Лабораторная работа №6 Исследование триггеров

Цель работы – изучение цифровых триггеров и устройств на их основе.

Цифровые триггеры

Триггеры на логических элементах

Самый простой RS триггер можно собрать при помощи двух логических элементов «И-НЕ» или «ИЛИ-НЕ».

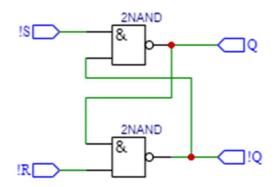


Схема RS-триггера на логических элементах микросхемы 74HC00

При использовании логического И-HE входы триггера будут инверсными, а при использовании ИЛИ-HE – прямыми.

Недостатком RS-триггера является наличие запрещённого состояния, когда на вход R и S подаётся логическая 1, а также отсутствие тактового входа, который во многих случаях является необходимым. Чтобы сделать RS триггер синхронным нужно в схему добавить ещё два логических И-НЕ:

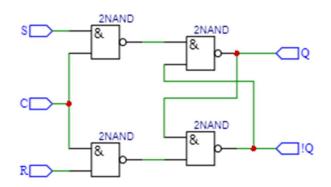


Схема синхронного RS-триггера

У синхронного триггера есть дополнительный вход C — вход тактирования. Изменение состояния триггера будет происходить только при наличии логической 1 на входе C, что позволит управлять процессом записи состояния триггера.

Проблема запрещенного состояния входов решена в других триггерах – типа D, T и JK. Чтобы получить D триггер из RS триггера, в его схему нужно добавить один логический элемент «НЕ» (74HC04):

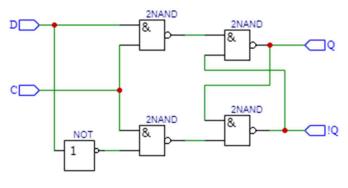
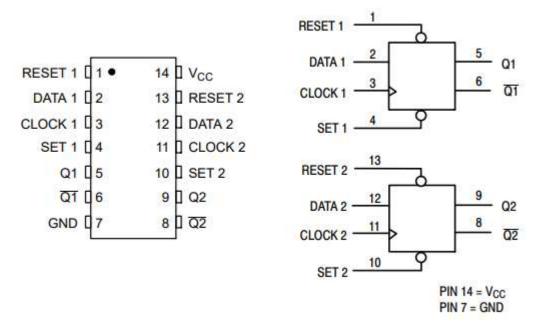
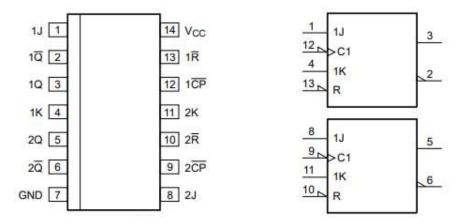



Схема D-триггера

Микросхемы триггеров

Микросхема 74HC74 представляет собой два D-триггера с асинхронными сбросом и установкой.

Цоколевка (слева) и логическая схема (справа) микросхемы 74НС74


Линии установки и сброса являются инверсными, то есть в нормальном состоянии они должны быть в состоянии логической единицы. Реакция триггера на линии сброса и установки не зависит от линии синхронизации. Реакция же триггера на линию данных происходит только по нарастающему фронту на линии синхронизации.

puts	Out	Inputs				
Q	Q	Data	Clock	Reset	Set	
L	н	Х	X	Н	L	
H	L	X	X	L	H	
H*	H*	X	X	L	L	
L	H	H	5	Н	Н	
H	L	L	5	H	H	
изм.	Без	X	L	H	H	
изм.	Без	X	Н	H	H	
изм.	Без	X	~	Н	Н	

^{*}Оба выхода остаются в "1" до тех пор, пока R и S в "0".

Таблица состояний для триггеров микросхемы 74НС74

Микросхема 74НС107 представляет собой два ЈК-триггера с асинхронными сбросом.

Цоколевка (слева) и логическая схема (справа) микросхемы 74НС107

Линия сброса являются инверсной, то есть в нормальном состоянии она должна быть в состоянии логической единицы. Реакция триггера на линию сброса не зависит от линии синхронизации. Реакция же триггера на линии J и K происходит только по спадающему фронту на линии синхронизации.

Input			Output		Operating mode	
R	CP	J	K	Q	Q	
L	X	X	X	L	Н	asynchronous reset
Н	Ţ	h	h	q	q	toggle
Н	1	1)	h	L	Н	load 0 (reset)
Н	1	h	1	Н	L	load 1 (set)
Н	Ţ	1	1	q	q	hold (no change)

Таблица состояний для триггеров микросхемы 74НС107

Предварительное задание

- 1. Соберите на макетной плате схему D-триггера на логических элементах. Подключите ко входам кнопки или переключатели, к выходам светодиоды. Убедитесь в работоспособности схемы. Продемонстрируйте результат преподавателю.
- 2. Получите вариант задания у преподавателя. На микросхемы найдите datasheet и выясните назначение выводов и правила использования микросхем.
- 3. Изобразите на бумаге схему 4-разрядного счетчика в соответствии с вариантом. Подпишите на схеме номера выводов.
 - 4. Для полученной схемы изобразите диаграммы работы.

Программа работы

- 1. Соберите на макетной плате схему. Будьте аккуратны при установке и изъятии микросхем, чтобы не повредить их выводы!
- 2. С помощью генератора сигналов подайте на схему тактовые импульсы. Пронаблюдайте реакцию на выходе с помощью с помощью осциллографа.
- 3. Сравните результат с составленными ранее диаграммами работы. Убедитесь в работоспособности схемы. Продемонстрируйте результат преподавателю.

Варианты заданий

Вариант	Тип триггера	Тип счётчика
1	D триггер	суммирующий
2	ЈК триггер	суммирующий
3	D триггер	вычитающий
4	ЈК триггер	вычитающий
5	D триггер	суммирующий
6	ЈК триггер	суммирующий
7	D триггер	вычитающий
8	ЈК триггер	вычитающий
9	D триггер	суммирующий
10	ЈК триггер	суммирующий
11	D триггер	вычитающий
12	ЈК триггер	вычитающий

Содержание отчета

- 1. Цель работы, краткие теоретические сведения.
- 2. Вариант задания, соответствующая ему принципиальная схема.
- 3. Диаграммы работы схемы.
- 4. Выволы.

Контрольные вопросы

- 1. Что такое цифровой триггер? Как выглядит логическая схема простейшего триггера? Составьте таблицу состояний.
- 2. Какие виды триггеров бывают? Чем они отличаются друг от друга?
- 3. Какое состояние будет на выходе триггера непосредственно после подачи питания на схему?
- 4. Как составить двоичный счетчик с помощью триггеров?
- 5. Чем определяется направление счета двоичных счетчиков?