Системы счисления

Система счисления — способ записи и наименования натуральных чисел

значение цифры **одинаково** независимо от позиции (римская, III)

значение цифры различно в зависимости от позиции

Позиционные системы счисления

со смешанным основанием

4 года 3 месяца 2 дня

однородные

вес каждой цифры выражается в степени одного и того же числа (десятичная, двоичная, ...)

Однородные позиционные системы счисления

- десятичная (0, 1, ..., 9)
- двоичная (0,1)
- шестнадцатеричная (0, 1, ..., 9, A, ..., F)
- восьмеричная (0, 1, ..., 7)
- ...

Чем больше основание, тем больше цифр, и тем короче запись числа

Структура числа в позиционной системе по основанию *р*

Разложение числа по степеням основания

$$x_p = x_n x_{n-1} ... x_1 x_0 x_{-1} x_{-2} ... x_{-R} =$$

$$x_n *p^n + x_{n-1} *p^{n-1} + ... + x_1 *p + x_0 + x_{-1} *p^{-1} + ... + x_{-R} *p^{-R}$$

Пример

$$p=10$$
, $x_p=127.35=1*10^2+2*10^1+7+3*10^{-1}+5*10^{-2}$

Двоичная система счисления как способ представления данных в компьютере (1)

В компьютерах используются элементы памяти с двумя состояниями

Значения 0 и 1 в компьютерах представляются физическими состояниями «намагничено - не намагничено», «есть напряжение — нет напряжения»

Единица информации, умещающаяся в таком элементе – 1 бит

Бит - от английского сокращения bit (binary digit - двоичная цифра)

Минимальная ячейка памяти 1 байт (8 бит)

Двоичная система счисления как способ представления данных в компьютере (2)

Более крупные единицы измерения информации

$$1$$
 килобайт = 1024 байт = 2^{10} байт

$$1$$
 мегабайт = 1024 килобайт = 2^{10} килобайт = 2^{20} байт

$$1$$
 гигабайт = 1024 мегабайт = 2^{10} мегабайт = 2^{20} килобайт = 2^{30} байт

Каждый бит принимает одно из двух значений Поэтому байты, слова и т.д. представляют числа в позиционной СС по основанию 2 – **двоичной СС**

? Сколько значений может принять один байт? Одно слово?

Перевод чисел из одной системы счисления в другую ($x_p \rightarrow x_q$)

Шаг 1. Если $x_p < q$, то на шаг 3

Шаг 2. Разделить x_p нацело на q, остаток запомнить x_p = частное от деления, на шаг 1

Шаг 3. Записать последнее частное и затем остатки в порядке, обратном их получению

Перевод чисел из двоичной системы счисления в шестнадцатеричную

Если каждую группу из 4 бит рассматривать как одну цифру, то таких цифр всего $2^4 = 16$ — шестнадцатеричная CC

Пример

1001 1111 0010 = 9 F 2

! Разбивку на четверки нужно выполнять справа налево, при необходимости дописать слева нули!

Сложение в различных системах счисления

$$p = 8$$
 $7 + 1 = 10$

p=16
$$F + 1 = 10$$

Представление отрицательных чисел в двоичной системе. Вычитание

- При представлении знаковых чисел старший разряд числа считается знаковым разрядом
- Если число отрицательное, то знаковый разряд содержит 1, иначе 0

Вычитание заменяется сложением с применением дополнительного кода отрицательного числа

Дополнительный код получается путем инвертирования двоичных разрядов прямого кода (кроме знакового) и добавления 1

Пример

- -13 в прямом коде 1000 1101
- -13 в дополнительном коде $1111\ 0010 + 1 = 1111\ 0011$

Вычитание

- вычитание заменяется сложением
- при сложении отрицательные числа представляют в дополнительном коде
- складывают двоичные разряды, включая знаковые
- единицу переноса из знакового разряда отбросить (если возникает)
- если сумма положительна, то число получилось в прямом коде, если отрицательна в дополнительном

Пример

-13(11110011) + 60(00111100) = 100101111 = 47

Умножение

$$1*1 = 1$$
 $1*0 = 0$ $0*0 = 0$

Так как очередная цифра множителя — 1 или 0, то промежуточное произведение равно множимому либо 0

Умножение сводится к суммированию промежуточных произведений