

Classes of Refining Processes

Lecturer: Kirgina Maria Vladimirovna assistant teacher

may 2015

Plan

The physical and chemical transformations that crude oil undergoes in a refinery take place in numerous distinct processes, each carried out in a discrete facility.

Table 1 – Important Classes of Refining Processes

Class	Function	Examples		
Crude Distillation	 Separate crude oil charge into boiling range fractions for further processing 	 Atmospheric distillation Vacuum distillation 		
Conversion ("Cracking")	 Break down ("crack") heavy crude fractions into lighter refinery streams for further processing or blending 	 Fluid catalytic cracking (FCC) Hydrocracking 		
Upgrading	 Rearrange molecular structures to improve the properties (e.g., octane) and value of gasoline and diesel components 	 Catalytic reforming Alkylation, Isomerization 		

Classes of Refining Processes

Table 1 – Important Classes of Refining Processes

Class	Function	Examples
Treating	 Remove hetero-atom impurities (e.g., sulfur) from refinery streams and blendstocks Remove aromatics compounds from refinery streams 	 FCC feed hydrotreating Reformer feed hydrotreating Gasoline and distillate hydrotreating Benzene saturation
Separation	 Separate, by physical or chemical means, constituents of refinery streams for quality control or for further processing 	 Fractionation (numerous) Aromatics extraction
Blending	 Combine blendstocks to produce finished products that meet product specifications and environmental standards 	 Gasoline blending Jet and diesel blending
Utilities	 Refinery fuel, power, and steam supply; sulfur recovery; oil movements; crude and product storage; emissions control; etc. 	Power generationSulfur recovery

Fluid Catalytic Cracking Unit

Uses heat and catalyst to break or «crack» large gas oil molecules into a range of smaller ones:

- gasoline,
- · low quality diesel stocks,
- residual oil slurry (fuel oil).

Hydrocracking

dille.

Breaks or «cracks» diesel stock material into **gasoline blending stocks** using heat, catalyst and hydrogen under very high pressure.

Coker Unit

Processes **vacuum residue**, which is heated to over 500°C and put into the coke drums, where it undergoes thermal cracking.

Products include:

•butane,

lighter material,
naphtha for Reforming,
turbine and diesel fuel,
gas oil for FCC,
fuel grade petroleum coke.

Reforming Unit

Using heat, catalyst and moderate pressure, the reformer changes the molecular structure of crude oil to produce a high octane **reformate**.

Alkylation Unit

Uses acid catalyst to combine small molecules into larger ones collectively called **alkylate**, which has a high octane numbers.

Isomerization

Rearranges the atoms in a molecule so that the product has the same chemical formula but has a different structure.

Removes impurities by using hydrogen to bind with sulfur and nitrogen.

<u>Ciile</u>

Table 2 – Salient Features of Primary Conversion Processes

Features	FCC	Hydro-cracking	Coking
Primary Feeds			
SR Distillate	•	•	
SR Gas Oil	•	•	
SR Residual Oil			•
Coker Gas Oil	•		
FCC Slurry Oil		+	•
Process Type			
Catalytic	•	•	
Thermal			•

Table 2 – Salient Features of Primary Conversion Processes

Features	FCC	Hydro-cracking	Coking
C/H Ratio Adjustment			
Carbon rejection	٠.		•
Hydrogen addition		•	
Primary Functions			
Increase light product yield	•	•	•
Produce additional FCC feed			•
Remove hetero-atoms (including sulfur)		•	
Sulfur Content of Cracked Products	Moderate to High	< 100 ppm	Very High

Table 3 – Salient Features of Primary Upgrading Processes

	Reforming	Alkylation	Isomerization	Polymerization	Etherification
Primary Feeds					
SR Naphtha (med. and hvy.)	•				
SR Naphtha (light)			•		
Natural Gasoline			•		
Iso-butane		•			
C3 Olefin		•		•	
C4 Olefins		•		•	•
Methanol / Ethanol					•

Table 3 – Salient Features of Primary Upgrading Processes

	Reforming	Alkylation	Isomerization	Polymerization	Etherification
Primary Products					
Gasoline Blendstock	Reformate	Alkylate	Isomerate	Poly Gasoline	MTBE
Other	Hydrogen				
Primary Functions					
Improve refinery yield of gasoline	٠	•		•	•
Add octane to the gasoline pool	•••	••	•	•	•••
Control gasoline pool octane	•				
Produce refinery hydrogen	•				

