МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЮРГИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

М.А. Кузнецов, Д.П. Ильященко

ТЕХНОЛОГИЯ СВАРКИ ПЛАВЛЕНИЕМ И ТЕРМИЧЕСКОЙ РЕЗКИ

Рекомендовано в качестве практикума Редакционно-издательским советом Томского политехнического университета

Издательство Томского политехнического университета 2022

УДК 621.791.93+621.791.94(076.5) ББК 34.641+34.63я73 К89

Кузнецов М.А.

К89 Технология сварки плавлением и термической резки : практикум / М.А. Кузнецов, Д.П. Ильященко ; Юргинский технологический институт. — Томск : Изд-во Томского политехнического университета, 2021. — 75 с.

ISBN 978-5-4387-1065-3

В практикуме изложены параметры режимов различных способов сварки, наплавки и резки. Приведены практические работы: по расчетам параметров режима различных способов сварки плавлением; расчетам параметров режима вибродуговой наплавки; расчетам параметров режима кислородной разделительной резки металлов; выбору сварочных материалов; разработке технологического процесса сварки сталей. Лабораторные работы: по технологии различных способов сварки плавлением сталей и чугунов; определению зависимости геометрических параметров наплавленного металла от режимов дуговой наплавки; определению потерь электродного металла на угар и разбрызгивание при дуговых способох сварки; технологии различных способов резки сталей.

Предназначен для студентов, обучающихся по направлению 15.03.01 «Машиностроение», образовательная программа «Оборудование и технология сварочного производства».

УДК 621.791.93+621.791.94(076.5) ББК 34.641+34.63я73

Рецензенты

Доктор технических наук, профессор кафедры промышленных технологий Новгородского государственного университета имени Ярослава Мудрого С.Б. Сапожков

Кандидат технических наук, доцент заведующий кафедрой технологии машиностроения Тюменского индустриального университета $P. O.\ Hekpacos$

ISBN 978-5-4387-1065-3

- © ФГАОУ ВО НИ ТПУ Юргинский технологический институт (филиал), 2022
- © Кузнецов М.А., Ильященко Д.П., 2022
- © Оформление. Издательство Томского политехнического университета, 2022

СОДЕРЖАНИЕ

введение	5
ЧАСТЬ 1	
ПРАКТИЧЕСКИЕ РАБОТЫ	6
ПРАКТИЧЕСКАЯ РАБОТА 1	
Расчет параметров режима ручной дуговой сварки	
покрытыми электродами	6
ПРАКТИЧЕСКАЯ РАБОТА 2	
Расчет параметров режима дуговой сварки	
плавящимся электродом в среде защитных газов	0
ПРАКТИЧЕСКАЯ РАБОТА 3	
Расчет параметров режима дуговой сварки под слоем флюса 10	6
ПРАКТИЧЕСКАЯ РАБОТА 4	
Расчет параметров режима электрошлаковой сварки	1
ПРАКТИЧЕСКАЯ РАБОТА 5	
Расчет параметры режима газовой сварки	5
ПРАКТИЧЕСКАЯ РАБОТА 6	
Расчет параметров режима аргонодуговой сварки	8
ПРАКТИЧЕСКАЯ РАБОТА 7	
Расчет параметров режима вибродуговой наплавки	1
ПРАКТИЧЕСКАЯ РАБОТА 8	
Расчет параметров режима	
кислородной разделительной резки металлов 34	4
ПРАКТИЧЕСКАЯ РАБОТА 9	
Выбор сварочных материалов	6
ПРАКТИЧЕСКАЯ РАБОТА 10	
Разработка технологического процесса сварки сталей 38	8
Контрольные вопросы для практических работ 4	0
ЧАСТЬ 2	
ЛАБОРАТОРНЫЕ РАБОТЫ	1
ЛАБОРАТОРНАЯ РАБОТА 1	
Технология ручной дуговой сварки стали 4	1
ЛАБОРАТОРНАЯ РАБОТА 2	
Технология дуговой (механизированной и автоматической) сварки	
в среде защитных газов	3
ЛАБОРАТОРНАЯ РАБОТА 3	
Зависимость геометрических параметров	
наплавленного металла от режимов дуговой наплавки 4	7
ЛАБОРАТОРНАЯ РАБОТА 4	
Зависимость геометрических параметров наплавленного металла	
от режимов автоматической импульсной дуговой наплавки 50	0

ЛАБОРАТОРНАЯ РАБОТА 5
Потери электродного металла на угар и разбрызгивание
при дуговой механизированной сварке в среде защитных газов 53
ЛАБОРАТОРНАЯ РАБОТА 6
Потери электродного металла на угар и разбрызгивание
при ручной дуговой сварке покрытыми электродами 56
ЛАБОРАТОРНАЯ РАБОТА 7
Технология ручной дуговой сварки чугуна
ЛАБОРАТОРНАЯ РАБОТА 8
Разделительная дуговая резка металлов
ЛАБОРАТОРНАЯ РАБОТА 9
Разделительная плазменная резка металлов
ЛАБОРАТОРНАЯ РАБОТА 10
Автоматическая плазменная резка металлов
Контрольные вопросы к лабораторным работам
ЗАКЛЮЧЕНИЕ
СПИСОК СОКРАЩЕНИЙ 67
ПРИЛОЖЕНИЯ
СПИСОК ЛИТЕРАТУРЫ
·-·

ВВЕДЕНИЕ

Технология сварки плавлением и термической резки является одной из основных дисциплин при подготовке студентов высших технических учебных заведений, обучающихся по направлению «Машиностроение», образовательной программе «Оборудование и технология сварочного производства». Это объясняется тем, что сварка плавлением является одним из самых распространенных способов соединения металлов, а термическая резка — раскроя металлов. Дуговые способы сварки применяются на большинстве промышленных предприятиях. Дисциплина «Технология сварки плавлением и термической резки» охватывает все способы сварки плавлением и термической резки металлов.

По технологии сварки плавлением и термической резки известны работы следующих авторов: В.Т. Федько, Н.П. Алешина, Г.Г. Чернышева и др.

Одним из основных разделов дисциплины «Технология сварки плавлением и термической резки» является «Дуговые способы сварки плавящимся электродом».

В практикуме представлены как общеизвестные методики расчета параметров режимов для различных способов сварки плавлением и термической резки, так и современные методики проведения лабораторных работ на новом оборудовании. При разработке учебного пособия учитывалась лабораторная база Юргинского технологического института.

Практические и лабораторные работы в процессе подготовки студентов направления «Машиностроение», образовательной программы «Оборудование и технология сварочного производства» играют важную роль. Получение практических навыков при выполнении практических и лабораторных работ позволяет лучше усвоить теоретический материал, повысить уровень инженерно-технического мышления и подготовить конкурентно способных специалистов в области сварочного производства с практической точки зрения.

Практикум направлен на получение практических навыков: расчета параметров режима сварки, наплавки, резки; дуговой сварки сталей и чугунов; работы со сварочным оборудованием для дуговых способов сварки; разработки технологического процесса сварки по дисциплине «Технология сварки плавлением и термической резки».

ЧАСТЬ 1 ПРАКТИЧЕСКИЕ РАБОТЫ

ПРАКТИЧЕСКАЯ РАБОТА 1 Расчет параметров режима ручной дуговой сварки покрытыми электродами

Цель работы

Получение навыков расчета параметров режима ручной дуговой сварки покрытыми электродами (РДС).

Параметры режима РДС

Параметры режима РДС зависят от толщины свариваемого материала и типа сварного соединения. Основным руководящим документом, в котором представлены типы, конструктивные элементы и размеры сварных соединений для РДС, необходимые при расчете параметров режима сварки, является ГОСТ 5264–80 «Ручная дуговая сварка. Соединения сварные».

Основными параметрами режима РДС являются [1, 2]:

- диаметр электрода d_3 (мм);
- сила сварочного тока I_{cb} (A);
- напряжение на дуге U_{π} (В);
- скорость сварки $V_{\text{св}}$ (м/ч);
- количество проходов $-n_n$.

Методика выполнения работы

1. Согласно табл. 1 по варианту выбираем входные данные для расчета параметров режима.

Таблица 1 Входные данные для расчета параметров режима сварки РДС

	Толщина	Сварной	Расположения	Диаметр	Тип
Вариант	металла,	ШОВ	сварного шва	электрода,	электродного
	MM	шов	в пространстве	MM	покрытия
1	2	C2	нижнее	3	кислое
2	5	C7	горизонтальное	3	рутиловое
3	10	C8	вертикальное	3	основное
4	20	C15	потолочное	4	целлюлозное
5	30	C16	нижнее	4	кислое

	Толщина	Срориой	Расположения	Диаметр	Тип
Вариант	металла,	Сварной	сварного шва	электрода,	электродного
	MM	ШОВ	в пространстве	MM	покрытия
6	15	C17	горизонтальное	4	рутиловое
7	40	C25	вертикальное	4	основное
8	30	C26	потолочное	4	целлюлозное
9	50	C27	нижнее	4	кислое
10	3	У4	горизонтальное	3	рутиловое
11	5	У5	вертикальное	3	основное
12	10	У6	потолочное	3	целлюлозное
13	20	У8	нижнее	4	кислое
14	30	У9	горизонтальное	4	рутиловое
15	10	T1	вертикальное	3	основное
16	20	T3	потолочное	4	целлюлозное
17	15	T6	нижнее	4	кислое
18	30	T8	горизонтальное	4	рутиловое
19	10	H1	вертикальное	3	основное
20	20	H2	потолочное	4	целлюлозное

- 2. Начертить конструктивные элементы подготовленных кромок свариваемых деталей и сварного шва, расставить на чертеже геометрические параметры сварного шва (зазор, ширина шва, высота усиления шва, катет шва) согласно ГОСТ 5264–80.
- 3. Начертить сварной шов при помощи программного обеспечения «Компас 3D» и определить общую площадь поперечного сечения наплавленного металла ($F_{\text{но}}$).
 - 4. Рассчитать количество проходов по формуле [1-4]

$$n_n = \frac{F_{\text{HO}} - F_{\text{HK}}}{F_{\text{HS}}} + 1, \qquad (1)$$

где $F_{\text{но}}$ — общая площадь поперечного сечения наплавленного металла, мм²; $F_{\text{нк}}$ — площадь поперечного сечения наплавленного металла (корневой), мм² ($F_{\text{нк}} = 5...7$) d_3 ; $F_{\text{нз}}$ — площадь поперечного сечения наплавленного металла (заполняющий), мм² ($F_{\text{нз}} = 8...10$) d_3 .

5. Рассчитать силу сварочного тока (A) (зависит от диаметра электрода) по формуле [3–5]

$$I_{\rm cB} = \frac{\pi d_{\,9}^{\,2}}{4} \cdot j \,, \tag{2}$$

где d_3 — диаметр электрода, мм; j — допустимая плотность тока в электроде, А/мм 2 (определяем по табл. 2).

Таблица 2 Значения допустимой плотности тока при РДС [3]

Рид покрытия	j , A /мм 2 в элект	роде при $d_{\scriptscriptstyle 3}$, мм
Вид покрытия	3	4
Кислое, рутиловое	1420	11,516
Основное	1318,5	1014,5
Целлюлозное	12,716,9	9,613,6

Существуют еще несколько формул, по которым можно рассчитать силу сварочного тока. При приближенных расчетах сварочный ток определяем по формуле [4]

$$I_{\rm cB} = k_n \cdot d_{\rm P},\tag{3}$$

где d_{3} — диаметр электрода, мм; k_{n} — коэффициент пропорциональности, зависит от диаметра электрода (определяем по табл. 3).

Таблица 3 Коэффициент пропорциональности [4]

Диаметр электрода, мм	3	4
Коэффициент	3045	3550
пропорциональности, k_n	3043	3330

Также силу сварочного тока можно рассчитать по формуле [1, 2]

$$I_{\rm cB} = K_I^{\rm TII} \cdot K_I^{\rm IIII} \cdot d_{\,\scriptscriptstyle 9}, \tag{4}$$

Таблица 4

где d_{\circ} — диаметр электрода, мм; $K_{I}^{\text{тп}}$ — коэффициент, зависящий от типа электродного покрытия (определяем по табл. 4); $K_{I}^{\text{пш}}$ — коэффициент, зависящий от расположения сварного шва в пространстве (определяем по табл. 5).

Значения коэффициента К [1, 2]

Коэффициент	Тип электродного покрытия			
TZ TII	Основное	Рутиловое	Кислое	Целлюлозное
K_I	1723	2030	2030	2025

Коэффициент	Расположение сварного шва в пространстве			
$K_I^{\scriptscriptstyle m IIII}$	Нижнее	Потолочное	Горизонтальное, вертикальное	
	1	0,760,78	0,850,92	

6. Рассчитать напряжение на дуге (В) (зависит от типа электродного покрытия, толщины электродного покрытия, химического состава стержня электрода, диаметра стержня электрода) по формуле [3]

$$U_{\pi} = 20 + 0.04 \cdot I_{cr}, \tag{5}$$

где $I_{cв}$ — сила сварочного тока, A, или по формуле [1, 2]

$$U_{\pi} = 12 + 0.36 \cdot \frac{I_{\text{cB}}}{d_{2}},\tag{6}$$

где $I_{cв}$ – сила сварочного тока, А; d_{\circ} – диаметр электрода, мм.

7. Рассчитать скорость сварки (м/ч) по формуле [1–5]

$$V_{cB} = \frac{\alpha_H \cdot I_{cB}}{\rho \cdot F_{Hi} \cdot 100},\tag{7}$$

где α_H – коэффициент наплавки, г/Ач (8…10 г/Ач); $I_{\rm cB}$ – сила сварочного тока, А; ρ – плотность наплавленного металла, г/см³; $F_{\rm H}i$ – площадь поперечного сечения сварного шва за i-й проход, см².

8. Расчетные данные занести в табл. 6.

Таблица 6 Расчетные параметры режимов сварки

Режимы сварки	
Диаметр электрода – d_9 (мм)	
Количество проходов $-n_n$	
Сила сварочного тока $-I_{cb}$ (A)	
Напряжение на дуге – U_{π} (В)	
Скорость сварки $-V_{cb}$ (м/ч)	

ПРАКТИЧЕСКАЯ РАБОТА 2

Расчет параметров режима дуговой сварки плавящимся электродом в среде защитных газов

Цель работы

Получение навыков расчета параметров режима дуговой сварки плавящимся электродом в среде защитных газов.

Параметры режима дуговой сварки плавящимся электродом в среде защитных газов

Параметры режима дуговой сварки плавящимся электродом в среде защитных газов зависят от толщины свариваемого материала и типа сварного соединения. Основным руководящим документом, в котором представлены типы, конструктивные элементы и размеры сварных соединений, необходимые при расчете параметров режима сварки, является ГОСТ 14771–76 «Дуговая сварка в защитном. Соединения сварные».

Основными параметрами режима дуговой сварки в среде защитных газов являются [1, 2]:

- диаметр электродной проволоки $d_{\text{эп}}$ (мм);
- сила сварочного тока $-I_{cB}$ (A);
- напряжение на дуге U_{π} (В);
- скорость сварки $V_{\rm cb}$ (м/ч);
- количество проходов $-n_n$;
- вылет электродной проволоки $-l_{\rm B}$ (мм);
- скорость подачи электродной проволоки $V_{\text{эп}}$ (м/ч);
- расход защитного газа $q_{\text{зг}}$ (л/мин).

Методика выполнения работы

1. Согласно табл. 7 по варианту выбираем входные данные для расчета параметров режима сварки.

 Таблица 7

 Входные данные для расчета параметров режима сварки

Ропионт	Толщина	Сварной шов	Расположения сварного шва
Вариант	металла, мм	Сварнои шов	в пространстве
1	5	C2	нижнее
2	10	C7	горизонтальное
3	15	C8	вертикальное
4	20	C15	потолочное
5	30	C16	нижнее

Вариант	Толщина металла, мм	Сварной шов	Расположения сварного шва в пространстве
6	15	C17	горизонтальное
7	30	C25	вертикальное
8	40	C26	потолочное
9	5	У4	нижнее
10	10	У5	горизонтальное
11	15	У6	вертикальное
12	20	У8	потолочное
13	15	У9	нижнее
14	10	T1	горизонтальное
15	15	T3	вертикальное
16	20	T6	потолочное
17	30	Т8	нижнее
18	25	Т9	горизонтальное
19	5	H1	вертикальное
20	10	H2	потолочное

- 2. Начертить конструктивные элементы подготовленных кромок свариваемых деталей и сварного шва, расставить на чертеже геометрические параметры сварного шва (зазор, ширина шва, высота усиления шва, катет шва) согласно ГОСТ 14771–76.
- 3. Начертить сварной шов при помощи программного обеспечения «Компас 3D» и определить общую площадь поперечного сечения наплавленного металла ($F_{\text{но}}$).
- 4. Рассчитать глубину проплавления h_p . Глубина проплавления зависит от толщины свариваемого металла (S), величины зазора (e), величины притупления кромок (e), катета (K) и формы разделки кромок. Рассчитываем ее согласно данным, представленным в табл. S.

Таблица 8 Расчетная глубина проплавления [1, 2]

Тип сварного соединения	Формула для расчетной глубины проплавления
Стыковой односторонний без скоса кромок	$h_p = S - 0.5 e$
Стыковой двухсторонний без скоса кромок	$h_p = 0.6S - 0.5e$
Стыковой односторонний со скосом кромок	$h_p = 0.7S - 0.5e$
Стыковой двухсторонний со скосом кромок	$h_p = 0.35S - 0.5e$
Угловой, тавровый, нахлесточный	$h_p = (0,71,1)$ K, K = 1,2S

5. Рассчитать диаметр электродной проволоки (мм) по формуле и в зависимости от диаметра электродной проволоки определить степень автоматизации процесса дуговой сварки плавящимся электродом в среде защитных газов [1, 2]:

$$d_{\text{eff}} = \sqrt[4]{h_p} \pm 0.05 \cdot h_p \,, \tag{8}$$

где h_p – расчетная глубина проплавления, мм.

6. Рассчитать силу сварочного тока (А) (зависит от глубины проплавления и коэффициента пропорциональности) по формуле [3]

$$I_{\rm CB} = \frac{h_p}{K_n} \cdot 100, \tag{9}$$

где h_p — расчетная глубина проплавления, мм; K_n — коэффициент пропорциональности, зависит от диаметра электродной проволоки. Коэффициент пропорциональности определяем по табл. 9.

Таблица 9 Коэффициент пропорциональности [3]

Диаметр электродной	<i>K</i> _n , мм/100 A	
проволоки, мм	Постоянный, ток обратная полярность	
1,2	2,10	
1,6	1,75	
2	1,55	
3	1,45	
4	1,34	
5	1,20	

Силу сварочного тока (А) рассчитываем по формуле (в зависимости от ширины шва и расчетной глубины проплавления) [1, 2]

$$I_{cB} = K_1 \cdot \frac{h_p^{1,32}}{e^{1,07}},\tag{10}$$

Таблица 10

где h_p — расчетная глубина проплавления, мм; e — ширина сварного шва, мм; K_1 — коэффициент, полученный экспериментальным путем и зависящий от диаметра электродной проволоки. Коэффициент K_1 представлен в табл. 10.

Значение коэффициента К1 [1, 2]

d _{эп} , мм	0,8	1,0	1,2	1,6	2
K_1	335	335	430	460	480

7. Рассчитать напряжение на дуге (B) (зависит от сварочного тока, диаметра и вылета электродной проволоки) по формуле [3]

$$U_{\rm g} = 20 + \frac{50 \cdot 10^{-3}}{d_{\rm eff}^{0.5}} \cdot I_{\rm cB} \,, \tag{11}$$

где $d_{\text{эп}}$ – диаметр электродной проволоки, мм; $I_{\text{св}}$ – сила сварочного тока, A, или по формуле [1, 2]

$$U_{\pi} = 14 + 0.05 \cdot I_{cb}, \qquad (12)$$

где $I_{cв}$ — сила сварочного тока, A, или [1, 2]

$$U_{\pi} = 7 \cdot \sqrt[4]{I_{\text{cB}}}, \qquad (13)$$

где $I_{\rm cB}$ – сила сварочного тока, А.

8. Рассчитать количество проходов по формуле [1-4]

$$n_n = \frac{F_{\text{HO}} - F_{\text{HK}}}{F_{\text{HS}}} + 1, \qquad (14)$$

где $F_{\text{но}}$ — общая площадь поперечного сечения наплавленного металла, мм²; $F_{\text{нк}}$ — площадь поперечного сечения наплавленного металла (корневой), мм² ($F_{\text{нк}}$ = 5...7) $d_{\text{эп}}$; $F_{\text{нз}}$ — площадь поперечного сечения наплавленного металла (заполняющий), мм² ($F_{\text{нз}}$ = 8...10) $d_{\text{эп}}$.

9. Рассчитать скорость сварки (м/ч) по формуле [1-5]

$$V_{\rm cB} = \frac{\alpha_H \cdot I_{\rm cB}}{\rho \cdot F_{\rm H} \cdot 100},\tag{15}$$

где α_H – коэффициент наплавки, г/Ач (12...14 г/Ач); I_{cs} – сила сварочного тока, А; ρ – плотность наплавленного металла, г/см³; F_{Hi} – площадь поперечного сечения сварного шва за i-й проход, см².

Согласно теории распространения тепла при сварке для геометрического подобия ванны необходимо обеспечить $I_{\rm cB} \cdot V_{\rm cB} = {\rm A} = {\rm const.}$ Тогда скорость сварки (м/ч) рассчитывается по формуле [4]

$$V_{\rm cB} = \frac{A}{I_{\rm CB}},\tag{16}$$

где A — постоянная произведения от силы сварочного тока и напряжения на дуге, $A_{\text{м}}$; $I_{\text{св}}$ — сила сварочного тока, A. Значения A представлены в табл. 11.

Также скорость сварки (м/ч) можно рассчитать по формуле [1, 2]

$$V_{cB} = K_V \cdot \frac{h_p^{1,61}}{e^{3,36}},\tag{17}$$

где h_p — расчетная глубина проплавления, мм; e — ширина сварного шва, мм; K_V — коэффициент, полученный экспериментальным путем и зависящий от диаметра электродной проволоки. Коэффициент K_1 представлен в табл. 12.

Таблица 11 3начения A в зависимости от $d_{\scriptscriptstyle \rm 3H}$ [4]

$d_{\scriptscriptstyle{ m Э\Pi}},$	1,2	1,6	2	3	4	5
A,	2000	5000	8000	12 000	16 000	2000
Ам/ч	5000	8000	12 000	16 000	20 000	25 000

Таблица 12 3начение коэффициента $K_V[1, 2]$

d _{эп} , мм	0,8	1,0	1,2	1,6	2
K_V	1030	1065	1060	1120	1150

10. Рассчитать скорость подачи электродной проволоки (м/ч) по формуле [3]

$$V_{\rm \tiny 9H} = \frac{\alpha_H \cdot I_{\rm \tiny CB}}{\rho \cdot F_{\rm \tiny 2} \cdot 100},\tag{18}$$

где α_H – коэффициент наплавки, г/Ач (12...14 г/Ач); I_{cs} – сила сварочного тока, А; ρ – плотность наплавленного металла, г/см³; F_3 – площадь поперечного сечения электрода, см², или по формуле [1, 2]

$$V_{\text{\tiny 9II}} = 0.53 \cdot \frac{I_{\text{\tiny CB}}}{d_{\text{\tiny 9II}}^2} + 6.94 \cdot 10^{-3} \frac{I_{\text{\tiny CB}}^2}{d_{\text{\tiny 9II}}^3},\tag{19}$$

где $d_{\text{эп}}$ – диаметр электродной проволоки, мм; $I_{\text{св}}$ – сила сварочного тока, А.

11. Рассчитать вылет электродной проволоки (мм) по формуле [1, 2]

$$l_{\rm B} = 10 \cdot d_{\rm em} \pm 2 \cdot d_{\rm em}, \tag{20}$$

где $d_{\text{эп}}$ – диаметр электродной проволоки, мм.

12. Рассчитать расход защитного газа (л/мин) по эмпирической зависимости [1, 2]

$$q_{\rm 3T} = 0.2 \cdot I_{\rm cB}^{0.75}, \tag{21}$$

где I_{cb} — сила сварочного тока, А.

13. Расчетные данные занести в табл. 13.

Таблица 13 *Расчетные параметры режимов сварки*

Режимы сварки	
Диаметр электродной проволоки – $d_{\text{эп}}$ (мм)	
Количество проходов $-n_n$	
Сила сварочного тока – $I_{\text{св}}$ (A)	
Напряжение на дуге – $U_{\mathbb{A}}$ (В)	
Скорость сварки $-V_{cb}$ (м/ч)	
Скорость подачи электродной проволоки – $V_{\text{эп}}$ (м/ч)	
Скорость подачи электродной проволоки – $V_{\text{эп}}$ (м/ч)	
Вылет электродной проволоки – $l_{\rm B}$ (мм)	
$ ext{Расход защитного газа} - q_{\scriptscriptstyle 3\Gamma} \left(ext{л/мин} ight)$	

ПРАКТИЧЕСКАЯ РАБОТА 3 Расчет параметров режима дуговой сварки под слоем флюса

Цель работы

Получение навыков расчета параметров режима дуговой сварки под слоем флюса.

Параметры режима дуговой сварки под слоем флюса

Параметры режима дуговой сварки под флюсом зависят от толщины свариваемого материала и типа сварного соединения. Основным руководящим документом, в котором представлены типы, конструктивные элементы и размеры сварных соединений, необходимые при расчете параметров режима сварки, является ГОСТ 8713–79 «Сварка под флюсом. Соединения сварные».

Основными режимами дуговой сварки под слоем флюса являются [1, 2]:

- диаметр электродной проволоки $d_{\text{эп}}$ (мм);
- сила сварочного тока $-I_{cs}$ (A);
- напряжение на дуге U_{π} (В);
- скорость сварки $V_{\rm cs}$ (м/ч);
- количество проходов $-n_n$;
- вылет электродной проволоки $l_{\rm B}$ (мм);
- скорость подачи электродной проволоки $V_{\text{эп}}$ (м/ч).

Методика выполнения работы

1. Согласно табл. 14 по варианту выбираем входные данные для расчета параметров режима сварки.

 Таблица 14

 Входные данные для расчета параметров режима сварки

Вариант	Толщина металла, мм	Сварной шов	Род и полярность тока
1	10	C47	переменный
2	10	C4	постоянный, прямая полярность
3	20	C7	постоянный, обратная полярность
4	20	C29	переменный
5	10	С9	постоянный, прямая полярность

Вариант	Толщина металла, мм	Сварной шов	Род и полярность тока
6	20	C12	постоянный, обратная полярность
7	30	C15	переменный
8	15	C18	постоянный, прямая полярность
9	20	C21	постоянный, обратная полярность
10	20	C33	переменный
11	40	C23	постоянный, прямая полярность
12	50	C36	постоянный, обратная полярность
13	35	C25	переменный
14	40	C39	постоянный, прямая полярность
15	100	C26	постоянный, обратная полярность
16	50	C40	переменный
17	50	C41	постоянный, прямая полярность
18	30	C44	постоянный, обратная полярность
19	5	C47	переменный
20	5	C4	постоянный, прямая полярность

- 2. Начертить конструктивные элементы подготовленных кромок свариваемых деталей и сварного шва, расставить на чертеже геометрические параметры сварного шва (зазор, ширина шва, высота усиления шва) согласно ГОСТ 8713–79.
- 3. Начертить сварной шов при помощи программного обеспечения «Компас 3D» и определить общую площадь поперечного сечения наплавленного металла ($F_{\text{но}}$).
- 4. Рассчитать глубину проплавления h_p , которая зависит от толщины свариваемого металла (S), величины зазора (e) и формы разделки кромок, согласно данным, представленным в табл. 9.

5. Рассчитать диаметр электродной проволоки (мм) (в зависимости от расчетной глубины проплавления) по формуле [1, 2]

$$d_{\text{eff}} = (0, 29...1, 1) \cdot h_p, \tag{22}$$

где h_p – расчетная глубина проплавления, мм.

6. Рассчитать площадь наплавленного металла (мм²) по формуле [3]

$$F_{\text{Ho}} = b \cdot h_p + \frac{3}{4} \cdot e \cdot g + \frac{3}{4} \cdot e_1 \cdot g_1, \tag{23}$$

где b — зазор, мм; h_p — расчетная глубина проплавления, мм; e — ширина сварного шва, мм; g — высота усиления сварного шва, мм; e_1 — ширина сварного шва, мм; g_1 — высота усиления сварного шва, мм.

7. Рассчитать силу сварочного тока (А) (зависит от глубины проплавления и коэффициента пропорциональности) по формуле [3]

$$I_{\rm cB} = \frac{h_p}{K_n} \cdot 100, \tag{24}$$

где h_p — расчетная глубина проплавления, мм; K_n — коэффициент пропорциональности (зависит от диаметра электродной проволоки). Коэффициент пропорциональности определяем по табл. 15.

Таблица 15 Коэффициент пропорциональности [3]

Диаметр		Постоянный ток		
электродной проволоки, мм	Переменный	Прямая полярность	Обратная полярность	
2	1,25	1,15	1,4	
3	1,10	0,95	1,25	
4	1	0,90	1,10	
5	0,95	0,85	1,05	
6	0,90			

8. Рассчитать напряжение на дуге (В) (зависит от сварочного тока, диаметра и вылета электродной проволоки) по формуле [3]

$$U_{\rm A} = 19 + 0.037 \cdot I_{\rm cb}, \tag{25}$$

где I_{cB} — сила сварочного тока, A, или по формуле [1, 2]

$$U_{\rm II} = 22 + 0.02 \cdot I_{\rm cr}, \tag{26}$$

где I_{cB} — сила сварочного тока, A, или по формуле [1, 2]

$$U_{\rm A} = 22 + 0.05 \cdot \frac{I_{\rm cB}}{\sqrt{d_{\rm eff}}},$$
 (27)

где $d_{\rm эп}$ – диаметр электродной проволоки; $I_{\rm cs}$ – сила сварочного тока, А.

9. Рассчитать скорость сварки (м/ч) по формуле [1–5]

$$V_{\rm cB} = \frac{\alpha_H \cdot I_{\rm cB}}{\rho \cdot F_{\rm H} \cdot 100},\tag{28}$$

где α_H – коэффициент наплавки, г/Ач (13...16 г/Ач); I_{cs} – сила сварочного тока, А; ρ – плотность наплавленного металла, г/см³; F_{Hi} – площадь поперечного сечения сварного шва за i-й проход, см².

10. Рассчитать скорость подачи электродной проволоки (м/ч) на переменном токе по формуле [1, 2]

$$V_{\text{эп}} = 0.32 \cdot \frac{I_{\text{CB}}}{d_{\text{эп}}^2} + 2.22 \cdot 10^{-3} \cdot \frac{I_{\text{CB}}^2}{d_{\text{эп}}^3},\tag{29}$$

где $d_{\text{эп}}$ – диаметр электродной проволоки, мм; $I_{\text{св}}$ – сила сварочного тока, А.

Рассчитать скорость подачи электродной проволоки (м/ч) на постоянном токе по формуле [1, 2]

$$V_{\text{\tiny 2HI}} = 0.53 \cdot \frac{I_{\text{\tiny CB}}}{d_{\text{\tiny 2HI}}^2} + 6.94 \cdot 10^{-3} \cdot \frac{I_{\text{\tiny CB}}^2}{d_{\text{\tiny 2HI}}^3}, \tag{30}$$

где $d_{\text{эп}}$ — диаметр электродной проволоки, мм; $I_{\text{св}}$ — сила сварочного тока, А.

11. Рассчитать вылет электродной проволоки (мм) по формуле [1, 2]

$$l_{\rm B} = 10 \cdot d_{\rm em} \pm 2 \cdot d_{\rm em}, \tag{31}$$

где $d_{\rm эп}$ – диаметр электродной проволоки, мм.

12. Рассчитать количество проходов по формуле [1-4]

$$n_n = \frac{F_{\text{HO}} - F_{\text{HK}}}{F_{\text{HZ}}} + 1, \qquad (32)$$

где $F_{\text{но}}$ — общая площадь поперечного сечения наплавленного металла, мм²; $F_{\text{нк}}$ — площадь поперечного сечения наплавленного металла (корневой), мм² ($F_{\text{нк}}$ = 5...7) $d_{\text{эп}}$; $F_{\text{нз}}$ — площадь поперечного сечения наплавленного металла (заполняющий), мм² ($F_{\text{нз}}$ = 8...10) $d_{\text{эп}}$.

13. Расчетные данные занести в табл. 16.

Таблица 16 Расчетные параметры режимов сварки

Режимы сварки	
Диаметр электродной проволоки – $d_{\text{эп}}$ (мм)	
Количество проходов $-n_n$	
Сила сварочного тока – $I_{\text{св}}\left(\mathbf{A}\right)$	
Напряжение на дуге – U_{π} (В)	
Скорость сварки $-V_{cb}$ (м/ч)	
Скорость подачи электродной проволоки – $V_{\text{эп}}$ (м/ч)	
Вылет электродной проволоки – $l_{\rm B}$ (мм)	

ПРАКТИЧЕСКАЯ РАБОТА 4 Расчет параметров режима электрошлаковой сварки

Цель работы

Получение навыков расчета параметров режима электрошлаковой сварки.

Параметры режима электрошлаковой сварки

Параметры режима электрошлаковой сварки зависят от толщины свариваемого материала и типа сварного соединения. Основным руководящим документом, в котором представлены типы, конструктивные элементы и размеры сварных соединений, необходимые при расчете параметров режима сварки, является ГОСТ 15164—78 «Электрошлаковая сварка. Соединения сварные».

Основными параметрами режима электрошлаковой сварки являются [1, 2]:

- диаметр электродной проволоки $d_{\text{эп}}$ (мм);
- количество электродных проволок n_3 ;
- расстояние между электродами $\Delta_{\rm эп}$ (мм);
- сила сварочного тока $-I_{cB}$ (A);
- напряжение сварки $U_{\rm c}$ (В);
- скорость сварки V_{cB} (м/ч);
- «сухой» вылет электродной проволоки $l_{\rm B}$ (мм);
- скорость подачи электродной проволоки $V_{\text{эп}}$ (м/ч);
- глубина шлаковой ванны $-h_{\text{шв}}$ (мм);
- время задержки ползуна $-t_3$ (c).

Методика выполнения работы

1. Согласно табл. 17 по варианту выбираем входные данные для расчета параметров режима сварки.

 Таблица 17

 Входные данные для расчета параметров режима сварки

	Толщина	Сварной	Недоход	Недоход
Вариант	металла,	ШОВ	между электродами,	электрода до ползуна,
	MM(S)	шов	мм ($\Delta_{ ext{h} ext{ iny }}$)	мм $(\Delta_{\scriptscriptstyle m HII})$
1	100	C1	17	4
2	80	C2	17,1	4,1
3	50	C3	17,2	4,2
4	100	У1	17,3	4,3

	Толщина	Сромуск	Недоход	Недоход
Вариант	металла,	Сварной	между электродами,	электрода до ползуна,
	MM(S)	ШОВ	мм $(\Delta_{{ ext{H}} ext{3}})$	мм $(\Delta_{ ext{hii}})$
5	50	У2	17,4	4,4
6	70	У3	17,5	4,5
7	90	У4	17,6	4,6
8	50	T1	17,7	4,7
9	100	T2	17,8	4,8
10	50	T3	17,9	4,9
11	400	C1	18	5
12	300	C2	17	4
13	200	C3	17,1	4,1
14	400	У1	17,2	4,2
15	300	У2	17,3	4,3
16	250	У3	17,4	4,4
17	150	У4	17,5	4,5
18	150	T1	17,6	4,6
19	400	T2	17,7	4,7
20	80	T3	17,8	4,8

- 2. Начертить конструктивные элементы подготовленных кромок свариваемых деталей и сварного шва, расставить на чертеже геометрические параметры сварного шва (высота усиления шва, расчетный зазор, ширина разделки кромок, ширина и высота отстающей подкладки, расстояние от торца полки тавра до верхней поверхности ребра) согласно ГОСТ 15164—78.
- 3. Начертить сварной шов при помощи программного обеспечения «Компас 3D» и определить общую площадь поперечного сечения наплавленного металла ($F_{\text{но}}$).
- 4. Рассчитать диаметр электродной проволоки (мм) (зависит от толщины свариваемого металла) по формуле [1, 2]

$$d_{\rm eff} = \sqrt[4]{S} \,, \tag{33}$$

где S — толщина свариваемого металла, мм.

5. Рассчитать количество электродных проволок (зависит от толщины металла) по формуле [1, 2]

$$n_{\rm en} = \frac{S}{50}, \tag{34}$$

где S — толщина свариваемого металла, мм.

6. Рассчитать расстояние между электродами (мм) при значении $n_9 > 1$ по формуле [1, 2]

$$\Delta_{3} = \frac{S + \Delta_{H3} - (n_{3\Pi} - 1) \cdot \Delta_{H\Pi}}{n_{3\Pi}}, \tag{35}$$

где S — толщина свариваемого металла, мм; $\Delta_{\rm H9}$ — недоход между электродами, мм; $\Delta_{\rm H\Pi}$ — недоход электрода до ползуна, мм; $n_{\rm 9\Pi}$ — количество электродных проволок.

7. Рассчитать скорость сварки (м/ч) (зависит от толщины металла). Для сталей, обладающих хорошей свариваемостью, скорость сварки равна [1, 2]:

$$V_{\rm cb} = \frac{18}{S} + 0.08, \tag{36}$$

где S — толщина свариваемого металла, мм.

При диаметре электродной проволоки 3 мм для стыковых сварных соединений скорость сварки (м/ч) можно рассчитать по формуле [1, 2]

$$V_{\rm cB} = \frac{565 \cdot n_{_{\rm 3H}}}{S \cdot b_{_{p}} + 137.5},\tag{37}$$

где S — толщина свариваемого металла, мм; $n_{\text{эп}}$ — количество электродных проволок; b_p — расчетный зазор, мм.

8. Рассчитать скорость подачи электродной проволоки (м/ч) по формуле [1, 2]

$$V_{\text{\tiny 2HI}} = \frac{4 \cdot F_{\text{\tiny HO}} \cdot V_{\text{\tiny CB}}}{\pi \cdot d_{\text{\tiny 2HI}}^2 + n_{\text{\tiny 2HI}}},\tag{38}$$

где $F_{\text{но}}$ – общая площадь поперечного сечения наплавленного металла, мм²; $V_{\text{св}}$ – скорость сварки (м/ч); $d_{\text{эп}}$ – диаметр электродной проволоки (мм); $n_{\text{эп}}$ – количество электродных проволок.

9. Рассчитать силу сварочного тока (А) на один электрод по эмпирической зависимости [1, 2]

$$I_{\rm cr} = (7, 2...8, 2) \cdot V_{\rm pr},$$
 (39)

где $V_{\text{эп}}$ — скорость подачи электродной проволоки (м/ч).

Общая сила сварочного тока ($I_{\text{сво}}$) определяется произведением количества электродных проволок и сила сварочного тока на один электрод.

10. Рассчитать напряжение сварки (В) по формуле [1, 2]

$$U_c = \sqrt{S} + 35, \qquad (40)$$

где S — толщина свариваемого металла, мм.

11. Рассчитать «сухой» вылет электрода (мм) по формуле [1, 2]

$$l_{\rm B} = 25 \cdot d_{\rm MI} \pm 5 \cdot d_{\rm MI}, \tag{41}$$

где $d_{\text{эп}}$ – диаметр электродной проволоки, мм.

12. Рассчитать глубину шлаковой ванны (мм) [6] (от глубины шлаковой ванны зависит ширина проплавления и стабильность процесса) по формуле

$$h_{\text{\tiny LIIB}} = I_{\text{\tiny CBO}} \cdot (0,00004 \cdot I_{\text{\tiny CB}} - 0,003) + 30,$$
 (42)

где $I_{\rm cB}$ — сила сварочного тока на один электрод, А; $I_{\rm cBO}$ — сила на общее количество электродов, А.

13. Рассчитать время выдержки ползуна (с) по формуле [6]

$$t_3 = 0.04 \cdot \frac{S}{d_{\text{an}}} + 0.8, \tag{43}$$

где S — толщина свариваемого металла, мм; $d_{\mbox{\tiny ЭП}}$ — диаметр электродной проволоки, мм.

14. Расчетные данные занести в табл. 18.

Таблица 18 Расчетные параметры режимов сварки

Режимы сварки	
Диаметр электродной проволоки – $d_{\text{эп}}$ (мм)	
Количество электродных проволок – n_3	
Сила сварочного тока – $I_{\text{св}}$ (A)	
Напряжение сварки – U_{π} (В)	
Скорость сварки $-V_{cs}$ (м/ч)	
Скорость подачи электродной проволоки – $V_{\text{эп}}$ (м/ч)	
«Сухой» вылет электродной проволоки – $l_{\rm B}$ (мм)	
Расстояние между электродами – $\Delta_{\text{эп}}$ (мм)	
Глубина шлаковой ванны – $h_{ ext{\tiny IMB}}$ (мм)	
Время задержки ползуна – t_3 (c)	

ПРАКТИЧЕСКАЯ РАБОТА 5 Расчет параметры режима газовой сварки

Цель работы

Получение навыков расчета параметров режима газовой сварки.

Параметры режима газовой сварки

Основными параметрами режима газовой сварки являются [7–9]:

- мощность пламени q (Дж/с);
- угол наклона горелки α_{Γ} (град.);
- диаметр присадочного прутка $-d_{\text{пп}}$ (мм).

Методика выполнения работы

1. Согласно табл. 19 по варианту выбираем входные данные для расчета параметров режима сварки.

Таблица 19 Входные данные для расчета параметров режима сварки

Вариант	Толщина металла, мм	Способ сварки	Свариваемый материал
1	1	левый	Низкоуглеродистая сталь
2	2	правый	Низколегированная сталь
3	3	левый	Аустенитная сталь
4	4	правый	Медь
5	5	левый	Алюминий
6	6	правый	Низкоуглеродистая сталь
7	7	левый	Низколегированная сталь
8	8	правый	Аустенитная сталь
9	9	левый	Медь
10	10	правый	Алюминий
11	11	левый	Низкоуглеродистая сталь
12	12	правый	Низколегированная сталь
13	13	левый	Аустенитная сталь
14	14	правый	Медь
15	15	левый	Алюминий
16	16	правый	Низкоуглеродистая сталь
17	17	левый	Низколегированная сталь
18	18	правый	Аустенитная сталь

Вариант	Толщина металла, мм	Способ сварки	Свариваемый материал
19	19	левый	Медь
20	20	правый	Алюминий

2. Рассчитать диаметр присадочного прутка (мм) при левом способе по формуле [7–9]

$$d_{\text{nn}} = \frac{S}{2} + 1, \tag{44}$$

где S — толщина свариваемого металла, мм.

При правом способе – по формуле [7–9]

$$d_{\rm nn} = \frac{S}{2},\tag{45}$$

где S — толщина свариваемого металла, мм.

3. Рассчитать мощность пламени (Дж/с) (зависит от расхода газа). Расход газа (л/ч) определяется по формуле [8]

$$Q_{r} = K \cdot S, \tag{46}$$

где S — толщина свариваемого металла, мм; K — коэффициент, зависящий от химического состава свариваемого материала (удельный расход газа), л/(ч·мм). Коэффициент K представлен в табл. 20.

Таблица 20 Значения коэффициента К [8]

	К, л/(ч·мм)		
Материал	Способ сварки		
	левый	правый	
Низкоуглеродистая сталь	100120	120150	
Низколегированная сталь	90120	120150	
Аустенитная сталь	7075	7075	
Медь	150200	150200	
Алюминий	75100	100150	

4. Определить угол наклона горелки (град.). Угол наклона горелки зависит от толщины свариваемого металла и определяется по табл. 21.

Таблица 21 Угол наклона горелки [9]

Толщина металла, мм	13	35	57	710	1012	1215	>15
Угол наклона, град.	20	30	40	50	60	70	80

5. Расчетные данные занести в табл. 22.

Таблица 22 Расчетные параметры режимов сварки

Режимы сварки	
Диаметр присадочного прутка – $d_{\text{пп}}$ (мм)	
$ ho$ Расход газа $-Q_{\Gamma}$ (л/ч)	
Угол наклона горелки – α_{Γ} (град.)	

ПРАКТИЧЕСКАЯ РАБОТА 6 Расчет параметров режима аргонодуговой сварки

Цель работы

Получение навыков расчета параметров режима аргонодуговой сварки.

Параметры режима аргонодуговой сварки

Параметры режима аргонодуговой сварки зависят от толщины свариваемого материала и типа сварного соединения. Основными руководящими документами, в которых представлены типы, конструктивные элементы и размеры сварных соединений, необходимые при расчете параметров режима для аргонодуговой сварки, являются: для сварки стали — ГОСТ 14771—76 «Дуговая сварка в защитном. Соединения сварные»; алюминия и алюминиевых сплавов — ГОСТ 14806—80 «Дуговая сварка алюминия и алюминиевых сплавов в инертных газах. Соединения сварные»; титана и титановых сплавов — ОСТ 26-1-86 «Швы сварных соединений из титана и титановых сплавов».

Основными параметрами режима аргонодуговой сварки являются [6]:

- диаметр неплавящегося электрода d_9 (мм);
- сила сварочного тока $-I_{cs}$ (A).

Методика выполнения работы

1. Согласно табл. 23 по варианту выбираем входные данные для расчета параметров режима сварки.

 Таблица 23

 Входные данные для расчета параметров режима сварки

Вариант	Толщина металла, мм	Сварной шов	Свариваемый материал
1	5	T1	Коррозионно-стойкая сталь
2	2	C2	Алюминий
3	4	C2	Титан
4	7	У4	Коррозионно-стойкая сталь
5	5	C7	Алюминий
6	10	C4	Титан
7	8	C17	Коррозионно-стойкая сталь
8	10	C8	Алюминий
9	9	C5	Титан
10	8	C15	Коррозионно-стойкая сталь
11	7	C17	Алюминий

Вариант	Толщина металла, мм	Сварной шов	Свариваемый материал
12	10	C9	Титан
13	10	C8	Коррозионно-стойкая сталь
14	3	У4	Алюминий
15	8	C11	Титан
16	6	C7	Коррозионно-стойкая сталь
17	10	У6	Алюминий
18	2	У4	Титан
19	5	C2	Коррозионно-стойкая сталь
20	3	<u>T</u> 1	Алюминий

- 2. Начертить конструктивные элементы подготовленных кромок свариваемых деталей и сварного шва, расставить на чертеже геометрические параметры сварного шва (зазор, ширина шва, высота усиления шва, катет шва) согласно ГОСТ 14771–76, ГОСТ 14806–80, ОСТ 26-1-86.
- 3. Начертить сварной шов при помощи программного обеспечения «Компас 3D» и определить общую площадь поперечного сечения наплавленного металла ($F_{\text{но}}$).
 - 4. Выбрать диаметр присадочного материала (мм) согласно рис. 1 [5].

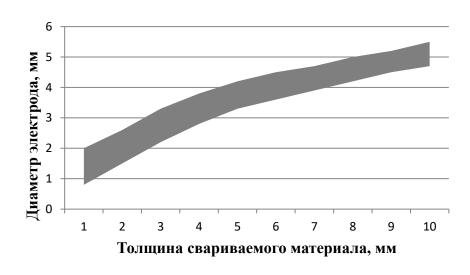


Рис. 1. Диаметр вольфрамового электрода в зависимости от толщины свариваемого материала

5. Рассчитать силу сварочного тока (А) по формуле [6]

$$I_{\rm cB} = 65 \cdot \sqrt{d_{\rm s}^3},\tag{47}$$

где d_9 – диаметр электрода, мм.

6. Расчетные данные занести в табл. 24.

Таблица 24 Расчетные параметры режимов сварки

Режимы сварки	
Диаметр электрода – $d_{\mathfrak{I}}$ (мм)	
Сила сварочного тока $-I_{cb}$ (A)	

ПРАКТИЧЕСКАЯ РАБОТА 7 Расчет параметров режима вибродуговой наплавки

Цель работы

Расчет параметров режима вибродуговой наплавки.

Параметры режима вибродуговой наплавки

Вибродуговая наплавка — это вид дуговой наплавки, в процессе которой происходит вибрация электрода. Одним из преимуществ данного способа наплавки является возможность наплавлять детали малого размера и диаметра. Наплавку возможно осуществлять в различных средах: на воздухе, в среде защитного газа или с подачей жидкости в зону дуги [10].

Основными параметрами режима вибродуговой наплавки являются [11]:

- сила сварочного тока $-I_{cB}$ (A);
- скорость подачи электродной проволоки $V_{\text{эп}}$ (м/ч);
- скорость наплавки $-V_{\rm H}$ (м/ч);
- диаметр электродной проволоки $d_{\text{эп}}$ (мм);
- напряжение на дуге U_{π} (В);
- шаг наплавки s (мм/об);
- амплитуда колебаний A (мм).

Методика выполнения работы

1. Согласно табл. 25 по варианту выбираем входные данные для расчета параметров режима наплавки.

 Таблица 25

 Входные данные для расчета параметров режима наплавки

Вариант	Толщина наплавляемого слоя, мм	Напряжение на дуге, В	Диметр электродной проволоки, мм	Коэффициент перехода электродного металла
1	3	14	1,2	0,8
2	4	15	1,6	0,85
3	5	16	2	0,9
4	6	17	2	0,8
5	7	18	3	0,85
6	3	19	1,2	0,9
7	4	20	1,6	0,8

Вариант	Толщина наплавляемого слоя, мм	Напряжение на дуге, В	Диметр электродной проволоки, мм	Коэффициент перехода электродного металла
8	5	14	2	0,85
9	6	15	2	0,9
10	7	16	3	0,8
11	3	17	1,2	0,85
12	4	18	1,6	0,9
13	5	19	2	0,8
14	6	20	2	0,85
15	7	14	3	0,9
16	3	15	1,2	0,8
17	4	16	1,6	0,85
18	5	17	2	0,9
19	6	18	2	0,8
20	7	19	3	0,85

2. Рассчитать силу сварочного тока (А) по формуле [11]

$$I_{\rm cb} = 67.5 \cdot \frac{\pi \cdot d_{\rm off}^2}{4},\tag{48}$$

где $d_{\text{эп}}$ – диаметр электродной проволоки, мм.

3. Рассчитать скорость подачи электродной проволоки (м/ч) по формуле [11]

$$V_{\rm eff} = \frac{0.1 \cdot I_{\rm cB} \cdot U_{\rm A}}{d_{\rm eff}^2},\tag{49}$$

где $I_{cв}$ — сила сварочного тока, А; U_{π} — напряжение на дуге, В; $d_{{}^{3}\Pi}$ — диаметр электродной проволоки, мм.

4. Рассчитать скорость наплавки (м/ч) по формуле [11]

$$V_{\rm H} = \frac{0.8 \cdot d_{\rm em}^2 \cdot V_{\rm em} \cdot \eta}{h \cdot S \cdot \alpha},\tag{50}$$

где $d_{\text{эп}}$ — диаметр электродной проволоки, мм; $V_{\text{эп}}$ — скорость подачи электродной проволоки (м/ч); η — коэффициент перехода электродного металла в наплавленный металл; h — толщина наплавленного слоя (мм); s — шаг наплавки (мм/об); α — коэффициент, учитывающий отклонения площади сечения наплавленного металла от площади правильного четырехугольника (α = 0,8).

5. Рассчитать шаг наплавки (мм/об) (м/ч) по формуле [11]

$$s = (1, 6...2, 2) \cdot d_{\text{em}}, \tag{51}$$

где $d_{\text{эп}}$ – диаметр электродной проволоки, мм.

6. Рассчитать амплитуду колебаний (мм) по формуле [11]

$$A = (0,8...1) \cdot d_{\text{em}}, \tag{52}$$

где $d_{\text{эп}}$ – диаметр электродной проволоки, мм.

7. Расчетные данные занести в табл. 26.

Таблица 26 Расчетные параметры режимов наплавки

Режимы сварки	
Сила сварочного тока – $I_{\text{св}}$ (A)	
Скорость подачи электродной проволоки – $V_{\text{эп}}$ (м/ч)	
Скорость наплавки $-V_{\rm H}$ (м/ч)	
Диаметр электродной проволоки – $d_{\text{эп}}$ (мм)	
Напряжение на дуге – U_{π} (В)	
Шаг наплавки – s (мм/об)	
Амплитуда колебаний – A (мм)	

ПРАКТИЧЕСКАЯ РАБОТА 8 Расчет параметров режима кислородной разделительной резки металлов

Цель работы

Расчет параметров режима кислородной разделительной резки металлов.

Параметры режима кислородной разделительной резки металлов

Основным параметром режима кислородной разделительной резки является [7, 13] скорость резки – $V_{\rm pes}$ (м/ч).

Вспомогательные параметры режима кислородной разделительной резки [7, 13]:

- время резки $-t_{pes}$ (ч);
- штучное время $t_{\text{шт}}$ (ч).

Методика выполнения работы

1. Согласно табл. 27 по варианту выбираем входные данные для расчета параметров режима резки.

Таблица 27 Входные данные для расчета параметров режима резки

Вариант	Толщина разрезаемого металла, мм	Длина реза, мм
1	5	100
2	10	150
3	15	200
4	20	250
5	25	300
6	30	350
7	35	400
8	40	450
9	50	500
10	7	550
11	12	600
12	17	650
13	23	700
14	27	750
15	32	800
16	38	850

Вариант	Толщина разрезаемого металла, мм	Длина реза, мм
17	43	900
18	55	950
19	8	1000
20	25	1050

2. Рассчитать скорость резки (м/ч) по формуле [7]

$$V_{\rm pes} = \frac{2400}{50 + S},\tag{53}$$

где S — толщина разрезаемого металла, мм.

3. Рассчитать время резки (ч) по формуле [7]

$$t_{\text{pes}} = \frac{L}{V_{\text{pes}}},\tag{54}$$

где L – длина реза, мм; $V_{\text{рез}}$ – скорость резки, м/ч.

4. Рассчитать штучное время (ч) по формуле [7]

$$t_{\text{IIIT}} = 1,5 \cdot t_{\text{pe3}},$$
 (55)

где $t_{\text{рез}}$ – время резки, ч.

5. Расчетные данные занести в табл. 28.

Таблица 28 Расчетные параметры режимов резки

Режимы сварки	
Скорость резки $-V_{\text{рез}}$ (м/ч)	
Время резки — $t_{\text{рез}}$ (ч)	
Штучное время $-t_{\text{шт}}$ (ч)	

ПРАКТИЧЕСКАЯ РАБОТА 9 Выбор сварочных материалов

Цель работы

Получение навыков выбора сварочных материалов в зависимости от способа сварки и свариваемого материала.

Краткая характеристика объекта исследования

Сварочный материал при различных дуговых способах сварки должен соответствовать металлу, который сваривают. Диаметр, химический состав сварочных материалов выбирается в зависимости от толщины и химического состава металла, а механические свойства наплавленного металла — от механических свойств металла, который подвергается сварке. Химический состав сварочных материалов и механические свойства наплавленного металла должны быть максимально схожи с химическим составом и механическими свойствами металла, который сваривают.

Методика выполнения работы

1. Согласно табл. 29 по варианту выбираем входные данные для расчета режимов наплавки.

Таблица 29 Входные данные для расчета режимов сварки

Вариант	Способ	Свариваемый	Толщина
	сварки	материал	свариваемого материала, мм
1	РДС*	Сталь 10	10
2	$A\Phi^{**}$	Сталь 30	30
3	ИН***	Сталь 12Х18Н10Т	10
4	У∏****	Сталь 30ХГСА	20
5	РДС	Сталь 10ХСНД	20
6	ΑФ	Сталь 25ГС	40
7	ИН	Медь М1	5
8	УΠ	Сталь 09Г2С	20
9	РДС	Сталь 18Г2АФД	15
10	ΑФ	Сталь 15ХСНД	30
11	ИН	Алюминий АД1	10
12	УΠ	Сталь 40Х	20
13	РДС	Ст3	10
14	ΑФ	Сталь 23Х2Г2Т	30
15	ИН	Алюминий АМц	10

Вариант	Способ	Свариваемый	Толщина
Бариант	сварки	материал	свариваемого материала, мм
16	УΠ	Сталь 22Х2Г2АЮ	20
17	РДС	Сталь 10Г2БД	25
18	ΑФ	Сталь 12Г2СМФ	35
19	ИН	Алюминий АМг	5
20	УΠ	Сталь 16Г2СФ	15

Примечания:

- 2. Пользуясь марочником стали, выписать химический состав и механические свойства свариваемого материала (данные занести в таблицы).
- 3. Согласно химическому составу и механическим свойствам свариваемого материалов выбрать сварочный материал [14, 15] (обозначение электродов для сварки и наплавки представлено в прил. 1).
- 4. Согласно толщине свариваемого материала выбрать диаметр сварочного материала.
- 5. Записать в виде таблицы химический состав сварочного материала и механические свойства наплавленного металла.

^{*}Ручная дуговая сварка покрытыми электродами.

^{**}Автоматическая сварка под слоем флюса.

^{***} Механизированная сварка в среде инертных газов и их смесей плавящимся электродом.

^{*****}Механизированная сварка в среде углекислого газа и его смесей плавящимся электродом.

ПРАКТИЧЕСКАЯ РАБОТА 10 Разработка технологического процесса сварки сталей

Цель работы

Получение навыков разработки технологического процесса сварки сталей.

Методика выполнения работы

1. Согласно табл. 30 по варианту выбираем входные данные для разработки технологического процесса сварки сталей.

Таблица 30 Входные данные для разработки технологического процесса сварки сталей

	Свариваемая	Толщина свариваемого	Длина
Вариант	сталь	материала, мм	сварного шва, мм
1	10	10	300
2	30	15	500
3	10ХСНД	20	700
4	30XFCA	5	900
5	09Г2С	25	1100
6	15ХСНД	10	1500
7	Ст3	15	2000
8	25	20	200
9	40X	5	100
10	15	25	2500
11	20	10	300
12	45	15	500
13	Ст5	20	700
14	30ХГСФЛ	5	900
15	12Γ2A	25	1100
16	15Г2АФД	10	1500
17	18Г2С	15	2000
18	35Л	20	200
19	10X2M	5	100
20	22ГЮ	25	2500

Примечания:

^{*}Ручная дуговая сварка покрытыми электродами.

^{**}Автоматическая сварка подслоем флюса.

^{***}Механизированная сварка в среде углекислого газа и его смесей плавящимся электродом.

- 2. В зависимости от длины сварного шва выбрать способ сварки и уровень автоматизации процесса сварки.
- 3. В зависимости от толщины металла и способа сварки выбрать согласно ГОСТ 5264–80, ГОСТ 14771–76, ГОСТ 8713–79 тип, конструктивные элементы и размеры сварных соединений.
- 4. В зависимости от толщины металла и способа сварки рассчитать режимы сварки согласно методикам, представленным в практических работах № 1–3.
- 5. Выбрать сварочный материал согласно методике, представленной в практической работе № 9.
- 6. Пользуясь марочником стали, определить химический состав и механические свойства свариваемой стали.
- 7. Рассчитать эквивалентное содержание углерода (%) по формуле [12]

$$C_9 = C + \frac{Mn}{6} + \frac{Si}{24} + \frac{Cr}{5} + \frac{Ni}{40} + \frac{Cu}{13} + \frac{V}{14} + \frac{P}{2},$$
 (56)

где C – содержание углерода в стали, %; Mn – содержание марганца в стали, %; Si – содержание кремния в стали, %; Cr – содержание хрома в стали, %; Ni – содержание никеля в стали, %; Cu – содержание меди в стали, %; V – содержание ванадия в стали, %; P – содержание фосфора в стали, %.

8. Если эквивалентное содержание углерода больше 0,35 %, рассчитать режимы предварительного подогрева по формулам [16]:

$$C_{eq} = C_{sk} \cdot (1 + 0.05 \cdot S),$$
 (57)

где C_{9K} — эквивалентное содержание углерода в стали, %; S — толщина свариваемого материала, мм;

$$T = 350 \cdot \sqrt{C_{eq} - 0.25} \,\,\,\,(58)$$

где $C_{\it eq}$ – коэффициент, зависящий от толщины металла.

- 9. Выбрать сварочное оборудование в зависимости от способа сварки и режимов сварки.
- 10. Выбрать оборудование для предварительного подогрева и контроля температуры подогрева (если сварка осуществляется с предварительным подогревом).
 - 11. Оформить технологическую карту (прил. 2).

Контрольные вопросы для практических работ

- 1. Что относится к параметрам режима дуговых способов сварки плавящимся электродом?
- 2. От чего зависит выбор диаметра электрода при дуговых способах сварки плавящимся электродом?
- 3. В каких ГОСТах представлены основные типы, конструктивные элементы и размеры сварных соединений для дуговых способов сварки плавящимся электродом?
- 4. На какой геометрический параметр сварного шва оказывает влияние сила сварочного тока?
- 5. Как изменяются геометрические параметры сварного шва при изменении скорости сварки?
 - 6. Что относится к параметрам режима электрошлаковой сварки?
 - 7. От чего зависит выбор сварочных материалов?
 - 8. Как рассчитать эквивалентное содержание углерода?
- 9. От чего зависит температура предварительного подогрева перед сваркой?
 - 10. Что относится к параметрам режима газовой сварки?
 - 11. Что регламентирует ГОСТ 14806–80?
 - 12. В чем заключается особенность вибродуговой наплавки?
- 13. Что относится к основным и вспомогательным параметрам режима кислородной разделительной резки?
 - 14. От чего зависит скорость резки?
- 15. От чего зависит количество проходов при дуговых способах сварки?

ЧАСТЬ 2 ЛАБОРАТОРНЫЕ РАБОТЫ

ЛАБОРАТОРНАЯ РАБОТА 1 Технология ручной дуговой сварки стали

Цель работы

Получение навыков сварки стальных образцов ручной дуговой сваркой покрытыми электродами на различных источниках питания.

Оборудование, приборы и материалы

- 1. Источник питания ВД 306.
- 2. Источник питания FubagIRMIG 200 SYN.
- 3. Образцы из низкоуглеродистой стали.
- 4. Покрытые электроды диаметром 3 или 4 мм.
- 5. Металлическая щетка.
- 6. Сварочная маска, сварочная роба, сварочные рукавицы.

- 1. Ознакомиться с техническими характеристиками источников питания для сварки ВД 306 и Fubag IRMIG 200 SYN.
 - 2. Настроить ВД 306 для сварки на прямой полярности.
 - 3. Включить ВД 306.
- 4. Настроить на источнике питания при помощи рукоятки, расположенной на верхней части корпуса, I_{cb} в зависимости от d_3 (d_3 = 3 мм, I_{cb} = 90...120 A, d_3 = 4 мм, I_{cb} = 120...160 A).
 - 5. Зачистить поверхность свариваемых деталей.
- 6. Провести сварку образцов на прямой полярности (схемы перемещения покрытого электрода при сварке стыковых швов представлены в прил. 3).
 - 7. В процессе сварки записать параметры режима сварки.
 - 8. Выключить ВД 306.
 - 9. Настроить ВД 306 для сварки на обратной полярности.
 - 10. Повторить пункты 3–8.
 - 11. Настроить Fubag IRMIG 200 SYN для сварки на прямой полярности.
 - 12. Включить Fubag IRMIG 200 SYN.
- 13. Настроить на источнике питания при помощи кнопок, расположенных на передней панели аппарата, I_{cB} в зависимости от d_3 (d_3 = 3 мм, I_{cB} = 90...120 A, d_3 = 4 мм, I_{cB} = 120...160 A).

- 14. Повторить п. 5–7.
- 15. Выключить Fubag IRMIG 200 SYN.
- 16. Настроить Fubag IRMIG 200 SYN для сварки на прямой полярности.
 - 17. Повторить п. 12–13.
 - 18. Повторить п. 5–7.
 - 19. Повторить п. 15.
- 20. Произвести измерение ширины шва и высоты усиления шва, полученных сварных соединений, результаты занести в табл. 31.

Таблица 31 Параметры режимов сварки и геометрические размеры сварного соединения

Диаметр	Полярность	Ширина шва,	Высота
электрода, мм	Полирность	MM	усиления шва, мм

- 21. Сделать вывод о том, как источник питания для сварки, полярность и диаметр электрода влияет на геометрические параметры сварного шва.
 - 22. Оформить отчет о проделанной работе.

Технология дуговой (механизированной и автоматической) сварки в среде защитных газов

Цель работы

Получение навыков сварки образцов из низкоуглеродистых сталей сваркой плавящимся электродом в среде углекислого газа с различной автоматизацией процесса.

Оборудование, приборы и материалы

- 1. Источник питания LorchS8 SpeedPulse.
- 2. Установка для автоматической сварки Mecome, модификация WP 1500.
 - 3. Блок автоматического регулирования сварки Месоте.
- 4. Сварочная горелка для механизированной сварки плавящимся электродом в среде защитных газов.
- 5. Сварочная горелка для автоматической сварки плавящимся электродом в среде защитных газов.
 - 6. Сварочная проволока Св-08Г2С диаметром 1,2 мм.
 - 7. Стальные образцы.
 - 8. Металлическая щетка.
 - 9. Линейка, штангенциркуль.
 - 10. Секундомер.
 - 11. Маркер.
 - 12. Сварочная маска, сварочная роба, сварочные рукавицы.

- 1. Ознакомиться с техническими характеристиками источника питания для сварки LorchS8 SpeedPulse и установки Mecome, модификация WP 1500.
- 2. Ознакомиться с работой блока автоматического регулирования сварки Mecome.
- 3. Подключить к LorchS8 SpeedPulse сварочную горелку для механизированной сварки в среде защитного газа. Для этого необходимо соединить разъем сварочной горелки и разъем источника питания, расположенного на передней панели. Подсоединить шланги для охлаждения сварочной горелки.
 - 4. Включить LorchS8 SpeedPulse.
- 5. Настроить на источнике питания при помощи кнопок, расположенных на передней панели аппарата, режимы сварки. На LorchS8 SpeedPulse

режимы сварки настраиваются в зависимости от толщины свариваемого металла. При помощи кнопки «Mode» (рис. 2) выбрать режим «Стандарт», при помощи левого регулятора — выставить параметр толщины металла 5 мм.

Рис. 2. Панель источника питания Lorch S8 SpeedPulse

- 1. Подготовить свариваемые детали одинаковой длины толщиной 5 мм.
 - 2. Зачистить поверхность свариваемых деталей.
 - 3. Провести сварку.
- 4. В процессе сварки замерить время сварки. Значения занести в табл. 8.
 - 5. Повторить п. 5–9 для толщины свариваемых деталей 10 мм.
 - 6. Выключить LorchS8 SpeedPulse.
- 7. Отсоединить от LorchS8 SpeedPulse сварочную горелку для механизированной сварки в среде защитного газа и шланги для охлаждения сварочной горелки.
- 8. Подключить к LorchS8 SpeedPulse сварочную горелку для автоматической сварки в среде защитного газа. Для этого необходимо соединить разъем сварочной горелки и разъем источника питания, расположенного на передней панели. Подсоединить шланги для охлаждения сварочной горелки.
 - 9. Включить блок автоматического регулирования сварки Месоте.
- 10. На панели управления блока нажать кнопку «НОМЕ», для того чтобы установка для автоматической сварки Месоте, модификация WP 1500, определила свое местоположение (рис. 3).

Рис. 3. Панель блока автоматического регулирования сварки Месоте

- 11. На панели управления блока нажать кнопку «PROGRAM» для установления начальной и конечной координаты сварочной горелки и скорости сварки (рис. 3).
- 12. На панели управления блока, для того чтобы при сварке двигалась сварочная горелка в строке «N. Shva», выставить цифру «1» и нажать кнопку «PARAM 2» (рис. 4).

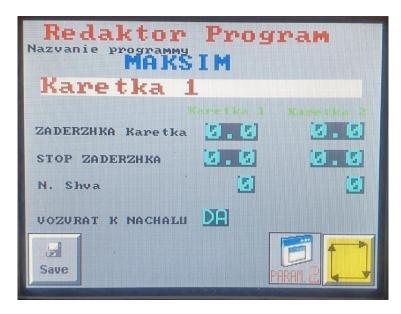


Рис. 4. Панель блока автоматического регулирования сварки Месоте

13. Выставить «NachaloSvarki», «KonetsSvarki», «ScorostSvarki» (рис. 5).

Рис. 5. Панель блока автоматического регулирования сварки Месоте

- 14. На панели управления блока нажать кнопку «PARAM 3» (рис. 5) и желтый квадратик (рис. 4).
 - 15. Нажать кнопку «Пуск».
 - 16. Повторить п. 4–11.
- 17. Произвести измерение ширины шва и высоты усиления шва, полученных сварных соединений. Результаты занести в табл. 32.

Таблица 32 Параметры режимов сварки и геометрические размеры сварного соединения

Сила сварочного	Время	Ширина шва,	Высота усиления
тока, А	сварки, с	MM	шва, мм

- 18. Сделать вывод о том, как сила сварочного тока влияет на геометрические параметры сварного шва и как уровень автоматизации процесса влияет на время сварки.
 - 19. Оформить отчет о проделанной работе.

Зависимость геометрических параметров наплавленного металла от режимов дуговой наплавки

Цель работы

Определение зависимости геометрических параметров (ширина, высота усиления, глубина проплавления) наплавленного металла от режимов наплавки.

Оборудование, приборы и материалы

- 1. Источник питания LorchS8 SpeedPulse.
- 2. Установка для автоматической сварки Mecome модификация WP 1500.
 - 3. Блок автоматического регулирования сварки Месоте.
 - 4. Источник питания ВД 306.
 - 5. Сварочная проволока диаметром 1,2 мм.
 - 6. Покрытые электроды диаметром 3 и 4 мм.
 - 7. Стальные образцы.
 - 8. Металлическая щетка.
 - 9. Линейка, штангенциркуль.
 - 10. Пилка по металлу.
 - 11. Станок шлифовальный.
 - 12. Реактив для травления образцов.
 - 13. Секундомер.
 - 14. Сварочная маска, сварочная роба, сварочные рукавицы.

- 1. Включить ВД 306.
- 2. Настроить на ВД 306 при помощи рукоятки, расположенной на верхней части корпуса $I_{\text{св}} = 100 \text{ A}$.
 - 3. Произвести наплавку валика на стальную пластину.
- 4. В процессе наплавки зафиксировать режимы ($I_{\rm H}$, $U_{\rm д}$, $V_{\rm H}$). Значения занести в табл. 32.
 - 5. Повторить п. 1–4 три раза, увеличивая ток на 50 А.
 - 6. Выключить ВД 306.
- 7. Подключить к LorchS8 SpeedPulse сварочную горелку для механизированной сварки в среде защитного газа. Для этого необходимо соединить разъем сварочной горелки и разъем источника питания, расположенного на передней панели. Подсоединить шланги для охлаждения сварочной горелки.

- 8. Включить LorchS8 SpeedPulse.
- 9. Настроить на источнике питания при помощи кнопок, расположенных на передней панели аппарата, режимы наплавки. Установить режим «Стандарт» и толщину металла 5 мм (рис. 2).
 - 10. Повторить п. 3–4.
- 11. Повторить п. 9–10 три раза, увеличивая толщину металла на 5 мм.
 - 12. Выключить LorchS8 SpeedPulse.
- 13. Подключить к LorchS8 SpeedPulse сварочную горелку для автоматической сварки в среде защитного газа. Для этого необходимо соединить разъем сварочной горелки и разъем источника питания, расположенного на передней панели. Подсоединить шланги для охлаждения сварочной горелки.
 - 14. Включить блок автоматического регулирования сварки Месоте.
- 15. На панели управления блока нажать кнопку «НОМЕ», для того чтобы установка для автоматической сварки Месоте, модификация WP 1500, определила свое местоположение (рис. 3).
- 16. На панели управления блока нажать кнопку «PROGRAM» для установления начальной и конечной координаты сварочной горелки и скорости сварки (рис. 3).
- 17. На панели управления блока, для того чтобы при сварке двигалась сварочная горелка в строке «N. Shva», выставить цифру «1» и нажать кнопку «PARAM 2» (рис. 4).
- 18. Выставить «NachaloSvarki», «KonetsSvarki», «ScorostSvarki» (рис. 4).
- 19. На панели управления блока нажать кнопку «PARAM 3» (рис. 5) и желтый квадратик (рис. 4).
 - 20. Нажать кнопку «Пуск».
- 21. Повторить п. 9–10 три раза, увеличивая толщину металла на 5 мм.
- 22. Выключить блок автоматического регулирования сварки Месоте.
 - 23. Выключить LorchS8 SpeedPulse.
- 24. Стальные пластины с наплавленными валиками разрезать посередине пилкой по металлу или ленточной пилой, отшлифовать, отполировать на шлифовальном станке и произвести травление поверхности образцов для выявления макроструктуры. При помощи измерительных инструментов (линейка, штангенциркуль) произвести измерения геометрических параметров наплавленных валиков (рис. 6), результаты занести в табл. 33.

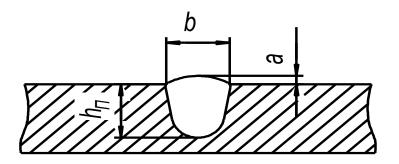


Рис. б. Параметры наплавленного валика

Таблица 33

Параметры режимов наплавки и геометрические размеры наплавленного валика

Способ сварки	Толщина металла, мм	<i>I</i> _H , A	Uд, В	$V_{\scriptscriptstyle m H},{}_{ m M}/{}_{ m T}$	h_n , MM	b, mm	a, mm	Ψ	γ

25. Рассчитать коэффициент формы шва (в зависимости от изменения режимов наплавки) по формуле

$$\Psi = \frac{b}{h_p},\tag{59}$$

где b — ширина наплавленного валика; h_p — глубина проплавления наплавленного валика.

Значения занести в табл. 32.

26. Рассчитать коэффициент формы усиления шва (в зависимости от изменения режимов наплавки) по формуле

$$\gamma = \frac{b}{a},\tag{60}$$

где b — ширина наплавленного валика; a — высота усиления наплавленного валика.

Значения занести в табл. 32.

- 27. По расчетным данным геометрических параметров построить графики зависимостей.
- 28. Сделать вывод о том, как режимы наплавки (сила тока, напряжение и скорость) влияют на геометрические параметры (ширина, высота усиления, глубина проплавления) наплавленного валика.
 - 29. Оформить отчет о проделанной работе.

Зависимость геометрических параметров наплавленного металла от режимов автоматической импульсной дуговой наплавки

Цель работы

Определение зависимости геометрических параметров (ширина, высота усиления, глубина проплавления) наплавленного металла от режимов автоматической импульсной дуговой наплавки.

Оборудование, приборы и материалы

- 1. Источник питания LorchS8 SpeedPulse.
- 2. Установка для автоматической сварки Mecome модификация WP 1500.
 - 3. Блок автоматического регулирования сварки Месоте.
 - 4. Сварочная проволока диаметром 1,2 мм.
 - 5. Стальные образцы.
 - 6. Металлическая щетка.
 - 7. Линейка, штангенциркуль.
 - 8. Пилка по металлу.
 - 9. Станок шлифовальный.
 - 10. Реактив для травления образцов.
 - 11. Секундомер.
 - 12. Сварочная маска, сварочная роба, сварочные рукавицы.

- 1. Подключить к LorchS8 SpeedPulse сварочную горелку для автоматической сварки в среде защитного газа. Для этого необходимо соединить разъем сварочной горелки и разъем источника питания, расположенного на передней панели. Подсоединить шланги для охлаждения сварочной горелки.
 - 2. Включить LorchS8 SpeedPulse.
- 3. Настроить на источнике питания при помощи кнопки «Mode», расположенной на передней панели аппарата, режимы импульсной наплавки. Установить режим «SpeedArc» и толщину металла 5 мм (рис. 2).
 - 4. Включить блок автоматического регулирования сварки Месоте.
- 5. На панели управления блока нажать кнопку «НОМЕ», для того чтобы установка для автоматической сварки Месоте модификация WP 1500, определила свое местоположение (рис. 3).

- 6. На панели управления блока нажать кнопку «PROGRAM» для установления начальной и конечной координаты сварочной горелки и скорости сварки (рис. 3).
- 7. На панели управления блока, для того чтобы при сварке двигалась сварочная горелка в строке «N. Shva», выставить цифру «1» и нажать кнопку «PARAM 2» (рис. 4).
 - 8. Выставить «NachaloSvarki», «KonetsSvarki», «ScorostSvarki» (рис. 4).
- 9. На панели управления блока нажать кнопку «PARAM 3» (рис. 5) и желтый квадратик (рис. 4).
 - 10. Нажать кнопку «Пуск».
 - 11. Произвести наплавку валика на стальную пластину.
- 12. В процессе наплавки зафиксировать режимы ($I_{\rm H},\ U_{\rm Z},\ V_{\rm H}$). Значения занести в табл. 33.
- 13. Настроить на источнике питания при помощи кнопки «Mode», расположенной на передней панели аппарата, режимы импульсной наплавки. Установить режим «Импульс» и толщину металла 5 мм (рис. 1).
 - 14. Повторить п. 11–13.
- 15. Настроить на источнике питания при помощи кнопки «Mode», расположенной на передней панели аппарата, режимы импульсной наплавки. Установить режим «Импульс» и толщину металла 5 мм (рис. 1).
 - 16. Повторить п. 11–13.
- 17. Настроить на источнике питания при помощи кнопки «Mode», расположенной на передней панели аппарата, режимы импульсной наплавки. Установить режим «Двойной» и толщину металла 5 мм (рис. 1).
 - 18. Повторить п. 11–13.
- 19. Настроить на источнике питания при помощи кнопки «Mode», расположенной на передней панели аппарата, режимы импульсной наплавки. Установить режим «SpeedPulse» и толщину металла 5 мм (рис. 1).
 - 20. Повторить п. 11–13.
- 21. Настроить на источнике питания при помощи кнопки «Mode», расположенной на передней панели аппарата, режимы импульсной наплавки. Установить режим «S-TwinPuls» и толщину металла 5 мм (рис. 1).
 - 22. Повторить п. 11–13.
- 23. Настроить на источнике питания при помощи кнопки «Mode», расположенной на передней панели аппарата, режимы импульсной наплавки. Установить режим «SpeedAp» и толщину металла 5 мм (рис. 1).
 - 24. Повторить п. 11–13.
- 25. Стальные пластины с наплавленными валиками разрезать посередине пилкой по металлу или ленточной пилой, отшлифовать, отполировать на шлифовальном станке и произвести травление поверхности образцов для выявления макроструктуры. При помощи измерительных

инструментов (линейка, штангенциркуль) произвести измерения геометрических параметров наплавленных валиков (рис. 5), результаты занести в табл. 34.

Таблица 34 Параметры режимов наплавки и геометрические размеры наплавленного валика

Способ сварки	Толщина металла, мм	<i>I</i> _H , A	$U_{\mathtt{A}},\mathrm{B}$	$V_{\scriptscriptstyle m H}$, м/ч	h_n , MM	b, mm	a, mm	Ψ	γ

- 26. Рассчитать по формуле (59) коэффициент формы шва в зависимости от изменения режимов импульсной наплавки. Значения занести в табл. 33.
- 27. Рассчитать по формуле (60) коэффициент формы усиления шва в зависимости от изменения режимов импульсной наплавки. Значения занести в табл. 33.
- 28. По расчетным данным геометрических параметров построить графики зависимостей.
- 29. Сделать вывод о том, как режимы импульсной наплавки (сила тока, напряжение и скорость) влияют на геометрические параметры (ширина, высота усиления, глубина проплавления) наплавленного валика.
 - 30. Оформить отчет о проделанной работе.

Потери электродного металла на угар и разбрызгивание при дуговой механизированной сварке в среде защитных газов

Цель работы

Расчет потерь электродного металла на угар и разбрызгивание; коэффициента плавления и наплавки электродного металла.

Оборудование, приборы и материалы

- 1. Источник питания LorchS8 SpeedPulse.
- 2. Установка для автоматической сварки Mecome, модификация WP 1500.
 - 3. Блок автоматического регулирования сварки Месоте.
 - 4. Сварочная проволока диаметром 1,2 мм.
 - 5. Стальные образцы.
 - 6. Металлическая щетка.
 - 7. Линейка, штангенциркуль.
 - 8. Весы.
 - 9. Сварочная маска, сварочная роба, сварочные рукавицы.

- 1. Включить LorchS8 SpeedPulse.
- 2. Настроить на источнике питания при помощи кнопок, расположенных на передней панели аппарата, режимы наплавки. Установить режим «Стандарт» и толщину металла 5 мм (рис. 1).
- 3. Произвести взвешивание стальных образцов (m_1) . Значение массы стальных образцов до наплавки занести в табл. 35.
- 4. Произвести взвешивание сварочной проволоки длиной 1...1,5 м (m_2) . Значение массы сварочной проволоки длиной 1...15,5 м занести в табл. 35.
 - 5. Произвести намотку сварочной проволоки 1...1,5 м на катушку.
- 6. Вставить катушку в подающий механизм и при помощи нажатия кнопки в подающем механизме, протянуть сварочную проволоку посварочной горелки, до того пока край проволоки не вылезет со сварочного сопла на расстояние 10...12 мм.
 - 7. Произвести наплавку валика на стальную пластину.
- 8. В процессе наплавки зафиксировать режимы ($I_{\rm H}$, $U_{\rm д}$, $t_{\rm cB}$). Значения занести в табл. 35.
 - 9. Выключить LorchS8 SpeedPulse.

- 10. Протянуть остатки сварочной проволоки из сварочной горелки на катушку, вытащить катушку с подающего механизма, снять с катушки остатки сварочной проволоки и произвести взвешивание (m_3). Значение массы оставшейся сварочной проволоки занести в табл. 35.
- 11. При помощи металлической щетки произвести очистку наплавленных образцов.
- 12. Произвести взвешивание наплавленных образцов (m_4) . Значение массы наплавленных образцов занести в табл. 35.
- 13. Рассчитать массу наплавленного металла ($Q_{\rm H}$) и массу расплавленного электродного металла (Q_p). Значения занести в табл. 11.
- 14. Рассчитать потери электродного металла на угар и разбрызгивание по формуле

$$\Pi_{yr} = \frac{Q_p - Q_{H}}{Q_p} \cdot 100 \%, \qquad (61)$$

где Q_p — масса расплавленного металла, г; $Q_{\rm H}$ — масса наплавленного металла, г.

Значения занести в табл. 35.

15. Рассчитать коэффициент плавления электродного металла по формуле

$$\alpha_{9} = \frac{Q_{p}}{I_{cB} \cdot t_{cB}}, \tag{62}$$

где Q_p — масса расплавленного металла, г; $I_{\rm cB}$ — сила сварочного тока, А; $t_{\rm cB}$ — время сварки, с.

Значения занести в табл. 35.

16. Рассчитать коэффициент наплавки электродного металла по формуле

$$\alpha_9 = \frac{Q_{\rm H}}{I_{\rm CR} \cdot t_{\rm CR}},\tag{63}$$

где $Q_{\rm H}$ — масса наплавленного металла, г; $I_{\rm CB}$ — сила сварочного тока, А; $t_{\rm CB}$ — время сварки, с.

Значения занести в табл. 35.

Таблица 35 Параметры режимов сварки и расчетные значения

Толщина металла, мм	_	<i>I</i> _{св} , А	<i>t</i> _{св} ,	<i>m</i> 1,	<i>m</i> 2,	<i>m</i> 3,	<i>т</i> 4,	$Q_{\scriptscriptstyle m H}$,	Q_p ,	-	α _э , г/(А·ч)	αн, г/(А·ч)

- 17. Повторить п. 1–16, установив режим «Стандарт» и толщину металла 10 мм (рис. 2).
- 18. Сделать вывод о том, как режимы наплавки влияют на угар и разбрызгивание электродного металла.
 - 19. Оформить отчет о проделанной работе.

Потери электродного металла на угар и разбрызгивание при ручной дуговой сварке покрытыми электродами

Цель работы

Расчет потерь электродного металла на угар и разбрызгивание; коэффициента плавления и наплавки электродного металла.

Оборудование, приборы и материалы

- 1. Источник питания ВД-306.
- 2. Покрытые электроды диаметром 3 или 4 мм.
- 3. Стальные образцы.
- 4. Металлическая щетка.
- 5. Линейка, штангенциркуль.
- 6. Весы.
- 7. Сварочная маска, сварочная роба, сварочные рукавицы.

- 1. Включить ВД 306.
- 2. Настроить на источнике питания при помощи рукоятки, расположенной на верхней части корпуса, I_{cB} в зависимости от d_3 (d_3 = 3 мм, I_{cB} = 90...120 A, d_3 = 4 мм, I_{cB} = 120...160 A).
- 3. Произвести взвешивание стальных образцов (m_1) . Значения занести в табл. 36.
- 4. Произвести взвешивание покрытого электрода (m_2) . Значения занести в табл. 36.
- 5. Произвести взвешивание покрытого электрода (m_3) , очищенного от электродного покрытия. Значения занести в табл. 36.
 - 6. Произвести наплавку валика на стальную пластину.
- 7. В процессе наплавки зафиксировать режимы ($I_{\rm H}$, $t_{\rm cB}$). Значения занести в табл. 36.
 - 8. Выключить ВД 306.
- 9. При помощи металлической щетки произвести очистку наплавленных образцов.
- 10. Произвести взвешивание наплавленных образцов (m_4) . Значения занести в табл. 36.
- 11. Произвести взвешивание огарка покрытого электрода (m_5) . Значения занести в табл. 36.
- 12. Произвести взвешивание огарка покрытого электрода, очищенного от электродного покрытия (m_6). Значения занести в табл. 36.

- 13. Рассчитать массу наплавленного металла $(Q_{\rm H})$ и массу расплавленного электродного металла $(Q_{\rm p})$. Значения занести в табл. 36.
- 14. Рассчитать потери электродного металла на угар и разбрызгивание по формуле (61). Значения занести в табл. 36.
- 15. Рассчитать коэффициент плавления электродного металла по формуле (62). Значения занести в табл. 36.
- 16. Рассчитать коэффициент наплавки электродного металла по формуле (63). Значения занести в табл. 36.
 - 17. Повторить п. 1-17, увеличивая ток на 50 A.
- 18. Сделать вывод о том, как режимы наплавки влияют на угар и разбрызгивание электродного металла.
 - 19. Оформить отчет о проделанной работе.

 Таблица 36

 Параметры режимов сварки и расчетные значения

<i>I</i> _{св} , А	<i>t</i> _{св} ,		<i>m</i> 3,		$Q_{\scriptscriptstyle m H}$,	П _{уг} , %	α _э , г/(А·ч)	α _н , г/(А·ч)

ЛАБОРАТОРНАЯ РАБОТА 7 Технология ручной дуговой сварки чугуна

Цель работы

Получение навыков сварки чугуна ручной дуговой сваркой покрытыми электродами.

Оборудование, приборы и материалы

- 1. Источник питания ВД 306.
- 2. Образцы из чугуна.
- 3. Покрытые электроды для холодной и горячей сварки чугуна.
- 4. Металлическая щетка.
- 5. Сварочная маска, сварочная роба, сварочные рукавицы.
- 6. Муфельная печь.

- 1. Включить ВД 306.
- 2. Настроить на источнике питания при помощи рукоятки, расположенной на верхней части корпуса, I_{cB} в зависимости от d_9 (для холодной сварки чугуна $I_{cB} = (20...30)d_9$, для горячей $I_{cB} = (60...100)d_9$).
- 3. Зачистить поверхность свариваемых деталей для холодной сварки.
 - 4. Провести холодную сварку чугуна.
 - 5. Зачистить поверхность свариваемых деталей для горячей сварки.
- 6. Произвести подогрев свариваемых деталей в муфельной печи до 300...400 °C.
 - 7. Провести горячую сварку чугуна.
- 8. Произвести медленное охлаждение сварных образцов в муфельной печи.
 - 9. Сделать вывод о том, как зависит сварной шов от способа сварки.
 - 10. Оформить отчет о проделанной работе.

ЛАБОРАТОРНАЯ РАБОТА 8 Разделительная дуговая резка металлов

Цель работы

Получение навыков дуговой резки металлов. Определение влияния толщины металла и режимов резки на производительность процесса.

Оборудование, приборы и материалы

- 1. Источник питания ВД-306.
- 2. Покрытые электроды диаметром 4 мм.
- 3. Стальные образцы.
- 4. Металлическая щетка.
- 5. Линейка, штангенциркуль.
- 6. Секундомер.
- 7. Сварочная маска, сварочная роба, сварочные рукавицы.

Методика выполнения лабораторной работы

- 1. Включить ВД 306.
- 2. Зачистить поверхность разрезаемых деталей.
- 3. Настроить на источнике питания при помощи рукоятки, расположенной на верхней части корпуса, $I_p = 200 \text{ A}$.
- 4. Произвести закрепление пластины ($100 \times 100 \times 2$ мм) струбциной к столу.
- 5. Отметить при помощи линейки и маркера линию реза посередине пластины.
 - 6. Разрезать образец по отмеченной линии пополам.
- 7. В процессе резки зафиксировать режимы (I_p , t_p). Значения занести в табл. 37.
- 8. Произвести закрепление пластины ($100 \times 100 \times 3$ мм) струбциной к столу.
 - 9. Повторить п. 5–7.
- 10. Произвести закрепление пластины ($100 \times 100 \times 4$ мм) струбциной к столу.
 - 11. Повторить п. 5–7.
 - 12. Рассчитать производительность дуговой резки стали по формуле

$$Q = \frac{l}{t_{\text{pes}}},\tag{64}$$

где l – длина реза, мм; $t_{\rm pes}$ – время резки, с.

Расчет произвести для каждой толщины образцов (2, 3, 4 мм). Значения занести в табл. 37.

- 13. Построить график зависимости производительности резки от толщины разрезаемого металла.
- 14. Произвести закрепление пластины ($100 \times 100 \times 2$ мм) струбциной к столу.
- 15. Настроить на источнике питания при помощи рукоятки, расположенной на верхней части корпуса, $I_p = 150$ A.
 - 16. Повторить п. 5–7.
- 17. Произвести закрепление пластины ($100 \times 100 \times 2$ мм) струбциной к столу.
- 18. Настроить на источнике питания при помощи рукоятки, расположенной на верхней части корпуса, $I_p = 220$ A.
 - 19. Повторить п. 5–7.
- 20. Произвести закрепление пластины ($100 \times 100 \times 2$ мм) струбциной к столу.
- 21. Настроить на источнике питания при помощи рукоятки, расположенной на верхней части корпуса, $I_p = 300$ A.
 - 22. Повторить п. 5–7.
- 23. Рассчитать производительность резки стали для каждой величины силы тока резки по формуле (64). Значения занести в табл. 13.
- 24. Построить график зависимости производительности резки от величины силы тока резки.
- 25. Сделать вывод о том, как толщина разрезаемого металла и величина сила тока резки влияет на производительность процесса.
 - 26. Оформить отчет о проделанной работе.

 Таблица 37

 Параметры режимов резки и расчетные значения

S, mm	dэ, мм	$I_{\rm p},{ m A}$	l, mm	<i>t</i> _{рвз} , с	Q, mm/c

Разделительная плазменная резка металлов

Цель работы

Получение навыков ручной разделительной плазменной резки металлов. Определение влияния толщины металла и режимов резки на производительность процесса.

Оборудование, приборы и материалы

- 1. Источник питания HyperthermPowermax 85.
- 2. Резак для ручной плазменной резки.
- 3. Стальные образцы.
- 4. Металлическая щетка.
- 5. Линейка, штангенциркуль.
- 6. Секундомер.
- 7. Очки, сварочная роба, сварочные рукавицы.

- 1. Ознакомиться с техническими характеристиками источника питания для плазменной резки HyperthermPowermax 85.
 - 2. Включить HyperthermPowermax 85.
 - 3. Зачистить поверхность разрезаемых деталей.
- 4. Настроить на источнике питания при помощи левого переключателя, расположенного на передней панели, $I_p = 50$ А.
- 5. Произвести закрепление пластины ($100 \times 100 \times 2$ мм) струбциной к столу.
- 6. Отметить при помощи линейки и маркера линию реза посередине пластины.
 - 7. Разрезать образец по отмеченной линии пополам.
- 8. В процессе резки зафиксировать режимы (I_p, t_p) . Значения занести в табл. 38.
- 9. Произвести закрепление пластины ($100 \times 100 \times 3$ мм) струбциной к столу.
 - 10. Повторить п. 5–7.
- 11. Произвести закрепление пластины ($100 \times 100 \times 4$ мм) струбциной к столу.
 - 12. Повторить п. 5–7.
- 13. Рассчитать производительность плазменной резки стали по формуле (64). Расчет произвести для каждой толщины образцов (2, 3, 4 мм). Значения занести в табл. 38.

- 14. Построить график зависимости производительности резки от толщины разрезаемого металла.
- 15. Произвести закрепление пластины ($100 \times 100 \times 2$ мм) струбциной к столу.
- 16. Настроить на источнике питания при помощи левого переключателя, расположенного на передней панели, $I_p = 60$ A.
 - 17. Повторить п. 5–7.
- 18. Произвести закрепление пластины ($100 \times 100 \times 2$ мм) струбциной к столу.
- 19. Настроить на источнике питания при помощи левого переключателя, расположенного на передней панели, $I_p = 70$ А.
 - 20. Повторить п. 5–7.
- 21. Произвести закрепление пластины ($100 \times 100 \times 2$ мм) струбциной к столу.
- 22. Настроить на источнике питания при помощи левого переключателя, расположенного на передней панели, $I_p = 80$ A.
 - 23. Повторить п. 5–7.
- 24. Рассчитать производительность плазменной резки стали для каждой величины силы тока резки по формуле (64). Значения занести в табл. 37.
- 25. Построить график зависимости производительности резки от величины силы тока резки.
- 26. Сделать вывод о том, как толщина разрезаемого металла и величина сила тока резки влияет на производительность процесса.
 - 27. Оформить отчет о проделанной работе.
- 28. Сделать вывод о качестве резов, полученных дуговой и плазменной резкой.

 Таблица 38

 Параметры режимов резки и расчетные значения

S, mm	I_p , A	l, mm	t_p , c	Q, mm/c

ЛАБОРАТОРНАЯ РАБОТА 10 Автоматическая плазменная резка металлов

Цель работы

Получение навыков автоматической плазменной резки металлов.

Оборудование, приборы и материалы

- 1. Источник питания HyperthermPowermax 85.
- 2. Резак для автоматической плазменной резки.
- 3. Координатный стол синхронизированный с установкой для плазменной резки.
 - 4. Металл листовой.
 - 5. Металлическая щетка.
 - 6. Очки, сварочная роба, сварочные рукавицы.

Методика выполнения лабораторной работы

1. Согласно табл. 39 по варианту выбираем форму и размеры вырезаемой детали.

Таблица 39 Форма и размеры вырезаемой детали

Вариант	Форма	Размеры, мм
1	Круг	Диаметр 30
2	Квадрат	30 на 30
3	Прямоугольник	50 на 10
4	Треугольник	50
5	Круг	Диаметр 50
6	Квадрат	10 на 10
7	Прямоугольник	100 на 20
8	Треугольник	30
9	Круг	Диаметр 70
10	Квадрат	50 на 50
11	Прямоугольник	120 на 50
12	Треугольник	100
13	Круг	Диаметр 100
14	Квадрат	70 на 70
15	Прямоугольник	150 на 70
16	Треугольник	150
17	Круг	Диаметр 120
18	Квадрат	20 на 20
19	Прямоугольник	200 на 100
20	Треугольник	200

- 2. Начертить деталь при помощи программного обеспечения «Компас-3D» и сохранить файл в формате dxf.
- 3. Запустить программу SheetCam и открыть файл с деталью в формате dxf. При открытии файла в открывшемся окне указать место размещения чертежа в рабочем поле программы (рисунок).
- 4. Создать новый инструмент. При создании нового инструмента в открывшемся окне указать номер инструмента, название инструмента, ширину реза (мм), подачу (мм/мин), задержку на прожог (с), высоту прореза (мм). Остальные параметры выставляем 0 и нажимаем «ОК».
- 5. Создать новую плазменную обработку. При создании новой плазменной обработки в открывшемся окне во вкладке «Общие» выбираем слой, обработку по контуру, инструмент (который создали в п. 4), указываем ввод и размер. В этом же окне открываем вкладку «Маршрут реза», указываем принцип резания и нажимаем «ОК». Сохраняем файл с управляющей программой.
- 6. Запустить программу Match 3 Plazma и открыть файл с управляющей программой (который создали в п. 5).
- 7. Расположить лист металла, из которого будет вырезаться деталь, на координатном столе.
- 8. Выставить резак, расположенный на портале координатного стола, при помощи интерфейса программы Match 3 Plazma в начальную точку координат. Начальная точка координат показывает, откуда начнется вырезание детали.
 - 9. Нажать кнопку «Старт».
 - 10. Произвести вырезку детали из листа.
 - 11. Сделать вывод о качестве реза.
 - 12. Оформить отчет о проделанной работе.

Контрольные вопросы к лабораторным работам

- 1. Как настраиваются параметры режима сварки на источнике питания FubagIRMIG 200 SYN?
 - 2. Как настраивается сила тока на источнике питания ВД 306?
- 3. Как настраиваются параметры режима сварки на источнике питания LorchS8 SpeedPulse?
- 4. В чем заключаются преимущества и недостатки дуговых способов сварки?
- 5. Что относится к геометрическим параметрам стыкового и таврового сварных соединений?
- 6. От чего зависят потери электродного металла на угар и разбрызгивание?
- 7. В чем отличие коэффициента наплавки от коэффициента расплавления?
 - 8. В чем преимущество плазменной резки относительно дуговой?
 - 9. От чего зависит производительность резки металлов?
 - 10. Как на качество реза влияет толщина разрезаемого металла?
- 11. В чем отличие ручной дуговой сварки сталей от ручной дуговой сварки чугуна?
 - 12. Как рассчитать коэффициент расплавления металла?
- 13. В чем отличие оборудования для автоматической плазменной резки от оборудования ручной плазменной резки?
- 14. Как влияют параметры режима наплавки на геометрические параметры наплавленного валика?
- 15. Какие составляющие влияют на разработку технологии ручной дуговой сварки?

ЗАКЛЮЧЕНИЕ

После выполнения практических и лабораторных работ по дисциплине «Технология сварки плавлением и термической резки» студенты направления «Машиностроение» (образовательная программа «Оборудование и технология сварочного производства») получают следующие компетенции: знание принципов расчета параметров режима сварки, наплавки, резки; умение рассчитывать параметры режима в зависимости от способа сварки, наплавки, резки; умение осуществлять рациональный выбор сварочного оборудования в зависимости от параметров режима сварки; владение навыками расчета параметров режима сварки, наплавки, резки для реализации технологических процессов изготовления продукции.

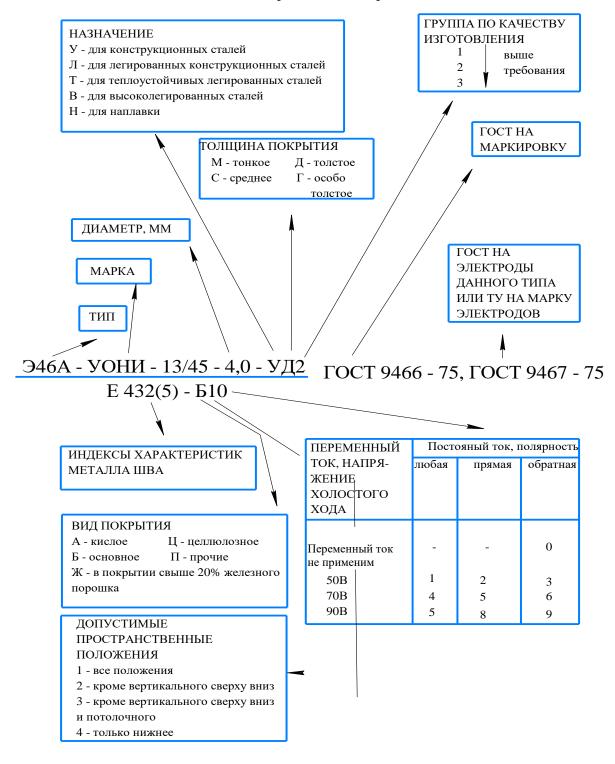
СПИСОК СОКРАЩЕНИЙ

РДС – ручная дуговая сварка покрытыми электродами.

 $A\Phi$ – автоматическая сварка под слоем флюса.

 $\mathrm{UH}-\mathrm{механизированная}$ сварка в среде инертных газов плавящимся электродом.

ГОСТ – государственный стандарт.

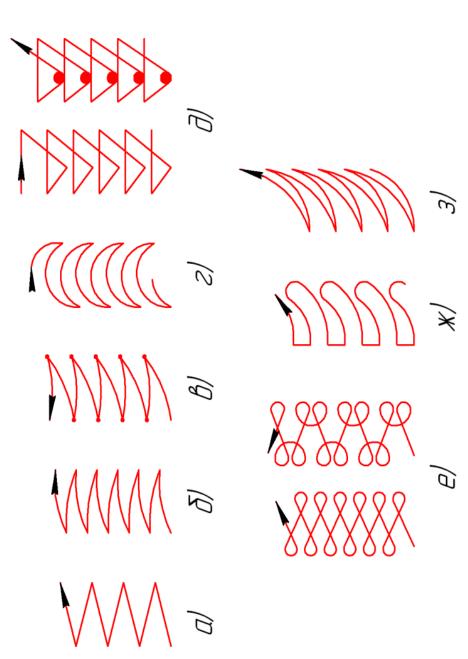

ОСТ – отраслевой стандарт.

ВД – выпрямитель для дуговой сварки.

ПРИЛОЖЕНИЯ

Приложение 1

Обозначение электродов для сварки и наплавки



Приложение 2

Технологическая карта

				1 1				010	010	MM		To TB	24.49	EH KII H.pacx.	qк Ти <u>Т</u> п							
										нта		вания	0	EB	вд р ео р		K					
-						00		Вище	CINA	Обозначение документа	варки	ние оборудов	Сварочное оборудование	е ОШП	Λп				аток, мм.	$^{\prime}$ L = MM.		
						КП 0202.001.00.000		Нарвание изпепи	пазвание изд	Обозна	Наименование способа сварки	Код, наименование оборудования	Сварочное	Код, обозначение	I Vc				Прихватить деталь (способ сварки). Число прихваток N = . Длина прихваток, мм.	Варить шов (обозначение шва) (ГОСТ на соединения сварные) на длину L = мм.		
						KI					Наименов	K K		Ke	U				рихваток N=	эдинения сва		
								MIXIN	МИП	ии				і, или материала	ГЭ Пл	Ĺ	ا		эки). Число п	(ГОСТ на сое		
										Код, наименование операции	9043			и, сб. ед. или	Lc	I LOCT	I FOCT	зать) деталь	ь (способ сва	начение шва)		
										од, наимено	6			Наименование детали, сб. ед	I DC	Сварочные материалы	Сварочные материалы	Собрать (состыковать) деталь	атить детал	ь шов (обозн		
						п	вал			K				Наимено	IIC HII	Сварочны	— Сварочны	Co6pa				OK
	Дубл.	Взам.	Подл.		Paspa6.	Проверил	Нормировал		Н. контр.	0.1	01	00	70	K/M	PC1	M 03	M 04	0 05 1.	O 06 2.	O 07 3.	Ь	

Схемы перемещения покрытого электрода при сварке стыковых швов

е – петлеобразные; ж – зигзагообразные под углом; з – полумесяцем назад под углом

Приложение 4

Структура отчета и правила его оформления

После выполнения практических и лабораторных работ студенту необходимо оформить отчет.

Отчет должен включать:

- титульный лист (форма титульного листа представлена в прил. 5);
- цель работы;
- оборудование приборы и материалы (для лабораторных работ);
- методику выполнения практической и лабораторной работы;
- формулы;
- результаты выполнения практических и лабораторных работ (значения расчетов и измерений, таблицы, графики и т. д.);
 - анализ полученных результатов;
 - общий вывод.

Приложение 5

Форма титульного листа отчета

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное автономное образовательное учреждение высшего образования
«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Юргинский технологический институт
(наименование учебной дисциплины)
Практическая (Лабораторная) №
(Название работы – прописными буквами)
Исполнитель
Студент гр. № И.О. Фамилия
(подпись, дата)
D.
Руководитель (должность, ученая степень, звание) И.О. Фамилия
(должность, ученая степень, звание) И.О. Фамилия (подпись, дата)
(подтнев, дата)
Юрга 20
10μια 20

СПИСОК ЛИТЕРАТУРЫ

- 1. Федько В.Т. Дуговая сварка плавлением: учебное пособие / В.Т. Федько. Томск: Изд-во ТГУ, 1994. 241 с.
- 2. Васильев В.И. Разработка этапов технологии при ручной дуговой сварке плавлением: учебное пособие / В.И. Васильев, Д.П. Ильященко. Томск: Изд-во ТПУ, 2008. 96 с.
- 3. Технология сварки плавлением и термической резки : методические рекомендации к практическим занятиям для студентов / сост. В.П. Куликов, А.О. Коротеев. Могилев : Белорус.-Рос. ун-т., 2017. 25 с.
- 4. Федосеева, Е.М. Сварка плавлением: учебно-методическое пособие / Е.М. Федосеева, И.Ю. Летягин. Пермь: Изд-во Пермского национального исследовательского политехнического университета, 2016. 94 с.
- 5. Вашуков Ю.А. Дуговая сварка в защитных средах : учебное пособие / Ю.А. Вашуков. Самара : Издательство Самарского университета, 2019. 1 опт. компакт-диск (CD-ROM).
- 6. Сироткин Ф.П. Расчет параметров режимов сварки: Методические указания по проведению практических занятий по дисциплине «Технология электрической сварки плавлением» / Ф.П. Сироткин. Н. Новгород: ВГИПУ, 2007. 55 с.
- 7. Технология и оборудование газовой сварки и резки металлов : учебное пособие / В.Т. Федько, В.И. Васильев, Е.А. Зернин и др. Томск : Изд-во ТПУ, 2008. 252 с.
- 8. Еремин Е.Н. Газовая сварка: учебное пособие / Е.Н. Еремин, Ю.О. Филиппов. Омск: Изд-во ОмГТУ, 2015. 188 с.
- 9. Куликов В.П. Технология сварки плавлением и термической резки : учебник / В.П. Куликов. Минск : Новое знание ; Москва : ИН-ФРА-М, 2016.-463 с.
- 10. Шиловский В.Н. Сервисное обслуживание и ремонт машин и оборудования: учебное пособие / В.Н. Шиловский, А.В. Питухин, В.М. Костюкевич. Санкт-Петербург: Лань, 2019. 240 с.
- 11. Корытов М.С. Технология восстановления деталей: методические указания по выполнению практических работ / М.С. Корытов. Омск: СибАДИ, 2019. 49 с.
- 12. Сапожков С.Б. Теория сварочных процессов. Лабораторный практикум: учебное пособие / С.Б. Сапожков, Е.А. Зернин, И.Р. Сабиров. Юрга: Изд-во Юргинского технологического института (филиала) ТПУ, 2007. 96 с.

- 13. Сварка. Резка. Контроль : Справочник в 2 томах. Том 1 / И.П. Алешин, Г.Г. Чернышов, Э.А. Гладков др. ; под общ. ред. И.П. Алешина, Г.Г. Чернышова. Москва : Машиностроение, 2004. 624 с.
- 14. Хромченко Ф.А. Справочное пособие электросварщика / Ф.А. Хромченко. 2-е изд., испр. Ростов-на-Дону : Феникс, 2011. 332 с.
- 15. Хромченко Ф.А. Справочное пособие электросварщика / Ф.А. Хромченко. 2-е изд. Москва : Машиностроение, $2005.-416~\mathrm{c.}$; ил.
- 16. Металлические конструкции: сборник лабораторных работ по сварке / сост. В.С. Ивкин, А.А. Макаров. Ульяновск: УлГТУ, 2010. 35 с.

Учебное издание

КУЗНЕЦОВ Максим Александрович ИЛЬЯЩЕНКО Дмитрий Павлович

ТЕХНОЛОГИЯ СВАРКИ ПЛАВЛЕНИЕМ И ТЕРМИЧЕСКОЙ РЕЗКИ

Практикум

Корректура *Е.Л. Тен* Компьютерная верстка *К.С. Чечельницкая* Дизайн обложки *А.И. Сидоренко*

Подписано к печати 21.03.2022. Формат 60×84/16. Бумага «Снегурочка». Печать CANON. Усл. печ. л. 4,36. Уч.-изд. л. 3,95. Заказ 53-22. Тираж 100 экз.

