Литература

- Пискунов Н.С. Дифференциальное и интегральное исчисление. Т. 1,2
- Кудрявцев Л.Д. Краткий курс математического анализа
- Берман Г.Н. Сборник задач по курсу математического анализа
- Запорожец Г.И. Руководство к решению задач по математическому анализу

§2. Числовые последовательности

1. Основные понятия

- ОПРЕДЕЛЕНИЕ 1. Последовательностью называется перенумерованное множество (чисел числовая последовательность, функций функциональная последовательность и т.д.)
- ОПРЕДЕЛЕНИЕ 2. *Последовательностью* называется функция, заданная на множестве натуральных чисел.

Если область значений последовательности — числовое множество, то последовательность называют *числовой*, если область значений — множество функций, то последовательность называют *функциональной*.

Принято обозначать:

аргумент последовательности: n (или k) значения функции: x_n , y_n и т.д.

Называют: x_1 — первый член последовательности, x_2 — второй член последовательности и т.д. x_n — n-й (общий) член последовательности.

Способы задания последовательностей:

- 1) явно (т.е. формулой $x_n = f(n)$)
- 2) рекуррентным соотношением (т.е. формулой $x_n = F(x_{n-1}, x_{n-2}, ..., x_{n-k})$)

Записывают последовательность:

 $\{x_1, x_2, ..., x_n, ...\}$ — развернутая запись; $\{x_n\}$ — короткая запись (где x_n — общий член)

ОПРЕДЕЛЕНИЕ. Числовая последовательность $\{x_n\}$ называется

- *ограниченной снизу*, если $\exists a \in \mathbb{R}$ такое, что $a \leq x_n$, $\forall n \in \mathbb{N}$;
- *ограниченной сверху*, если $\exists b \in \mathbb{R}$ такое, что $x_n \leq b$, $\forall n \in \mathbb{N}$;
- *ограниченной*, если $\exists a,b \in \mathbb{R}$ такие, что $a \le x_n \le b$, $\forall n \in \mathbb{N}$

Замечание. Условие «∃a,b∈ \mathbb{R} такие, что $a \le x_n \le b$ » равносильно условию «∃M>0 такое, что $|x_n| \le M$ »

• возрастающей (неубывающей), если

$$x_n < x_{n+1} \ (x_n \le x_{n+1}), \ \forall n \in \mathbb{N};$$

• убывающей (невозрастающей), если

$$x_n > x_{n+1} (x_n \ge x_{n+1}), \forall n \in \mathbb{N};$$

Замечание. Возрастающие, убывающие, невозрастающие, неубывающие последовательности называются монотонными.

2. Предел последовательности

ОПРЕДЕЛЕНИЕ. Число $a \in \mathbb{R}$ называется пределом последовательности $\{x_n\}$ если $\forall \varepsilon > 0$ $\exists N \in \mathbb{N}$ такое, что $|x_n - a| < \varepsilon$, $\forall n > N$.

Записывают: $\lim x_n = a, x_n \to a$

Говорят: последовательность $\{x_n\}$ сходится (стремиться) к a.

Последовательность, имеющую предел, называют *сходящейся* (*сходящейся* к *a*)

Последовательность, не имеющую предела, называют *расходящейся*.

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ

предела последовательности

Пусть $r \in \mathbb{R}$, $M(r) \in Ox$

$$O M \longrightarrow X$$

M(r) – геометрическая интерпретация числа $r \in \mathbb{R}$.

Пусть
$$x_0 \in \mathbb{R}$$
, $\varepsilon > 0$.

$$x_0 - \varepsilon \qquad x_0 \qquad x_0 + \varepsilon \qquad x$$

Интервал $(x_0 - \varepsilon; x_0 + \varepsilon)$ называют ε -окрестностью точки x_0 . (геометрическое определение ε -окрестности точки)

Будем обозначать: $U(x_0, \varepsilon)$

Имеем:
$$U(x_0, \varepsilon) = \{x \in \mathbb{R} \mid |x - x_0| < \varepsilon\}$$

(алгебраическое определение є-окрестности точки)

Из определения предела последовательности получаем: если $\{x_n\} \rightarrow a$, то с геометрической точки зрения это означает, что в любой ε -окрестности точки a находятся все члены последовательности $\{x_n\}$, за исключением может быть конечного их числа. (Геометрическая интерпретация предела последовательности).

 $\Rightarrow a$ – точка «сгущения» последовательности $\{x_n\}$.

СВОЙСТВА СХОДЯЩИХСЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

- 1) Две последовательности, отличающиеся на конечное число членов, ведут себя одинаково относительно сходимости.
- 2) Последовательность может иметь не более одного предела ДОКАЗАТЕЛЬСТВО самостоятельно
- 3) Если $\{x_n\} \to a$, то $\{|x_n|\} \to |a|$. ДОКАЗАТЕЛЬСТВО – очевидно, в силу $||x_n| - |a|| \le |x_n - a|$.
- 4) Сходящаяся последовательность ограничена ДОКАЗАТЕЛЬСТВО

- ОПРЕДЕЛЕНИЕ. Последовательность, сходящуюся к нулю, называют **бесконечно малой**.
- 5) ЛЕММА 1 (о роли б.м. последовательностей). Число $a \in \mathbb{R}$ является пределом последовательности $\{x_n\} \Leftrightarrow x_n = a + \alpha_n$, где $\{\alpha_n\}$ бесконечно малая.

ДОКАЗАТЕЛЬСТВО

ОПРЕДЕЛЕНИЕ. Суммой, разностью, произведением, частным двух последовательностей $\{x_n\}$ и $\{y_n\}$ называются соответственно последовательности

$$\{x_n + y_n\}, \{x_n - y_n\}, \{x_n \cdot y_n\}, \left\{\frac{x_n}{y_n}\right\} \quad (y_n \neq 0)$$
.

Последовательность $\{cx_n\}$ называется *произведением* $\{x_n\}$ на *число* c (произведение последовательностей $\{x_n\}$ и $\{c\}$)

- 6) Пусть $\{x_n\}$ ограничена, $\{\alpha_n\}$ бесконечно малая. Тогда $\{x_n\cdot\alpha_n\}$ бесконечно малая. ДОКАЗАТЕЛЬСТВО самостоятельно.
- 7) Пусть $\{x_n\}$ и $\{y_n\}$ сходящиеся и $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$

Тогда их сумма, разность, произведение и частное тоже являются сходящимися последовательностями, причем

- a) $\lim_{n\to\infty} (x_n \pm y_n) = a \pm b$ (доказать самостоятельно)
- b) $\lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b$
- c) $\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \frac{a}{b} \quad (b \neq 0)$

СЛЕДСТВИЕ свойства 7. Если $\{x_n\}$ сходится к a, то $\forall c \in \mathbb{R}$ последовательность $\{cx_n\}$ тоже сходится, причем

$$\lim_{n \to \infty} (cx_n) = c \cdot \lim_{n \to \infty} x_n = ca$$

Говорят: «константу можно вынести за знак предела»

8) Пусть $\{x_n\} \to a$ и $x_n \ge 0$ (или $x_n > 0$), $\forall n \in \mathbb{N}$. Тогда $a \ge 0$.

ДОКАЗАТЕЛЬСТВО – самостоятельно.

9) Пусть $\{x_n\}$ и $\{y_n\}$ – сходящиеся последовательности и $x_n \le y_n \ (x_n < y_n)$), $\forall n \in \mathbb{N}$.

Тогда
$$\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n$$

ДОКАЗАТЕЛЬСТВО – следствие свойства 8.

10) ЛЕММА о двух милиционерах.

Пусть последовательности $\{x_n\}$ и $\{y_n\}$ сходятся к одному и тому же числу и $\forall n \in \mathbb{N}$ имеет место неравенство

$$x_{n} \le z_{n} \le y_{n}$$
, $\forall n \in \mathbb{N}$.

Тогда последовательность $\{z_n\}$ тоже сходится, причем

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = \lim_{n\to\infty} y_n$$

ДОКАЗАТЕЛЬСТВО – самостоятельно.