

### Ф ТПУ 7.1 – 21/01

|                                            | УТВЕРЖДАЮ                                  |
|--------------------------------------------|--------------------------------------------|
|                                            | Декан факультета:                          |
|                                            | Г.С. Евтушенко<br>(подпись) (И.О. Фамилия) |
|                                            | (дата)                                     |
|                                            | (дага)                                     |
|                                            |                                            |
| ЦИФРОВЫЕ ИЗМЕРИТ                           | ГЕЛЬНЫЕ УСТРОЙСТВА                         |
|                                            | цисциплины)                                |
| Рабочая программа для направления (специ   | изпъности спенизпизании)                   |
| 200100- «Приборостр                        |                                            |
| Факультет Электрофизический (ЭФФ)          | OCTIVIC/                                   |
|                                            |                                            |
| Обеспечивающая кафедра                     | WIND TOTAL (HIJT)                          |
| Информационно-измерительной техники и те   | хнологии (иит)                             |
| Kypc4                                      |                                            |
| Семестр 7_                                 | 2000                                       |
| Учебный план набора _2004_ года с изменени |                                            |
| •                                          | учебного времени                           |
| Лекции                                     | 32 часов (ауд.)                            |
| Лабораторные занятия                       | 24 часов (ауд.)                            |
| Курсовая работа в7семестре                 | часов (ауд.)                               |
| Всего аудиторных занятий                   | 56_ часов                                  |
| Самостоятельная (внеаудиторная) работа     | 96часов                                    |
| Общая трудоемкость                         | 152ов                                      |
| Экзамен в7 семестре                        |                                            |
| Дифзачет в7 семестре                       |                                            |
|                                            |                                            |
|                                            |                                            |
|                                            |                                            |
|                                            |                                            |
|                                            |                                            |
|                                            | 2009                                       |
| (                                          | (год)                                      |

Документ:



### Ф ТПУ 7.1 – 21/01

### Предисловие

| 1 Рабочая программа составлен                        | на на основе ГОС | по направлени  | ю (специальности) |           |
|------------------------------------------------------|------------------|----------------|-------------------|-----------|
| 200100 -«Приборостроение» и                          | <u></u>          |                |                   |           |
| Образовательного стандарта Т                         | ГПУ специ        | иальности _»Ин | формационно-измеј | рительной |
| техники и технологии»                                |                  |                |                   |           |
|                                                      |                  |                |                   |           |
|                                                      |                  |                |                   |           |
| РАССМОТРЕНА и ОДОБРЕГ                                | НА на заседании  | и обеспечиваюц | цей кафедры Инфо  | рмационно |
| измерительной техники30                              | июня прото       | кол №5         | _                 |           |
|                                                      |                  |                |                   |           |
| 2 Разработчик(и)                                     |                  |                |                   |           |
| доцент                                               | ТИИ              | (подпись)      | Д.ВМиляев         |           |
| (должность)                                          | (кафедра)        | (подпись)      |                   |           |
| 3 Зав. обеспечивающей кафедр                         | оой ИИТ          | <i>H</i>       | А.Е. Гольдштейн   |           |
|                                                      |                  | (подпись)      |                   |           |
|                                                      |                  |                |                   |           |
| 4 Рабочая программа COI                              | ГЛАСОВАНА с      | факультетом    | , выпускающими    | кафедрами |
|                                                      |                  |                | , выпускающими    | кафедрами |
| 4 Рабочая программа COI<br>специальности; COOTBETCTE |                  |                | , выпускающими    | кафедрами |
|                                                      |                  |                | , выпускающими    | кафедрами |
|                                                      | ЗУЕТ действующ   | ему плану.     | , выпускающими    | кафедрами |
| специальности; СООТВЕТСТЕ                            |                  | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |
| специальности; СООТВЕТСТЕ                            | ЗУЕТ действующ   | ему плану.     |                   | кафедрами |

Документ:

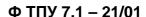
Ф ТПУ 7.1 - 21/01

#### **КИЦАТОННА**

Цифровые измерительные устройства

200100 – направление «Приборостроение» Каф. ИИТ ЭФФ

Доцент, к.т.н. Миляев Дмитрий Васильевич


тел. (3822)418911, e-mail: mdv@iit.b10.tpu.edu.ru

**Цель**: формирование у студентов знаний о дискретной элементной базы, знаниях схемотехники, принципах построения цифровых устройств, методах измерения электрических величин. Основное внимание уделено расчету и проектированию ЦАП

**Содержание:** Рассматриваются качественные и количественные характеристики преобразователей цифровых приборов. Основное внимание уделено расчету и проектированию ЦАП и АЦП, их погрешностям преобразования, а также цифровым приборам на их основе.

Курс 4 (7 сем. – экзамен и диф.зач.). Всего ауд. 56ч, в т.ч. Лк.- 32 ч, Лб.- 24 ч., Сам. раб – 96 ч.

Документ:





### 1. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

**Целью преподавания** дисциплины является усвоение студентами вопросов теории и практики дискретных преобразований, принципов построения цифровых устройств, анализа их метрологических характеристик. Формирование у студентов логического мышления, использованию вопросов теории в их практической деятельности, получение практических навыков для решения задач проектирования современных цифровых измерительных приборов и устройств

В результате изучения дисциплины «Цифровые измерительные устройства» студент должен:

#### ПОНИМАТЬ

научно-техническую лексику (терминологию) в области дискретной техники, системы счисления, как основу кодирования измерительной информации, единство методов измерения в области аналоговой и цифровой техники.

#### ЗНАТЬ

Основы квантования и кодирования, классификацию цифровых устройств, методы аналого-цифрового преобразования,

структурные схемы приборов,

особенности цифровых методов измерения и их погрешностей;

#### **УМЕТЬ**

математически описывать функции преобразования, по заданному алгоритму, составлять структурные схемы,

находить по функции преобразования мультипликативные погрешности преобразователей и приборов;

#### ИМЕТЬ ПРЕДСТАВЛЕНИЕ

об справочных данных зарубежных и отечественных интегральных микросхем,

о перспективах развития современной цифровой техники.

Цифровые измерительные устройства являются частью из общего класса измерительных средств и их изучение базируется на знании таких дисциплин как:

математические и теоретические основы измерений, основы дискретной логики, теории автоматического управления, теории информации, теории вероятностей и математической статистики и др.

### 1.2. Задачами изложения и изучения дисциплины являются:

- разработка содержания разделов дисциплины, позволяющей систематизировать материал дисциплины по трудоемкости от простого к сложному;
- организация учебного процесса, связанной с практическим применением знаний в этой области и личной заинтересованности обучаемого в расширении его знаний;
- реализация текущего, промежуточного и итогового контролей с использованием вопросов и задач, позволяющих студентам применить на практике необходимые знания и умения.

### 2.1.СОДЕРЖАНИЕ ТЕОРЕТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ (ЛЕКЦИИ)

#### 2.1.1.Общие теоретические вопросы цифровой техники

Аналоговые и дискретные величины, их основные различия. Квантование аналоговых величин по уровню (по значению) и дискретизация по времени. Ступень квантования и степень дискретизации. Возможность восстановления аналогового сигнала по его дискретным значениям. Ступенчатая и кусочно-линейная аппроксимация. Применение

Документ:



#### Ф ТПУ 7.1 - 21/01

теоремы Котельникова для определения частоты дискретизации. Погрешности различных видов аппроксимации сигнала.

#### Основная и дополнительная литература к первому разделу

Л.1: с 282-306, Л.2: с8 -18

#### Методические указания.

При изучении этого раздела необходимо знать принципы дискретизации аналоговой величины, т.е. переход от непрерывной (аналоговой) величины к прерывной – дискретизированной величине, необходимость такого преобразования, положительные и отрицательные стороны измерений при представлении информации посредством цифр и дискретных сигналов.

Знать и пояснять примерами способы восстановления дискретных сигналов в непрерывные функции времени с наименьшей погрешностью или с наибольшей скоростью.

#### Контрольные вопросы

- 1. Дать определения (в соответствии с ГОСТом) аналоговой и дискретной величинам.
  - 2. Что такое дискретизация, шаг дискретизации?
  - 3. Что такое квантование, ступень квантования?
  - 4. Пояснить процессы дискретизации и квантования графически.
  - 5. Дать пояснения об аппроксимации непрерывной функции.
- 6. Какие виды аппроксимации применяются при дискретном представлении непрерывных величин?
  - 7. Для каких непрерывных сигналов применима теорема Котельникова?

#### 2.1.2 Системы счисления и коды применяемые в ЦИУ

Единичная, двоичная, десятичная и двоично-десятичная системы исчисления. Разновидности кодов, применяемых в ЦИУ - единичный, двоичный, десятичный, двоично-десятичный и код Грея. Последовательный и параллельный коды. Неоднозначность кодов.

#### Основная и дополнительная литература по разделу

Л.4: с 221; Л.1:с 312; Л.2: с18.

#### Методические указания.

Вопросы содержания второго раздела изучить в соответствии с программой. Следует обратить внимание на необходимость кодирования, на системы кодирования. Причины выбора в качестве систем кодирования числовых систем- систем исчисления.

#### Контрольные вопросы

- 1. Представить десятичные числа от Одо 10 в различных системах исчисления.
- 2. Почему считается код Грея помехозащищенным?
- 3. Как образуется двоично-десятичный код?
- 4. Что такое неоднозначность кодов?
- 5. Как представляются числа в различных системах при известном числе разрядов?

#### 2.1.3. Преобразователи кодов, регистры и счетчики импульсов

Документ:



#### Ф ТПУ 7.1 - 21/01

Преобразователи последовательного единичного кода в параллельный двоичный код – двоичные счетчики. Преобразователи последовательного единичного кода в двоично-десятичный код – двоично-десятичные счетчики импульсов.

Преобразователи параллельного единичного кода в параллельный двоично-десятичный коды — шифраторы. Преобразователи параллельного двоично-десятичного и двоичного кодов в параллельный единичный код — дешифраторы.

#### Основная и дополнительная литература по разделу

Л.1: с.320; Л.5: с.162.

#### Методические указания.

В этом параграфе необходимо изучить элементную базу цифровой техники, конкретно схемы различных счетчиков, преобразователей кодов — дешифраторов. Принципы их действия необходимо пояснять временными диаграммами и таблицами истинности.

#### Контрольные вопросы

- 1. Назвать разновидности триггеров в интегральном исполнении.
- 2. Как составить двоичный счетчик из триггеров?
- 3. Привести диаграмму работы счетчика.
- 4.Зачем нужны преобразователи двоичного кода в двоично-десятичный?
- 5.Пояснить на временных диаграммах работу дешифратора.
- 6.Обьяснить работу регистров.
- 7.Пояснить на конкретных примерах триггеров назначение входов и работу устройств в данных режимах.
- 8. Назвать емкость триггера, как счетчика импульсов.

#### 2.1.4. Цифровая индикация

Требования, предъявляемые к цифровым индикаторам. Типы знаковых индикаторов (на жидких кристаллах, на светоизлучающих диодах, газоразрядные, электролюминесцентные) и схемы их включения. Сравнение знаковых индикаторов по их основным характеристикам. Области их применения. Способы организации цифровой индикации (статическая, динамическая).

Основная и дополнительная литература по разделу

Л.4: с. 237; Л.1: с. 368; Л.2: с.30

#### Методические указания.

В настоящем разделе необходимо изучить устройства, принципы действия индикаторов их конструкции, технические характеристики. Знать электрические схемы подключения цифровых индикаторов к дешифраторам.

### Контрольные вопросы

- 1. Назвать основные характеристики цифровых индикаторов.
- 2. Какие индикаторы имеют наименьшую потребляемую мощность?
- 3.Обьяснить принцип работы известных индикаторов.
- 4. Каким образом подключить газоразрядный индикатор к счетчику?
- 5. Пояснить сущность динамической индикации.

#### 2.1.5. Преобразования непрерывных величин в цифровые

Документ:



#### Ф ТПУ 7.1 - 21/01

Основные понятия и определения. Классификация ЦИУ и их сравнение. Структурные схемы основных способов преобразования непрерывных величин в цифровые. Математическое описание процессов аналого-цифрового преобразования (АЦП).

АЦП прямого преобразования:

- 1. Аналого-цифровые преобразования последовательного счета:
  - а. числоимпульсного преобразования
  - б. частотного преобразования
  - г. временного преобразования
- 2.АЦП амплитудного преобразования:
  - а. ЦИУ поразрядного уравновешивания,
  - б. ЦИУ считывания (параллельного действия).

АЦП уравновешивающего преобразования:

- 1.ЦИУ следящего уравновешивания,
- 2.ЦИУ развертывающего уравновешивания,

Структурные схемы основных способов преобразования непрерывных величин в цифровые. Математическое описание процессов аналого-цифрового преобразования.

#### Основная и дополнительная литература по разделу

Л.5: с.230, с.251-259.Л.6.

#### Методические указания.

Наиболее важным измерительным преобразованием в цифровой технике является преобразование аналоговой величины в код. Устройства, выполняющие эту операцию, называют сокращенно АЦП. Особое внимание необходимо уделить изучению интегрирующим АЦП двухтактного интегрирования, являющиеся основным узлом многих цифровых устройств.

Необходимо уметь выводить уравнения преобразования аналого-цифровых преобразователей, объяснять работу функциональных схем, находить погрешности отдельных узлов, оптимальные условия работы, указывать область применения.

#### Контрольные вопросы

- 1.Почему АЦП двухтактного интегрирования называют преобразователем напряжения время?
- 2. Как задается время первого такта?
- 3. Как уменьшается влияние сетевой помехи на преобразование в АЦП двухтактного интегрирования?
- 4. Каким образом уменьшается время преобразования в АЦП поразрядного уравновешивания?
- 5.Вывести уравнение преобразования для АЦП двухтактного интегрирования.
- 6. Привести функциональную схему АЦП следящего уравновешивания.

#### 2.1.6. Цифро-аналоговые преобразования (ЦАП)

Классификация ЦАП. Свойства и основные характеристики преобразователей код-напряжение – ПКН.

Разновидности ПКН - токовые и потенциальные:

- последовательные ПКН,
- параллельные ПКН,
- ПКН с суммированием токов,
- R-2R -токовые,

Документ:



Ф ТПУ 7.1 - 21/01

- R-2R- напряжения.

Схемы, расчет, вывод уравнений преобразования, основные технические характеристики, погрешности, применение.

#### Основная и дополнительная литература по разделу

Л.5: с.230, Л.1:с. 328, Л.2: с.75

#### Методические указания.

Обратное преобразование дискретной величины в аналоговую необходимо отличать от восстановления аналоговой величины, последнее относится к восстановлению функции непрерывной величины по аналоговым выборкам.

Необходимо знать измерительные схемы ПКН, принципы преобразований,

вывод уравнений преобразований, свойства и технические характеристики преобразователей.

Контрольные вопросы

- 1. Назвать основные элементы ЦАП.
- 2.В чем состоит основной принцип преобразования кода в напряжение?
- 3. Какие ПКН относятся к линейным?
- 4. Какие ПКН имеют погрешность от нелинейности?
- 5. Какие особенности имеют токовые ПКН и ПКН напряжения?
- 6.Получить уравнения преобразования для всех вышеперечисленных ПКН.
- 7. Привести электрические схемы токовых преобразователей код-напряжение.
- 8. Привести схемы ПКН напряжения.

#### 2.1.7. Общие характеристики ЦИУ

Основные параметры и характеристики цифровых измерительных устройств. Требования Госстандартов. Статические и динамические погрешности ЦИУ. Использование основных понятий теории информации для определения характеристик ЦИУ. Помехоустойчивость и надежность. Экспериментальное определение основных характеристик ЦИУ.

Особенности использования контактных и бесконтактных ключей и переключателей в ЦИУ. Способы компенсации погрешности и типовые схемы ключей. Преобразователи числа импульсов в напряжение – основные схемы и соотношения. Дискретные делители – преобразователи кода в сопротивление, их общие свойства и основные требования к ним. Сравнительный обзор дискретных делителей. Последовательные делители – основные схемы и расчетные соотношения, оценка погрешностей. Параллельные делители – основные схемы и расчетные соотношения, оценка погрешностей. Схемы и особенности построения дискретных делителей тока и напряжения. Преобразователи кода в электрический ток – дискретные делители на стабилизаторах тока. Особенность использования источников опорного напряжения и тока.

#### Основная и дополнительная литература по разделу

Л.7: с. 8-72. Л.1: с. 289-312.

#### Методические указания.

Материал изучить в соответствии с рекомендуемой литературой.

#### Контрольные вопросы

- 1.Обьяснить погрешность от дискретизации непрерывной величины, например, время, частота, напряжение и т.д.
- 2. Назвать статические составляющие погрешностей.
- 3. Назвать динамические составляющие погрешностей.

Документ:



4. Пояснить вероятностные погрешности.

#### 2.1.8. Входные устройства цифровых измерительных приборов (ЦИП) и АЦП

Входные делители активные, емкостные, трансформаторные, динамические емкостные. Устройства для автоматического переключения и указания полярности, типовые схемы с использованием электромагнитных реле, логических элементов и реверсивных счетчиков. Устройства для автоматического выбора пределов измерения, типовые схемы использованием электромагнитных реле и счетчиков, реверсивные схемы.

#### Основная и дополнительная литература по разделу

Л2: с. 228, Л3: с. 204.

#### Методические указания

Входные делители относятся к аналоговой части цифровых измерительных приборов и являются разделом для повторения, так как основное содержание изучалось в курсе аналоговых измерительных устройств.

Поэтому основное внимание уделяется изучению устройств автоматического перевключения пределов измерения и указания полярности. Необходимо изучить алгоритмы построения таких устройств, функциональные и принципиальные схемы.

Также знать место, которое занимает устройство АВП в схемах цифровых приборов.

- 3.8.4. Контрольные вопросы
  - 1. Привести схему делителя:
    - а) резистивного,
    - б) емкостного,
    - в) трансформаторного.
- 2.Обьяснить принцип работы АВП последовательного действия, разновидности алгоритмов работы, функциональные схемы, характеристики и применение.
  - 3.Обьяснить принцип работы АВП параллельного действия, разновидности алгоритмов работы, функциональные схемы, характеристики и применение.

#### 2.1.9. Цифровые измерительные приборы - ЦИП

Классификация цифровых измерительных приборов. Приборы прямого преобразования последовательного счета: частотомеры, измерители периода, фазометры, вольтметры. Цифровые вольтметры среднего и действующего значений переменного напряжения. Цифровые измерители сопротивления, емкости и индуктивности с использованием свойств апериодического затухающего процесса. Цифровые измерители добротности. Приборы следящего и развертывающего уравновешивания: вольтметры следящего уравновешивания, частотомеры, следящие цифровые мосты переменного тока, электронные цифровые вольтметры мгновенных значений.

#### Методические указания

При изучении различных цифровых приборов необходимо, прежде всего, понять принципы их построения или метод измерения, лежащего в основе его работы

или, как говорят, иметь физическую модель, по которой можно составить математическую модель и таким образом найти уравнение преобразования.

В программу включены основные приборы, использующие различные методы измерительных преобразований, изучение их дает возможность создавать и другие цифровые приборы для измерения электрических неэлектрических величин.

Документ:



#### Ф ТПУ 7.1 - 21/01

#### Контрольные вопросы

- 1.Обьяснить по функциональной схеме работу вольтметра постоянного тока двухтактного интегрирования.
- 2. Как записывается уравнение преобразования частотомера прямого действия?
- 3. Какие погрешности имеют приборы прямого преобразования?
- 4. Рассмотреть работу цифрового фазометра средних значений.
- 5. Рассмотреть работу цифрового фазометра мгновенных значений.
- 6.Написать уравнения, описывающих работу приборов, использующих апериодические затухания в цепях.
- 7. Как работают приборы развертывающего преобразования?
- 8. Рассмотреть работу измерителей емкости и индуктивности.
- 9. Привести функциональные схемы вольтметров переменного тока.
- 10. Пояснить работу цифрового моста переменного тока.

### ТЕМАТИКА ПРАКТИЧЕСКИХ ЗАНЯТИЙ)

#### 3. СОДЕРЖАНИЕ ПРАКТИЧЕСКОГО РАЗДЕЛА ДИСЦИПЛИНЫ

#### 3.1 Выполнение лабораторных работ

- 1. Исследование дискретных элементов: триггеров, счетчиков, регистров -(8/8)ч.
- 2. Исследование интегральных АЦП и цифровых индикаторов:
  - а) АЦП двухтактного интегрирования К572ПВ5,(К572 ПВ2)-(4/4)ч.
  - б) Разработка и исследование на базе АЦП цифрового прибора-(4/4)ч.
  - в) Исследование макета АЦП поразрядного уравновешивания (4/4)ч.

#### 3.2. Выполнение индивидуальных контрольных заданий

- №1. Привести схемы и пояснить принцип работы, таблицы истинности триггеров, счетчиков, регистров сдвига, дешифраторов и цифровых индикаторов.
  - №2. Разработка вольтметра постоянного тока на заданное входное напряжение.
  - **№3.** Описание диаграмм работы АЦП поразрядного уравновешивания и АЦП считывания.
  - №4. Расчет и описание работы ПКН
    - а) последовательного типа б)параллельного типа,
    - в) суммирования токов г) R-2R (токовый)
    - д) R-2R (напряжения).
  - №5 .Разработка измерителя частоты, периода, фазового сдвига

№6. Разработка вольтметра переменного тока на три предела измерения.

Документ:

#### Ф ТПУ 7.1 – 21/01



# Рабочая программа учебной дисциплины

### 4. ПРОГРАММА САМОСТОЯТЕЛЬНОЙ ПОЗНАВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ

Самостоятельная (внеаудиторная) деятельность студента включает выполнение индивидуальной работы студента по следующим формам:

- подготовка к выполнению лабораторных работ и оформление отчетов(12)ч.,
- выполнение курсового проекта (60)ч.,
- выполнение индивидуальных заданий (20)ч.,
- подготовка к текущему контролю по защите индивидуальных заданий (32)ч.

### 5.ТЕКУЩИЙ И ИТОГОВЫЙ КОНТРОЛЬ РЕЗУЛЬТАТОВ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

В дисциплине используются следующие виды контроля (см. рейтинг-лист):

- входной контроль остаточных знаний и умений по дисциплинам (математике, электротехнике, электронике, метрологии), используемых при изучении данной дисциплины;
- входной контроль на каждом практическом занятии для оценки самостоятельной работы студента при подготовке к занятиям;
- контроль за своевременностью и правильностью выполнения индивидуальных заданий

По результатам проведенных контролей формируется допуск студента к итоговому контролю – экзамену.

#### 5.1. Рейтинг-лист дисциплины.

5.1.1 Основные положения по рейтингу дисциплины.

На дисциплину выделено 1000 баллов, которые распределены следующим образом:

- на текущий контроль 800 баллов;
- на итоговый (экзамен) 200 баллов
  - 5.1.2 Текущий контроль в семестре предполагает следующее распределение баллов:
- выполнение и защита лабораторных работ 120 баллов;
- выполнение и защита индивидуальных заданий 440 баллов;
- посещение лекций и усвоение теоретического материала разделов дисциплины 80 баллов;
- выполнение и защита курсового проекта 160 баллов.
  - 5.1.3. Указанные баллы соответствуют верхнему пределу оценки " отлично". По каждой текущей и итоговой также действует следующая шкала перевода баллов в оценки:
  - 0.85 1.0 от верхнего предела в баллах "отлично";

Документ:



Ф ТПУ 7.1 - 21/01

- 0.70 0.84 от верхнего предела в баллах "хорошо";
- 0.55 0.69 от верхнего предела в баллах "удовлетворительно";
- 0.40 0.54 от верхнего предела в баллах "неудовлетворительно";
- 5.1.4.Студентам, допустившим по результатам текущего контроля отставание в освоении учебной дисциплины для ликвидации задолженностей в течение семестра: при наличии уважительных причин (утверждается деканом) предоставляются дополнительные занятия или консультации; в случае неуважительной причины предлагается, согласно действующему в ТПУ "Положению", дополнительные платные образовательные услуги.
- 5.1.5. Если по результатам текущей успеваемости студент набрал менее 45% от баллов текущего контроля, то есть меньше 382 баллов, то он не допускается к итоговому контролю экзамену.
- 5.1.6. Полученные на экзамене оценки (отлично, хорошо, удовлетворительно, неудовлетворительно) являются окончательными и пересдаче не подлежат. После двух неудовлетворительных оценок (при неявке + неудовлетворительно) решается вопрос или об отчислении из университета, или переводе на коммерческое отделение.

Документ:



### Ф ТПУ 7.1 – 21/01

### РЕЙТИНГ-ПЛАН

| «отлично» - более 850 Дисциплина: ЦИУ для ЭФФ, гр.1Б62 На осенний семестр 2008-2009 уч. года Лектор-Миляев Д.В. каф. ИИТ. |           |       |                                     |                      |                                                       | Лекции: 28 Лаб.<br>работы:22<br>Итого: 58 |                       |                   |                                  |                              |      |
|---------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------------------------------------|----------------------|-------------------------------------------------------|-------------------------------------------|-----------------------|-------------------|----------------------------------|------------------------------|------|
| Назва<br>ние<br>блока                                                                                                     | Лекции    |       | Лаб.работы                          |                      | Прак. Занятия<br>(Курс/ проект)                       |                                           | Домаш.задание         |                   | Рубежный контроль                | Макс<br>им.<br>балл<br>блока |      |
|                                                                                                                           | Чи<br>сло | балл  | тема                                | балл                 | Тема                                                  | Балл                                      | тема                  | Балл<br>Вып. Защ. |                                  |                              |      |
| Блок<br>№1                                                                                                                | 2         | 8     | 1 2                                 | 10                   | Обзор<br>методов<br>измерени<br>я и схем<br>приборов. | 20                                        | 1<br>2<br>3<br>4<br>5 | 21                | 20<br>20<br>20<br>20<br>20<br>20 | KT.1                         | 200  |
| Блок<br>№2                                                                                                                | 4         | 16    | 3 4 5                               | 10<br>10<br>10       | Выбор<br>метода и<br>схемы.                           | 20                                        | 1 2 3                 | 21                | 20<br>20<br>20                   | KT.2                         | 600  |
| Блок<br>№3                                                                                                                | 4         | 16    | 6 7 8                               | 10<br>10<br>10       | Расчет схемы и погрешно -стей прибора.                | 60                                        | 1<br>2<br>3<br>4<br>5 | 21                | 20<br>20<br>20<br>20<br>20<br>20 |                              |      |
| Блок<br>№4                                                                                                                | 4         | 16    | 9<br>10<br>11<br>Защи<br>та<br>Л.Р. | 10<br>10<br>10<br>50 | Оформле - ние и защита                                | 40                                        | 1<br>2<br>3<br>4<br>5 | 21                | 20<br>20<br>20<br>20<br>20<br>20 |                              |      |
| ИТОГ<br>О                                                                                                                 | 14        | 56    | 11                                  | 160                  |                                                       | 140                                       | 18                    | 84                | 360                              |                              | 800  |
| Итоговы                                                                                                                   | ій кон    | троль | (Экзамеі                            | н ) - 200 бал        | ЛОВ                                                   |                                           |                       |                   | ,                                |                              | 1000 |

| Составил: Преп | одаватель        | _ Д.В. Миляев   |  |
|----------------|------------------|-----------------|--|
|                |                  |                 |  |
| Утверждаю:     | Зав.кафедрой ИИТ | А.Е. Гольдштейн |  |

Документ: Дата разработки: 07.09.09



#### 6. Учебно – методическое обеспечение дисциплины

#### 6.1. Основная литература

- 1.Орнатский П.П. Автоматические измерения и приборы (аналоговые и цифровые). К.: Вища школа, 1986. 504 с.: ил.
- 2.Шляндин В.М. Цифровые измерительные устройства: Ученик для вузов.-2-ое издание переработанное и допол. М.: Высшая школа,1981.-335с.: ил.
- 3.Прянишников В.А. Интегрирующие вольтметры постоянного тока. Л.: Энергия, 1976.- 224 с.: ил.
- 4. Электрические измерения: Учебник / Под ред. А.В.Фремке, Е.М. Душина. Л.: Энергия, 1980. 389 с.: ил.
- 5.Гутников В.С. Интегральная электроника в измерительных устройствах. Л.: Энергоатомиздат. Ленинградское отделение, 1988.- 304с.: ил.
- 6.Федорков. Г., Телец В.А. Микросхемы ЦАП и АЦП: функционирование, параметры, применение. М.: Энергоатомиздат, 1990.-320с.: ил.
- 7.Вострокнутов Н.Н. Цифровые измерительные устройства. Теория погрешностей, испытания, поверка. М.: Энергоатомиздат,1990.-208 с.: ил.

### 6.2. Дополнительная литература

- 1. Мирский Г.Я. Электронные измерения. М.: Радио и связь, 1986. 440 с.: ил.
- 2. Атамалян Э.Г. Приборы и методы измерения электрических величин М.: Высшая школа, 1982.
- 3. Полищук Е.С. "Измерительные преобразователи". Киев: объединение "Вища школа", 1981. 233 с.: ил.
- 4. Измерения в промышленности. Спр. изд. Под ред. П.Профоса.
  - Пер. с нем. М.: Металлургия, 1980. 648 с.
- 5. Измерение в электронике: Справочник / Под ред. Кузнецова. М.: Энергоатомиздат, 1987. 512 с.: ил.
- 6. ГОСТ 16263-70. Метрология. Термины и определения.
- 7. ГОСТ 22261-76, ГОСТ 8.401-80. Способы выражения пределов допускаемых погрешностей. Классы точности.

#### 6.3 Перечень методических указаний

- 1. Сборник лабораторно практических работ по курсу «Цифровые измерительные устройства». Составители: доцент, к.т.н. Миляев Д.В.
- 2. Цифровые измерительные устройства. Курс лекций доц. Миляева Д.В.

Документ: