		УТВЕРЖДАЮ
	Прорект	гор-директор ИК
		Захарова А.А.
‹ ‹	>>	2014 г.

РАБОЧАЯ ПРОГРАММА дисциплины «Творческий проект» (Б3,В2)

НАПРАВЛЕНИЕ: ООП 150700 Машиностроение

ПРОФИЛЬ ПОДГОТОВКИ «Технология, оборудование и автоматизация

машиностроительных производств»

КВАЛИФИКАЦИЯ (СТЕПЕНЬ) бакалавр БАЗОВЫЙ УЧЕБНЫЙ ПЛАН ПРИЕМА 2013 г. КУРС 2 СЕМЕСТР 3, 4 КОЛИЧЕСТВО КРЕДИТОВ 2(1/1)

ВИДЫ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ И ВРЕМЕННОЙ РЕСУРС:

САМОСТОЯТЕЛЬНАЯ РАБОТА 72ч. ФОРМА ОБУЧЕНИЯ очная

ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ 3, 4 семестр – ЗАЧЕТ

ОБЕСПЕЧИВАЮЩЕЕ ПОДРАЗДЕЛЕНИЕ: кафедра «Технология

автоматизированного машиностроительного производства»

РУКОВОДИТЕЛЬ зав. кафедрой А.Ю. АРЛЯПОВ

ПРЕПОДАВАТЕЛЬ доцент М.Н. БОГОЛЮБОВА

2014 - 2015 уч.г.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Основная *цель* курса «Творческий проект» — развитие у студентов творческого мышления, овладение ими современными методами творческой деятельности, формирование научных убеждений и исследовательских умений. Приобретение навыков проведения научно-исследовательской работы, которыми должен обладать современный специалист в области технологии машиностроения.

Таблица 1 **Цели дисциплины и их соответствие целям ООП**

Код	Формулировка цели	
цели		
Ц1	Подготовка выпускников к междисциплинарным научным исследованиям для решения задач, связанных процессами анализа, прогнозирования, моделирования и создания информационных процессов, технологий в рамках профессионально-ориентированных информационных систем (в машиностроении).	
Ц2	Подготовка выпускников к проектно-конструкторской и производственно-технологической деятельности в области создания новых материалов и производства изделий, современных технологий обработки материалов и нанотехнологий, конкурентоспособных на мировом рынке машиностроительного производства.	
Ц5	Подготовка выпускников к самообучению и непрерывному профессиональному самосовершенствованию.	

2. ЗАДАЧИ ДИСЦИПЛИНЫ

Проектная деятельность, используемая в образовательном процессе, решает следующие задачи: образовательную, воспитательную, развивающую и диагностическую.

Образовательная задача заключается в активизации мыслительной деятельности студентов, в получение новых знаний.

Воспитательная задача состоит в формировании самостоятельности и ответственности, а также умении планировать и организовывать свою деятельность.

Развивающая задача заключается в развитии творческого потенциала студентов, их познавательных и личностных возможностей.

Диагностическая задача проектной деятельности реализуется в том, что студент, осуществляя активную пробу сил, диагностирует наличие у себя способностей, интересов, умений и навыков.

Данный курс решает следующие задачи:

- -формирование мотивов учебно исследовательской деятельности при выполнении творческого проекта;
- -умение постановки задачи, разработки алгоритма и модели процесса исследования объекта;

-формирование опыта применения системного подхода к решению задачи.

-формирование навыков, поиска и работы с литературными источниками, ресурсами Internet и ЭВМ.

-знакомство с принципами и правилами организации проектной деятельности;

-развитие познавательной самостоятельности и активности студентов;

-формирование у студентов потребности к целенаправленному самообразованию;

-развитие самостоятельности и ответственности за результаты собственной деятельности;

-формирование навыков презентации собственных результатов работы.

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Согласно ФГОС и ООП дисциплина «Творческий проект» (Б3,В2). является дисциплиной вариативной части профессионального цикла образовательной программы Б3. Она непосредственно связана с другими дисциплинами естественнонаучного и математического цикла.

Пререквизиты – информатика. Кореквизиты – математика, физика.

4. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины «Творческий проект» студент должен:

Знать:

- постановку научно-исследовательских задач в области высокотехнологического машиностроительного производства;
- владеть информацией о современных методах автоматизации машиностроительных производств;
- принципы работы технологического оборудования с числовым программным управлением (ЧПУ);
- принцип работы гибких производственных модулей (ГПМ).
- назначение устройств УЧПУ станками;

Уметь:

- находить и использовать научно-техническую информацию из различных источников и ресурсов Internet;
- использовать современные информационные технологии для решения творческих задач;
- планировать технологический процесс производства изделий;
- использовать методы конструирования, моделирования, дизайна;
- разрабатывать творческие проекты, анализировать результаты исследований и формулировать выводы и рекомендации;

Владеть:

- методами производственно-технологической деятельности;
- методами получения основных знаний и понятий по теме: введение в специальность «технология, оборудование и автоматизация машиностроительных производств»;
- опытом использования прикладных программ и средств автоматизированного проектирования САПР;
- опытом применения современных информационных систем;
- практическими навыками самостоятельного поиска научно технической информации;
- использование ЭВМ как средство получения, хранения и переработки информации, использования для решения коммуникативных задач современных информационных технологий.

В процессе освоения дисциплины у студентов развиваются следующие компетенции:

1. Универсальные (общекультурные) -

• готовность применять базовые и специальные знания в области математических, естественных, гуманитарных и экономических наук в комплексной инженерной деятельности на основе целостной системы научных знаний об окружающем мире.

2. Профессиональные -

- готовность использовать методы математического моделирования и программного обеспечения в области теоретического и экспериментального исследования в комплексной инженерной деятельности с целью моделирования объектов и технологических процессов в машиностроении;
- готовность использовать стандартные пакеты и средства автоматизированного проектирования машиностроительной продукции;
- готовность к самообучению и непрерывному профессиональному самосовершенствованию.

5. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1 Структура дисциплины по разделам

- 1. Введение в проектную деятельность.
- 2. Выбор темы творческого проекта.
- 3. Составление плана работы.
- 4. Сбор и обработка информационных материалов.
- 5. Разработка алгоритма и модели исследования с помощью ЭВМ.
- 6. Проектирование технологического процесса.
- 7. Написание и оформление работы.

- 1. Введение в проектную деятельность. Формулирование проблемы. Определение главной цели создания творческого проекта. Литературный обзор по содержанию и процессу выполнения творческого проекта.
- 2. Выбор темы творческого проекта. Выбор и обоснование объекта и темы исследования: оценка актуальности, полезности и целесообразности. Сбор информации по теме проекта, анализ состава и содержания. Планирование результатов исследования по определенным критериям.
- 3. Составление плана работы. Составление и согласование с руководителем календарного плана выполнения проекта.
- 4. Сбор и обработка информационных материалов. Теоретические сведения. Требования к изделию. Выявление основных свойств объекта и ограничений, накладываемых на параметры объекта.
- 5. Разработка алгоритма и модели исследований с помощью ЭВМ. Формализованное представление исходной, промежуточной и выходной информации. Построение информационной, математической, имитационной моделей системы. Разработка алгоритмического и программноматематического обеспечения для исследования с помощью ЭВМ.
- 6. Проектирование технологического процесса. Эскизная проработка базового варианта производства изделия на оборудовании с ЧПУ. Конструкторское проектирование. Технологическое проектирование. Использование систем автоматизации проектирования (САПР) САD, САМ, САЕ и др.
 - 7. Написание и оформление работы.

Для написания отчета и оформления презентации творческого проекта рекомендуется использовать такие программы как: Microsof Word, PowerPoint, SolidWorks, Компас- 3D, Learning Apps, MATLAB, Delphi, Internet - ресурсы, и др.;

Текст в отчете и на слайдах презентации должен отражать основное содержание результатов исследования.

Средства визуализации информации (таблицы, схемы, графики и т.д.) должны соответствовать содержанию соответствующих разделов проекта. Теоретические положения должны быть увязаны с практическими результатами экспериментального раздела творческого проекта. Студент оформляет письменный отчет и сообщение в доклад и презентацию.

Таблица 2 5.2 Структура дисциплины по разделам и видам учебной деятельности с указанием временного ресурса

Название раздела/темы	СРС (час)	СРС (час)	Итого
	3 семестр	4семестр	
1. Введение в проектную	2	2	4
деятельность			
2. Выбор темы ТП	2	2	4
3. Составление плана	2	2	4
работы			
4. Сбор и обработка	4	4	8
информационных материалов			
5. Разработка алгоритма и модели	8	8	16
исследований с помощью ЭВМ			
6.Проектирование	8	8	16
технологического процесса.			
7. Написание и оформление работы	10	10	20
Итого	36	36	72

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При изучении дисциплины используются следующие образовательные технологии:

Таблица 3 5.3 Методы и формы организации обучения

Методы	ФОО			
активизации	Лекции	Лабораторные	Практические	СРС(конференц-
образовательной		работы	занятия	недели)
деятельности		1		, , ,
IT-методы				+
Работа в команде				+
Case-study				+
Методы				+
проблемного				
обучения				
Проектный метод				+
Обучение на				+
основе опыта				
Поисковый метод				+
Опережающая				+
самостоя -тельная				
работа				
Исследовательский				+
метод				

7. ОРГАНИЗАЦИЯ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

7.1 Виды и формы самостоятельной работы (СРС)

Самостоятельная работа студентов включает текущую и творческую проблемно-ориентированную самостоятельную работу (TCP). Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает поиск и обзор литературы и электронных источников информации с целью выполнения индивидуального задания.

Творческая проблемно-ориентированная самостоятельная работа (ТСР) состоит в самостоятельном изучении студентами материала, требующегося для выполнения индивидуального задания.

Творческая проблемно-ориентированная самостоятельная работа по дисциплине «Творческий проект», направленная на развитие интеллектуальных умений, общекультурных и профессиональных компетенций, развитие творческого мышления у студентов, включает в себя следующие виды работ по основным проблемам курса: поиск, анализ, структурирование информации по заданной теме; обработка экспериментальных данных и их анализ.

7.2 Содержание самостоятельной работы студентов

Содержание самостоятельной работы студентов по дисциплине «Творческий проект» проводится по приведенным ниже укрупненным темам. Образцы тем индивидуальных заданий:

- Автоматизация технологической подготовки производства детали типа «Вал электродвигателя» на станках с ЧПУ.
- Конструкторско-технологическое проектирование производства детали типа «Втулка » на станках с ЧПУ.
- Совершенствование технологического процесса на базе ГПМ (гибкого производственного модуля) производства деталей типа «Корпус редуктора».
- Автоматизация с помощью ЭВМ технологической подготовки производства детали типа «Штуцер манометра».
- Автоматизация проектирования технологического процесса производства детали типа «Кольцо» на базе ГПМ.
- Совершенствование технологического процесса с помощью ЭВМ производства деталей типа «Основание» на станках с ЧПУ.
- Автоматизация конструкторско-технологического проектирования с помощью ЭВМ производства детали типа «Корпус электродвигателя » на станках с ЧПУ.

8. КОНТРОЛЬ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Оценка результатов самостоятельной работы организуется как

- защита индивидуальных заданий,
- оценка презентации по тематике исследований в рамках проведения конференц-недели.

При выполнении самостоятельной работы необходимо использовать электронные лекционные презентации и материалы по курсу CAMOвМ, модуль «Системный анализ и математическое моделирование в машиностроении», размещённые на персональном сайте: http://portal.tpu.ru/SHARED/m/MNBOGOLJUBOVA

8.1 Средства текущей и промежуточной оценки качества освоения дисциплины

Учебно-методическое обеспечение самостоятельной работы студентов. Для организации самостоятельной работы студентов самостоятельной проработки теоретического материала, преподавателями кафедры разработаны учебно-методические пособия и указания. В зависимости от темы выбранного проекта перечень литературы уточняется с руководителем проекта.

Программное обеспечение и Internet-ресурсы

Учебные пособия, методические указания в виде электронных версий и презентаций размещены в сети кафедры ТАМП и ТПУ.

8.2 Рейтинг качества освоения дисциплины

Оценка качества освоения дисциплины в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной и итоговой аттестации студентов Томского политехнического университета», утвержденными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов;
- ▶ промежуточная аттестация (зачёт) производится в конце семестра, оценивается в баллах (максимально 40 баллов, на зачёте студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам, минимальный — 55 баллов

9.УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Литература основная

- 1. Методические рекомендации по проведению патентных исследований. М.: ВНИИПИ, 1988. –174 с.
- 2. Иениш Е.В. Библиографический поиск в научной работе. М.: Книга, 1982. –247 с.
- 3. Скворцов В.Ф. Основы технологии машиностроения: учебное пособие/В.Ф. Скворцов; Томский политехнический университет. Томск: Изд-воТомского политехнического университета, 2012. 352 с.
- 4. Норенков И.П. Основы автоматизированного проектирования. Издательство: МГТУ им. Н. Э. Баумана, 2002. 336 с.
- 5. Боголюбова, М. Н. Системный анализ и математическое моделирование в машиностроении: учебное пособие / М. Н. Боголюбова; Национальный исследовательский Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2010. 123 с.:

. Литература дополнительная

6. Галеева И.С. Интернет как инструмент библиографического поиска. – СПб.: Профессия, 2007. –248 с.

Internet-ресурсы

- 7. Сайт Федеральная служба по интеллектуальной собственности (Роспатент).— Режим доступа: http://www1.fips.ru, вход свободный.
- 8. twirpx.com Все для студента. Учебно-методическая и профессиональная литература для студентов и преподавателей технических, естественнонаучных и гуманитарных специальностей.
- 9. Боголюбова М.Н. Системный анализ и математическое моделирование в машиностроении [Электронный ресурс] : учебное пособие для вузов / М. Н. Боголюбова; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 782 KB). Томск: Изд-во ТПУ, 2010. Заглавие с титульного экрана. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader.

Режим доступа: http://www.lib.tpu.ru/fulltext2/m/2011/m76.pdf
10. Научная электронная библиотека (НЭБ) http://elibrary.ru
Информационный портал в области науки, технологии, медицины и образования.

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

$N_{\underline{0}}$	Наименование	Корпус, ауд.,
Π/Π	(компьютерные классы,	количество установок
	учебные лаборатории, оборудование)	
1	1 Компьютерный класс кафедры ТАМП	Ауд. 203, корп. 16А, 12 ПК Ауд. 101Б, корп. 16А, 8 ПК
2	Зал электронных образовательных ресурсов (подключение к мировым библиотечным ресурсам)	Ауд. 311 НТБ ТПУ

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС по направлению 150.700 «Машиностроение»

Программа одобрена на заседании кас	федры технологии автоматизированного
машиностроительного производства	

Протокол № от	·
Составитель	М.Н. Боголюбова
к.т.н., доцент	