

Лекция №3

Основные методы оптимизации. Часть 2

ДИСЦИПЛИНа: Методы оптимизации и организации энерго- и ресурсосберегающих химико-технологических систем

Лектор: Киргина Мария Владимировна к.т.н., доцент отделение Химической инженерии

т.н., доцент отделение химической инженерий Инженерной школы природных ресурсов

март 2018

План лекции

Метод покоординатного спуска

Метод градиента

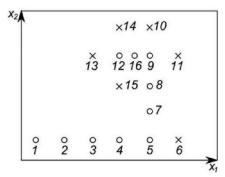
Экспериментальный поиск оптимума

Метод крутого восхождения

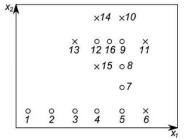
Метод Бокса - Уилсона

- ✓ Два фактора.
- ✓ Поиск максимума.
- 1. Выбираем координаты начальной точки поиска \mathbf{x}_{1H} и \mathbf{x}_{2H} , (т.е. те значения \mathbf{x}_1 и \mathbf{x}_2 , от которых будет искаться оптимум); единичные приращения обоих факторов (шаги) \mathbf{H}_1 и \mathbf{H}_2 , а также малые приращения факторов \mathbf{e}_1 и \mathbf{e}_2 .

Выбор величин определяется физическим смыслом задачи и той информацией о ней, которой мы располагаем заранее.

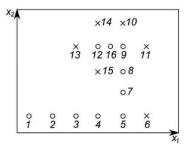


- 2. Рассчитываем значение **F**(**x**_{1H}, **x**_{2H}) в точке **1**.
- 3. Не меняя величины x_2 , двигаемся вдоль оси x_1 , давая на каждом шаге фактору приращение H_1 (или $-H_1$, в зависимости от того, при движении в какую сторону будет наблюдаться рост F).



- 4. На каждом шаге в точках **2**, **3**, **4** и т.д. проводится расчет *F*.
- 5. Шаги продолжаются до тех пор, пока продолжается рост **F**. Неудачными будем считать те шаги, на которых получено значение **F** меньшее, чем на предыдущих шагах.

- После первого неудачного шага (точка 6) возвращаемся в предыдущую точку (точка 5).
- 7. Фиксируем величину x_1 и начинаем изменять x_2 , давая ему приращения H_2 или $-H_2$ (точки 7, 8, 9, 10).



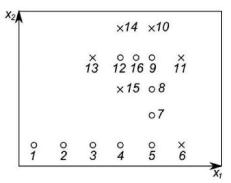
- 8. Затем снова движемся вдоль оси x_1 (точки 11, 12, 13), снова меняем направление (точки 14, 15) и т.д.
- 9. Из точки **12** двигаться некуда: во всех окружающих точках (**9**, **13**, **14**, **15**) значение *F* меньше, чем в данной. Мы приблизились к максимуму и прежние крупные шаги из точки **12** переносят нас через него.

10.Уменьшаем шаги (например, вдвое — точка **16**) и продолжаем поиск уменьшенными шагами. Уменьшение шага может производиться неоднократно.

11. Когда шаги оказываются меньше, чем соответственно $\mathbf{e_1}$ и $\mathbf{e_2}$, логично считать, что максимум зафиксирован достаточно точно и можно закончить расчет, приняв лучшую

точку за оптимум.

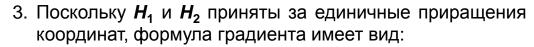
Если факторов больше двух, то после движения вдоль осей x_1 и x_2 производится движение вдоль осей x_3 , x_4 и т.д. и лишь затем снова начинается движение вдоль x_1 .



- ✓ Два фактора.
- ✓ Поиск максимума.

Градиент – вектор, своим направлением указывающий направление наибольшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой, а по величине (модулю) равный скорости роста этой величины в этом направлении.

- 1. Выбираем координаты начальной точки \mathbf{x}_{1H} и \mathbf{x}_{2H} , шаги \mathbf{H}_1 и \mathbf{H}_2 и малые приращения \mathbf{e}_1 и \mathbf{e}_2 .
- 2. Движение к оптимуму начинаем не вдоль оси координат, а в направлении градиента (если ищется минимум, то в противоположном градиенту направлении).

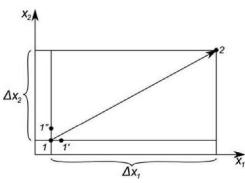


$$\operatorname{grad} F = \frac{\partial F}{\partial x_1} H_1 + \frac{\partial F}{\partial x_2} H_2$$

4. Для расчета направления градиента необходимо знать частные производные целевой функции по факторам. Для расчета производных проводится вспомогательная серия расчетов.

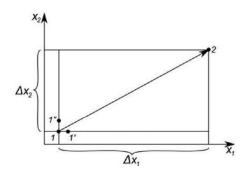
- 5. Около начальной точки **1** ставятся две вспомогательные точки: **1'** на расстоянии \mathbf{e}_1 вдоль оси \mathbf{x}_1 и **1"** на расстоянии \mathbf{e}_1 вдоль оси \mathbf{x}_2 , в них рассчитывается функция \mathbf{F} .
- 6. Производные находим по формулам:

$$\frac{\partial F}{\partial x_1} = \frac{F(x_1 + e_1, x_2) - F(x_1, x_2)}{e_1}$$
$$\frac{\partial F}{\partial x_2} = \frac{F(x_1, x_2 + e_2) - F(x_1, x_2)}{e_2}$$



7. После этого делаем шаг в точку **2** для следующего расчета *F*. Ее координаты рассчитываются как:

$$x_{i+1,j} = x_{ij} + \Delta x_{j}$$
$$\Delta x_{j} = \frac{\partial F}{\partial x_{j}} H_{j}$$



Здесь i – номер точки; j – номер фактора.

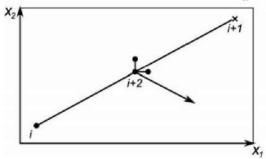
- 8. Если шаг оказался удачным, можно определить производные в новой точке *i*+1, найти новое направление градиента, сделать шаг и т.д.
- 9. Можно действовать иначе: если шаг оказался удачным, т.е. если $\boldsymbol{F_{i+1}} > \boldsymbol{F}$ (при поиске максимума), то делают следующий шаг в том же направлении, подставляя в формулу ранее найденные значения производных:

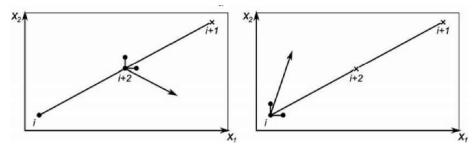
$$\Delta x_j = \frac{\partial F}{\partial x_j} H_j$$

Это будет уже не направление градиента, но есть вероятность, что еще один шаг в прежнем направлении снова даст приращение **F** нужного знака, хотя и не максимально возможное *(так как от ерадиента отклонились).*

10. Если шаг удачен, делаем еще один шаг и т.д.

- 11. Если шаг неудачен, т.е. $F_{i+1} < F$ (при поиске максимума) это означает, что поверхность искривлена, данное направление перестало вести нас вверх, мы «перескочили» через ту окрестность предыдущей точки, в которой функция возрастала.
- 12. Уменьшают шаг (например вдвое). Если уменьшенный шаг в том же направлении будет удачен, нет смысла делать еще шаг, поскольку он приведет в «плохую» точку.





- 13. Около точки *i+2* поставляются вспомогательные точки для расчета производных, находим новое направление градиента и двигаемся по нему.
- 14. Если же и уменьшенный шаг не приведет в «хорошую» точку, то возвращаемся в точку *i* и ищем в ней направление градиента.

15. Движение продолжается до тех пор, пока шаги не станут очень маленькими. Для останова вычислений используется момент, когда оба приращения ∆x_{ij} окажутся меньше, чем соответствующие малые величины e_i.

Уменьшение шагов объясняется:

- ✓ неоднократным уменьшением в тех случаях, когда большой шаг оказывался неудачным;
- ✓ вблизи оптимума производные близки к нулю и формула дает уже очень малые приращения.

Экспериментальный поиск оптимума

Наиболее сложен для оптимизации случай, когда вида целевой функции неизвестен.

Единственная возможность находить оптимум – экспериментально.

Необходимо учитывать ряд обстоятельств:

✓ вследствие наличия случайных ошибок опытные точки нельзя располагать слишком близко друг к другу. Значения критерия оптимальности, полученные в соседних точках, окажутся неразличимыми, различия в величине критерия будут значительно меньше уровня ошибки.

Экспериментальный поиск оптимума

Необходимо учитывать ряд обстоятельств:

- ✓ в эксперименте гораздо острее, чем в расчете, стоит проблема эффективности поиска.
- ✓ при экспериментальной оптимизации характер зависимости *F* от факторов, как правило, бывает проще, чем при расчетной.

Ошибки опытов «сглаживают рельеф» целевой функции.

В эксперименте обычно можно работать с простейшими математическими моделями – многочленами 1-го или 2-го порядков.

Экспериментальный поиск оптимума

В планировании эксперимента метод покоординатного спуска называют методом Гаусса - Зайделя.

От опыта к опыту изменяется только один фактор и влияние этого фактора получается в ясной форме однофакторной зависимости.

Главное преимущество метода – простота. **Главный недостаток** – малая эффективность.

Метод Бокса - Уилсона

* разработан в начале 1950-х годов.

Ставится одна или несколько серий опытов, цель которых – приблизиться к оптимуму по градиенту функции, а затем вблизи экстремума ставится план 2-го порядка и отыскивают оптимум.

В планировании эксперимента градиентный метод движения к оптимуму называют крутым восхождением.

Отличия от метода градиента, обусловлены ошибками опытов. Для расчета частных производных, приращения е должны быть малы; при малых расстояниях между точками сильно скажутся ошибки опытов и оценка направления градиента будет неточна.

Метод крутого восхождения

- 1. Вокруг исходной точки как центра строится факторный эксперимент **2**^р или дробный факторный эксперимент.
- 2. Зависимость отклика от факторов описывается многочленом 1-й степени:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p$$

3. Тогда частные производные равны соответствующим коэффициентам регрессии:

$$\frac{\partial y}{\partial x_i} = b_j \quad j = 1, 2, ..., p$$

Метод крутого восхождения

4. Принимая за единичный шаг в направлении каждой оси \boldsymbol{u}_{j} интервал варьирования $\boldsymbol{\delta}_{j}$ формула:

$$\Delta x_j = \frac{\partial F}{\partial x_j} H_j$$

примет вид:

$$\Delta u_j = b_j \delta_j m$$
 $j = 1, 2, ..., p$

m – множитель, регулирующий длину шага.

$$m - \frac{1}{|b_j|_{\text{MAKC}}}$$
 $j \neq 0$

Выражение в знаменателе – наибольшая из абсолютных величин коэффициентов регрессии, за исключением свободного члена.

Метод крутого восхождения

- 5. Движение по направлению крутого восхождения продолжается до тех пор, пока **у** возрастает (либо убывает, если мы ищем минимум).
- 6. После этого либо ставят новый факторный эксперимент и находят новое направление градиента, либо переходят к плану 2-го порядка.

Классическая классификация

Классификация методов решения задач оптимизации:

- 1. Методы исследования функций классического анализа.
- 2. Метод множителей Лагранжа.

вместо решения системы конечных уравнении для отыскания оптимума необходимо интегрировать систему дифференциальных уравнений.

- 3. Методы вариационного исчисления.
 - применяются для решения задач, в которых критерии оптимальности представляются в виде функционалов.
- 4. Динамическое программирование.

применяются для решения задач оптимизации дискретных многостадийных процессов, для которых общий критерий оптимальности описывается аддитивной функцией критериев оптимальности отдельных стадий.

Классическая классификация

Классификация методов решения задач оптимизации:

- 5. Принцип максимума.
 - применяются для решения задач оптимизации процессов, описываемых системами дифференциальных уравнений.
- 6. Линейное программирование.
 - применяются для решения задач оптимизации с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных.
- 7. Методы нелинейного программирования.

