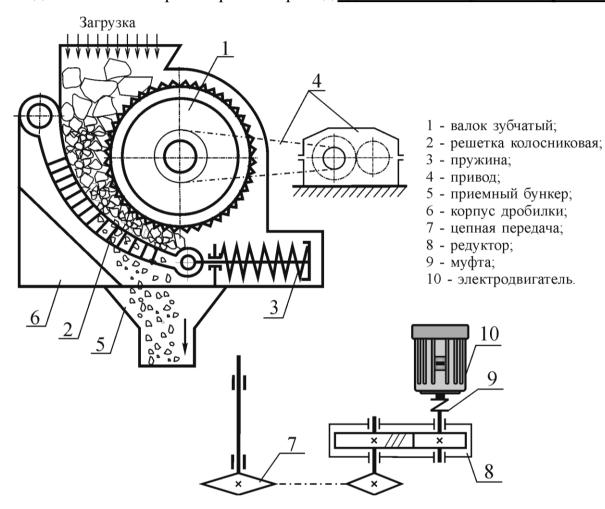
Требуется построить эпюры N, σ и λ . Исходные данные: F_1 = 20 кH, F_2 = 25 кH, F_3 = 40 кH, l = 1 м, A_1 = 100 мм², A_2 = 200 мм², A_3 = 300 мм², E = $2 \cdot 10^5$ МПа.


Образец индивидуального домашнего задания на тему «Кручение»

Требуется определить величину и направление момента m_2 . Построить эпюры M_x и τ . Исходные данные: $m_1=200~H\cdot {\rm M}$, $m_3=70~H\cdot {\rm M}$, $m_4=60~H\cdot {\rm M}$, $d_1=30~{\rm MM}$, $d_2=40~{\rm MM}$.

Образец индивидуального домашнего задания на тему «Изгиб»

Требуется построить эпюры Q и M и определить наименьший диаметр стальной балки при $[\sigma]=160$ МПа. Исходные данные: q=20 кH/м, $F_1=10$ кH, M=14 кH·м, a=3 м, b=2 м


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ КАФЕДРА ТЕОРЕТИЧЕСКОЙ И ПРИКЛАДНОЙ МЕХАНИКИ

ТЕХНИЧЕСКОЕ ЗАДАНИЕ № 2

На курсовой проект по дисциплине «МЕХАНИКА» выдано студенту *Броцману Александру Андреевичу* группа *5Б41* По заданной схеме спроектировать привод **одновалковой зубчатой дробилки**

Исходные данные:

мощность на зубчатом валке 1 $P_{\text{вых}} = 4.8 \, \text{кBT}$; частота вращения зубчатого валка $n_{\text{вых}} = 70 \, \text{об/мин}$; срок службы привода 15 тыс. часов; коэффициент безопасности $K_6 = 1,1$; твердость рабочих поверхностей зубьев $HB \leq 350$; привод нереверсивный, нагрузка постоянная.

8. Рейтинг качества освоения дисциплины (3 семестр)

Дисциплина	«Механика 1.2»	Число недель	16	
Институт	Институт физики высоких технологий	Кол-во кредитов	4	
Кафедра	Теоретической и прикладной механики	Лекции, час	32	
		Практические занятия, час	48	
		Лаб.работы, час.	-	
Семестр	4	Всего аудиторной работы, час	80	
Группы	№ групп 5Б41, 4Г41, 4Д41, 4Б42, 4Б41 и т.д.	Самостоятельная работа, час	64	
Преподаватель	доцент кафедры ТПМ ИФВТ В.В. Дробчик	ВСЕГО, час	144	

Рейтинг-план освоения дисциплины "Механика 1.2"

ο <u>Σ</u>	Теоретический материал			Практическая деятельность				0
Номер недели	Название модуля	Темы лекций	Контрол. мероприя тия	Баллы	Темы практических занятий	идз	Баллы	итого
1	Статика	Аксиомы статики. Простейшие теоремы статики. Связи и их реакции. Система сходящихся сил. Плоская система сил. Момент силы относительно точки.			Связи и их реакции. Плоская система сил. Приведение. Равновесие.	Nº1	5	5
2	Статика	Условия равновесия произвольной и плоской систем сил. Пример решения			Контрольная работа №1 по теме «Статика»		1	1
2		плоской систем сил. Пример решения задачи			Простейшие виды движения твердых тел.	Nº2	4	4
3		Кинематика точки. Классификация видов движения твердых тел. Простейшие виды движения твердых тел.			Контрольная работа №2 по теме «Кинематика»		1	1
4	Кинематика	Плоскопараллельное движение твердого тела. Скорости точек тела, совершающего			Построение плана скоростей многозвенного рычажного механизма			
4		плоскопараллельное движение. Построение планов скоростей. Мгновенный центр скоростей			Построение плана ускорений многозвенного рычажного механизма	Nº3	10	10
5		Определение ускорений точек тела при плоскопараллельном движении твердого тела. Построение планов ускорений			Контрольная работа №3 по теме «Плоскопараллельное движение»		1	1

6	Динамика	Законы динамики Галилея-Ньютона. Дифференциальные уравнения движения материальной точки. Введение в динамику механической системы.	Тестирование по разделам «Статика» и «Кинематика» Применение Принципа Даламбера к определению реакций связей		1	1
7	·	Основные понятия и определения. Нагрузки. Внешние и внутренние силы. Основные допущения и гипотезы. Метод сечений. Виды деформаций: растяжение, сжатие, кручение, изгиб.	Демонстрация деформации «Растяжение» на лабораторном оборудовании			
8	Основы сопротивления материалов	тивления	Построение эпюр внутренних сил и эпюр напряжений и перемещений сечений стержня.	Nº4	5	5
			Контрольная работа №4 по теме «Растяжение-сжатие»		1	1
9	Конференц-неделя № 1					
		ИТОГО по	KT №1			29
	10	Кручение. Эпюры крутящих моментов, расчет	Построение эпюр внутреннего			
10			крутящего момента, касательных напряжений	Nº5	3	3
10		Кручение. Эпюры крутящих моментов, расчет на прочность		Nº5	1	1
11	Основы сопротивления материалов		касательных напряжений Контрольная работа №5	№5 №6		
	сопротивления	на прочность Изгиб. Эпюры поперечных сил и изгибающих моментов, нормальные напряжения при	касательных напряжений Контрольная работа №5 по теме «Кручение» Построение эпюр внутренних		1	1

13		Структурный анализ механизмов. Введение в курс «Детали машин и основы конструирования»		Структурный анализ механизмов	Nº7	4	4
1.1		Фрикционная передача. Ременные передачи. Геометрия ременной передачи. Цепные передачи.		Энергокинематический расчет привода	Nº8.1	4	4
14	Основы конструиро-			Расчет зубчатых колес редуктора.	№ 8.2	4	4
15	вания деталей и	Вал. Ось. Их назначение. Разновидности валов и осей. Шпоночные соединения. Назначение шпоночного соединения.		Контрольная работа №7 по теме «Расчет привода»		1	1
	узлов механизмов и машин	Составляющие нормальной силы в зацеплении – окружная, радиальная, осевая. Определение их величин. Определение нагрузок на валы. Подшипники качения. Назначение подшипников качения.		Предварительный расчет валов редуктора.			
16	VI WOLLD'II			Построение расчетной схемы для определения реакций в опорах валов.	№ 8.3	4	4
17		Допуски и посадки. Шероховатость поверхностей деталей машин.		Контрольная работа №8 по теме «Нагрузки на валы»		1	1
	ИТОГО до контрольной точки №2						60
18	МИНИ-КОНФЕРЕНЦИЯ №2. (тестирование, занятия консультативного характера, получение допуска до экзамена/дифференцированного зачета)						
	Экзамен					40	
	ИТОГО за весь период освоения дисциплины					100	

4 семестр

Дисциплина	«Механика 2.2»	Число недель	16	
Институт	Институт физики высоких технологий	Кол-во кредитов	2	
Кафедра	Теоретической и прикладной механики	Лекции, час	0	
		Практические занятия, час	16	
		Лаб.работы, час.	-	
Семестр	5	Всего аудиторной работы, час	16	
Группы	№ групп 5Б41, 4Г41, 4Д41, 4Б42, 4Б41 и т.д.	Самостоятельная работа, час	56	
Преподаватель	доцент кафедры ТПМ ИФВТ В.В. Дробчик	ВСЕГО, час	72	

Рейтинг-план освоения дисциплины "Механика 2.2"

σΞ		Теоретический материал		Практическая деятельность				0
Номер недели	Название модуля	Темы лекций	Контрол. мероприя тия	Баллы	Темы практических занятий	идз	Баллы	ИТОГО
1					Первая компоновка редуктора	Nº8.4	5	5
2								
3					Вторая компоновка редуктора	Nº8.5	20	20
4	Основы конструиро-							
5	вания деталей и узлов механизмов				Определение реакций в опорах валов. Долговечность подшипника. Рабочие чертежи деталей.	Nº8.6	10	10
6	и машин							
7					Составление спецификации, технической характеристики, технических условий на сборку.	Nº8.7	5	5
8								
9	9 Конференц-неделя № 1 (защита курсового проекта)				60			
	ΙΤΟΓΟ πο ΚΤ №1						100	

10	Встречи со студентами консультативного характера			
11	Встречи со студентами консультативного характера			
12	Встречи со студентами консультативного характера			
13	Встречи со студентами консультативного характера			
14	Встречи со студентами консультативного характера			
15	Встречи со студентами консультативного характера			
16	Встречи со студентами консультативного характера			
17	Встречи со студентами консультативного характера			
ИТОГО до контрольной точки №2				
18	18 МИНИ-КОНФЕРЕНЦИЯ №2. (защита курсового проекта)			
ИТОГО за весь период освоения дисциплины				

Зав. кафедрой ТПМ ИФВТ	Ф.А. Симанкин

9. Учебно-методическое и информационное обеспечение модуля

Краткое содержание лекций, а также программа дисциплины, образцы контролирующих материалов выставлены на личном сайте преподавателей в портале ТПУ. На сайте библиотеки ТПУ представлены все учебно-методические материалы кафедры ТПМ, имеющиеся курсы лекции по читаемым дисциплинам, индивидуальные домашние задачи, вопросы для самоподготовки к практическим занятиям и т.д.

а) основная литература:

- 1. Тарг С. М. Краткий курс теоретической механики: учебник для вузов / С. М. Тарг. 19 изд. стер.. М.: Высшая школа, 2009. 416 с.
- 2. Сопротивление материалов: учебник / А.С. Вольмир, Ю.П. Григорьев, А.И. Станкевич. Москва: Дрофа, 2007. 592 с.
- 3. Бутенин Н.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической механики. В двух томах. 11-е изд., стер. СПб.: Издательство «Лань», 2009. 736 с. (http://e.lanbook.com/view/book/29/)
- 4. Степин П.А. Сопротивление матриалов: Учебник. 13-е изд., стер. СПб.: Издательство «Лань», 2014. 320 с. (http://e.lanbook.com/view/book/3179/)
- 5. Курсовое проектирование деталей машин: учебное пособие и С.А. Чернавский [и др.]. 3-е изд., стер. Москва: Альянс, 2005. 416 с.
- 6. Андреев В.И., Павлова И.В. Детали машин и основы конструирования. Курсовое проектирование: Учебное пособие. – СПб.: Издательство «Лань», 2013. – 352 с. (http://e.lanbook.com/view/book/12953/)

б) дополнительная литература

- 1. Сборник заданий для курсовых работ по теоретической механике: учебное пособие / под ред. А.А. Яблонского. 16-е изд., стер. Москва: Интеграл-Пресс, 2007. 384 с.
- 2. Сопротивление материалов : пособие по решению задач / И. Н. Миролюбов [и др.]. 7-е изд., испр.. СПб.: Лань, 2007. 509 с.
- 3. Теоретическая механика в примерах и задачах: учебное пособие: в 2 т. / М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. Санкт-Петербург: Лань, 2013 Т. 1: Статика и кинематика. 12-е изд., стер. 2013. 670 с.
- 4. Сопротивление материалов в вопросах-ответах и сборник задач для самостоятельной работы с примерами их решений: учебное пособие / А.Г. Схиртладзе [и др.]. Старый Оскол: ТНТ, 2014. 324 с.
- 5. Конструирование узлов и деталей машин: учебное пособие / П.Ф. Дунаев, О.П. Леликов. 12-е изд. стер. Москва: Академия, 2009. 496 с.
- 6. Детали машин: проектирование : справочное учебно-методическое пособие / Л.В. Курмаз, А.Т. Скойбеда. 2-е изд., испр. Москва: Высшая школа, 2005. 309 с.

в) программное обеспечение и Internet-ресурсы:

1. Персональные сайты преподавателей, обеспечивающих дисциплину

10. Материально-техническое обеспечение дисциплины

Дисциплина «Механика 1.4» полностью обеспечена материально-техническими Лекции читаются в специализированной аудитории, оснащенной средствами. компьютерной техникой. На кафедре ТПМ имеются два компьютерных класса, лаборатория по курсу «Сопротивление материалов» и курсу «Детали машин».

Программа составлена на основе Стандарта ООП в соответствии с тр

требованиями ФГОС	ВПО по направлениям:	
12.03.01 – Приб		
12.03.02 – Опто	•	
	гехнические системы и то	гехнологии
	поэнергетика и теплотехн	
	ктроэнергетика и электро	
	ическая физика	
	•	менные и энергетические установки
	ическая технология	
18.03.02 – Энер	ого- и ресурсосберегаюц	цие процессы в химической
технологии, не	фтихимии и биотехнолог	ГИИ
19.03.01 – Биот	ехнология	
22.03.01 – Мате	ериаловедение и технол	тогии материалов
29.03.04 - Tex-	ология художественной	и обработки материалов <u>(нет набора)</u>
14.05.02 – Атол	иные станции: проектиро	ование, эксплуатация и инжиниринг
Программа одобрена	на заседании кафедры	Теоретической и прикладной механики
Протокол № от «	«»2015 г.	
Автор		В.В. Дробчик

Ф.А. Симанкин

Зав. кафедрой ТПМ