Функциональные ряды

Пусть задана последовательность $f_1(x), f_2(x), ..., f_n(x)$ на D

Опр. Выражение
$$f_1(x) + f_2(x) + \ldots + f_n(x) + \ldots = \sum_{n=1}^{\infty} f_n(x) \tag{*}$$
 называется функциональным рядом

 $f_I(x), \ f_2(x), \ \dots f_n(x)$ - члены ряда. $f_n(x)$ – общий член ряда Функции

Если $x=x_0$ - число, то ряд (*) — числовой ряд

$$f_1(x_0) + f_2(x_0) + \dots + f_n(x_0) + \dots = \sum_{n=1}^{\infty} f_n(x_0)$$
 (**)

Опр. Множество значений $x_0 \in X$, для которых числовой ряд (**) сходится называется областью сходимости ряда

Равномерная сходимость

Если $\lim_{n\to\infty} f_n(x) = f(x)$, то говорят, что $\{f_n(x)\}$ сходится к функции f(x). f(x) – предельная функция.

Введем частичные суммы

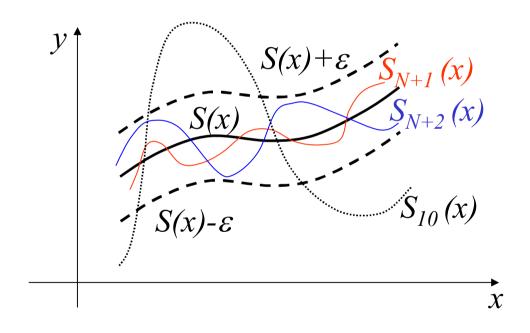
Опр. Суммой ряда $f_1(x) + f_2(x) + \ldots + f_n(x) + \ldots$ называется функция f(x) — предел частичных сумм

$$\lim_{n\to\infty} S_n(x) = f(x)$$

Опр. (равномерной сходимости)

Если $\forall \varepsilon > 0 \exists N \ \forall n > N$ и $\forall x \in D$ выполняется $|f(x) - S_{\mathbf{n}}(x)| < \varepsilon \ (|r_{\mathbf{n}}(x)| < \varepsilon),$

то говорят, что ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится в D равномерно



Опр. 28 Говорят: «ряд
$$\sum_{n=1}^{\infty} f_n(x)$$
 мажорируется числовым рядом $\sum_{n=1}^{\infty} C_n$ » если $|f_n(x)| \leq C_n$, $\forall n \in N$ (28) или: « $\sum_{n=1}^{\infty} C_n$ служит мажорантным рядом для $\sum_{n=1}^{\infty} f_n(x)$ »

Теорема 22. (Признак Вейерштрасса о равномерной сходимости)

Если ряд $\sum_{n=1}^{\infty} f_n(x)$ мажорируется на D сходящимся числовым рядом $\sum_{n=1}^{\infty} C_n$ то он сходится на D равномерно

Свойства равномерно сходящихся рядов

Пусть функции $f_{\rm n}(x)$ определены и непрерывны на [a,b]

- 1. Если $\sum f_{\rm n}(x)$ сходится на промежутке $D \subset \mathbb{R}$ равномерно и $\, \varphi \, (x) \,$ ограничена на $\, D, \,$ то ряд $\, \sum \varphi \, (x) \, f_{\rm n}(x) \,$ тоже сходится на $\, D \,$ равномерно.
- 2. Если ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на [a,b] , то и его сумма f(x) непрерывна на этом отрезке.
- 3. Если ряд $\sum_{n=1}^{n} f_n(x)$ сходится равномерно на [a,b] , то интеграл в пределах от α до β ($\alpha,\beta\in [a,b]$) от суммы ряда f(x) равен сумме интегралов от членов данного ряда

$$\int_{\alpha}^{\beta} f(x)dx = \sum_{n=1}^{\infty} \int_{\alpha}^{\beta} f_n(x)dx$$

Замечание: Говорят «ряд можно почленно интегрировать»

Пусть функции $f_n(x)$ имеют на [a,b] непрерывные производные

3. Если ряды $\sum_{n=1}^{\infty} f_n(x)$ и $\sum_{n=1}^{\infty} f_n'(x)$ сходится равномерно на [a,b], то и сумма ряда f(x) имеет на [a,b] производную, причем $f'(x) = \sum_{n=1}^{\infty} f_n'(x)$

Замечание: Говорят «ряд можно почленно дифференцировать»

Степенные ряды

Опр. 29. Степенным рядом называется функциональный ряд вида

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = \sum_{n=1}^{\infty} a_n x^n$$
 (29)

 a_0 , a_1 , a_2 , ... $a_{\rm n}$ – постоянные, называются коэффициенты ряда.

Теорема 23. (Абеля об области сходимости)

- 1) Если степенной ряд сходится при некотором значении $x_0 \neq 0$, то он абсолютно сходится при всяком x, для которого $|x| < |x_0|$.
- 2) Если степенной ряд расходится при некотором значении x'_{θ} , то он расходится при всяком x, для которого $|x| > |x'_{\theta}|$.

Следствие. Областью сходимости степенного ряда является интервал с центром в начале координат

Опр. 30. Интервалом сходимости степенного ряда называется интервал (-R,R) такой, что $\forall x \in (-R,R)$ ряд сходится и притом абсолютно, а для точек вне этого интервала ряд расходится.

Число R называется радиусом сходимости.

Свойства степенных рядов

- 1. Степенной ряд равномерно сходится на любом отрезке [a,b], лежащем внутри его интервала сходимости
- 2. Сумма степенного ряда является непрерывной функцией в интервале СХОДИМОСТИ.

Замечание. Сумма остается непрерывной в конце интервала, если он входит в область сходимости.

3. Степенные ряды $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ и $\sum_{n=1}^{\infty} \left(a_n (x-x_0)^n \right)'$ имеют один и тот же радиус сходимости.

Замечание. Ряды имеют один и тот же радиус сходимости, но область сходимости может не совпадать.

Следствие. Ряд
$$\sum_{n=1}^{\infty} a_n (x-x_0)^n \text{ и ряды}$$

$$\sum_{n=1}^{\infty} \left(a_n (x-x_0)^n \right)'; \sum_{n=1}^{\infty} \left(a_n (x-x_0)^n \right)''; ...; \sum_{n=1}^{\infty} \left(a_n (x-x_0)^n \right)^{(n)}$$
 булут иметь один и тот же радиус сходимости

будут иметь один и тот же радиус сходимости

- 4. Степенной ряд можно почленно дифференцировать в интервале сходимости любое число раз.
- 5. Степенной ряд можно почленно интегрировать по любому промежутку, принадлежащему интервалу сходимости любое число раз.

Разложение функции в степенной ряд

Опр. 31. Пусть функция f(x) бесконечно дифференцируема в точке x_{θ} . Степенной ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \dots$$
 (30)

называется рядом <u>Тейлора</u> функции f(x) по степеням $(x-x_0)$ или рядом <u>Тейлора</u> функции f(x) в окрестности точки x_0

В частности, если $x_0 = 0$, то ряд называется рядом <u>Маклорена</u>

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n = f(0) + f'(0) \cdot x + \frac{f''(0)}{2!} \cdot x^2 + \dots + \frac{f^{(n)}(0)}{n!} \cdot x^n + \dots$$
 (31)

Теорема 24. (необходимый признак сходимости функции к ряду Тейлора) Если функция f(x) в некоторой окрестности точки $x=x_0$ является суммой степенного ряда по степеням ($x-x_0$), то этот ряд является ее рядом Тейлора.

Следствие. Не может быть двух различных рядов по степеням ($x-x_0$), сходящихся к одной и той же функции f(x).

$$n$$
-ая частичная сумма ряда Тейлора
$$S_n(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

Опр. 32. Разность $R_n(x) = f(x) - S_n(x)$ называют остаточным членом ряда

Тогда ряд Тейлора: $f(x) = S_n(x) + R_n(x)$

Остаточный член $R_n(x)$ в форме Лагранжа:

$$R_n(x) = rac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$$
 точка ξ находится между x и x_0

Очевидно
$$f(x) = S_n(x)$$
, если $R_n(x) \to 0$:

Теорема 25 (признак сходимости ряда Тейлора к порождающей его функции. достаточный)

Пусть функция f(x) и все ее производные ограничены в совокупности на интервале $(x_0 - h; x_0 + h)$, т.е. $\exists M > 0, \forall x \in (x_0 - h; x_0 + h)$ и всех n = 0,1,...выполняется неравенство $|f^{(n)}(x)| \le M$. Тогда на интервале $(x_0 - h; x_0 + h)$ функция f(x) раскладывается в ряд Тейлора

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{(n)!} (x - x_0)^n \qquad |x - x_0| < h$$

Стандартные разложения Маклорена

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$
 (-\infty, \infty)

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \frac{m(m-1)(m-2)}{3!}x^{3} + \dots$$
 (-1, 1)

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \frac{m(m-1)(m-2)}{3!}x^{3} + \dots$$

$$sh \ x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots$$

$$(-1, 1)$$

$$ch x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$
 (-\infty, \infty

Область сходимости уметь получать

$$(-\infty, \infty)$$

$$(-\infty, \infty)$$

$$(-\infty, \infty)$$

$$(-1, 1)$$

$$(-\infty, \infty)$$

$$(-\infty, \infty)$$