

РАБОЧАЯ ПРОГРАММА МОДУЛЯ (ДИСЦИПЛИНЫ) «ХИМИЯ 1.6»

Направление (специальность) ООП 21.03.01 «Нефтегазовое дело» Профили подготовки (специализация, программа):

«Бурение нефтяных и газовых скважин»,

«Эксплуатация и обслуживание объектов добычи нефти»,

«Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки»

«Машины и оборудование нефтяных и газовых промыслов»

Квалификация

Академический бакалавр

(степень)

Базовый учебный план приема

2015 г.

 Курс
 1 семестр
 1

 Количество кредитов
 3

 Код дисциплины
 51.БМ2.5

Виды учебной деятельности	Временной	ресурс
Лекции	8	часов (ауд,)
Лабораторные занятия	6	часов (ауд.)
Практические занятия	4	часов (ауд,)
Аудиторные занятия	18	часов (ауд,)
Самостоятельная	90	часов (ауд,)
ИТОГО	108	часов (ауд,)

Форма обучения заочная

Вид промежуточной аттестации

Экзамен в 1 семестре

Обеспечивающее подразделение

Кафедра «Общей и неорганической химии» ИФВТ

 Заведующий кафедрой
 ТХНГ

 БС
 А.Ю. Дмитриев

 ГРНМ
 О.С. Чернова

 Ф.А. Симанкин

 О.В. Брусник

 Преподаватели
 К.И. Мачехина

 П.В. Абрамова

2015

1. ЦЕЛИ ОСВОЕНИЯ МОДУЛЯ (ДИСЦИПЛИНЫ)

В результате освоения данной дисциплины Б1.БМ2.5 «Химия 1.6» бакалавр приобретает знания, умения и навыки, обеспечивающие достижение целей Ц2, Ц5 ООП 21 03 01 «Нефтегазовое дело»:

Код цели	Формулировка цели	Требования ФГОС и заинтересованных работодателей
Ц2	Готовность выпускников к междисциплинарной экспериментально- исследовательской деятельности для решения задач, связанных с разработкой инновационных эффективных методов бурения нефтяных и газовых скважин, разработкой и эксплуатацией месторождений углеводородов, их транспорта и хранения.	
Ц5	Готовность выпускников к самообучению и непрерывному профессиональному самосовершенствованию в условиях автономии и самоуправления	Требования ФГОС, критерии АИОР, соответствие международным стандартам EUR-ACE и FEANI, запросы отечественных и зарубежных работодателей

Общей целью изучения дисциплины Б1.БМ2.5 «Химия 1.6» является формирование знаний, умений и навыков и компетенций, необходимых для производственной, научно-исследовательской и проектной деятельности специалиста.

2. МЕСТО МОДУЛЯ (ДИСЦИПЛИНЫ) В СТРУКТУРЕ ООП

Согласно ФГОС и ООП 21.03.01 «Нефтегазовое дело» дисциплина Химия 1.6 относится к модулю естественнонаучных и математических дисциплин.

Код дисциплины ООП	Наименование дисциплины	Кредиты	Форма контроля
0 0 1 1	Модуль естественнонаучных и математ	і ических дисі	<u> </u>
	Базовая часть		
Б1.БМ2.5	Химия 1.6	3	ЭКЗ.

ПРЕРЕКВИЗИТЫ:

Курс школьной химии

КОРРЕКВИЗИТЫ:

Б1.БМ2.1 Математика 1.1

Б1.БМ2.7 Физика 1.1

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В соответствии с требованиями ООП освоение дисциплины Б1.БМ2.5 «Химия 1.6», направлено на формирование у студентов следующих компетенций (результатов обучения), в т. ч. в соответствии с ФГОС ВПО, критериям АИОР, согласованных с требованиями международных стандартов EURACE и FEANI (табл. 1).

Таблица 1 Составляющие результатов обучения, которые будут получены при изучении дисциплины Б1.БМ2.5 «Химия 1.6»

Результаты обучения	Составляющие результатов обучения					
(компетенци и из ФГОС)	Код	Знать	Код	Уметь Код		Владеть
P1 (OK – 7)		Знать место и роль химии в познании окружающего мира Химические свойства элементов и их неорганических и органических соединений ряда подгрупп периодической системы Д.И. Менделеева		Применять классические законы и определять основные физико-химические характеристики веществ для решения профессиональных задач		Теоретическими методами описания свойств сложных веществ на основе электронного строения их атомов и положения в Периодической системе химических элементов
		Реакционную способность веществ, их химическую идентификацию		Анализировать и оценивать информацию, используя современные образовательные и информационные технологии в области неорганической и органической химии. Планировать и осуществлять свою деятельность с учетом результатов анализа		Навыками проведения химических экспериментов и методами качественного и количественного анализа одно- и многокомпонентных систем. Навыками обмена естественнонаучной информации с использованием баз данных и информационных справочников по химии
P3 (ОК – 7, ОПК – 6, ПК-1)		Знать методы поиска учебной и научной-технической литературы, патентной проработки информации		Самостоятельно работать с учебной, методической и справочной литературой		Опытом работы с электронными библиотечными или иными официальными научно-техническими ресурсами баз данных

В результате освоения дисциплины Б1.БМ2.5 «Химия 1.6» бакалавром должны быть достигнуты следующие результаты:

П

	Таблица 2
ланируемые результаты освоения обучения	

Код	Результат
P1	Приобретение профессиональной эрудиции и широкого кругозора в области гуманитарных и естественных наук и использование их в профессиональной деятельности. (РД1, РД2, РД3, РД4)
Р3	Уметь самостоятельно учиться и непрерывно повышать квалификацию в течение всего периода профессиональной деятельности (РД3)

Планируемые результаты освоения дисциплины (модуля):

№ п/п	Результат
РД1	Демонстрировать глубокое знание и понимание сути основных законов
	химии и химических превращений, знание свойств и способов получения
	веществ.
РД2	Проводить стехиометрические расчеты; определять термодинамическую
	возможность протекания химических процессов; записывать уравнения
	реакций химических превращений веществ и их получения; проводить
	аналогии в изменении свойств химических соединений.
РД3	Выявлять взаимосвязь между структурой, свойствами и реакционной
	способностью химических соединений.
РД4	Применять полученные знания для определения, формулирования и
	решения проблем, связанных с профессиональной деятельностью.
РД5	Самостоятельно приобретать знания и умения, связанные с вопросами
	химии для повышения профессионального уровня.

В процессе освоения дисциплины Б1.БМ2.5 «Химия 1.6» у студентов развиваются следующие компетенции:

Общекультурные:

способностью к самоорганизации и самообразованию (ОК-7);

Общепрофессиональные:

способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий и с учетом основных требований информационной безопасности (ОПК-6);

Профессиональные:

способностью применять процессный подход в практической деятельности, сочетать теорию и практику (ПК-1).

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Структура дисциплины

Структура дисциплины Б1.БМ2.5 «Химия 1.6» по разделам и видам учебной деятельности с указанием временного ресурса в часах представлена в табл.3.

Структура дисциплины по разделам и формам организации обучения

Аудиторная работа (час.)			CPC	Итого	
Название раздела	Лекции	Практические занятия	Лаб. работы	(час.)	(час.)
		1 семестр			
1. Основные законы и понятия химии		2	2	23	27
2. Строение вещества	4			23	27
3. Закономерности протекания химических реакций	2		2	22	26
4. Растворы	2	2	2	22	28
5. Специальные вопросы химии				_	
Итого:	8	4	6	90	108

4.2. Содержание дисциплины

Раздел 1. Основные законы и понятия химии

Практическое занятие, Лабораторная работа, СРС, ИДЗ. Химия как часть естествознания. Предмет химии. Связь химии с другими науками. Значение химии в формировании мышления, в изучении природы и развитии техники. Химия и проблемы экологии.

Основные понятия в химии: атом, химический элемент, изотопный состав атомов, молекула, простые и сложные вещества. Аллотропия. Валентность. Классификация и номенклатура неорганических веществ. Химический эквивалент, молярная масса эквивалента. Фундаментальные и частные законы. Закон эквивалентов, закон Авогадро, Закон Дюлонга-Пти. Уравнение состояния идеального газа.

<u>Практическое занятие 1.</u> Основные классы неорганических соединений. Атомномолекулярное учение. Стехиометрические расчеты.

Лабораторная работа 1. Основные классы неорганических соединений.

Раздел 2. Строение вещества

Лекция, СРС, ИДЗ. Развитие представлений о сложной структуре атома. основы квантовомеханической модели строения атома. Квантовый характер энергетических изменений электрона в атоме. Корпускулярно-волновая природа электрона. Уравнение де Бройля. вероятностный характер положения электрона в атоме. Принцип неопределенности Гейзенберга. Понятие волновой функции. Уравнение Шредингера. Электронное строение атома водорода. Понятие атомной орбитали. Характеристика состояния электрона в атоме набором квантовых чисел. Принципы построения электронных оболочек многоэлектронных атомов. Принцип наименьшей энергии. Принцип Паули. Правило Хунда, Энергетическая диаграмма уровней, подуровней, атомных орбиталей в многоэлектронных атомах.

Строение атома и периодическая система Д.И. Менделеева. Периодический закон. Зависимость свойств элементов от их положения в периодической системе: радиусы атомов и ионов, энергия ионизации, сродство к электрону, электроотрицательность.

Химическая связь. Типы связей и влияние характера химической связи на Энергия связи, химические свойства веществ. длина связи, валентный угол, Ковалентная характеристики полярности Способы рассмотрения связи. связь. ковалентной связи: метод валентных связей, его основные положения, обменный и донорно- акцепторный механизмы образования ковалентной связи, теория гибридизации и пространственная структура молекул, метод ОЭПВО, метод молекулярных орбиталей (МО), его основные положения. Связывающие и разрыхляющие МО, последовательность

их заполнения электронами. Ионная связь, ее энергия, особенности соединений с ионной связью. Водородная связь, ее природа и энергия. Влияние водородных связей на свойства веществ. Межмолекулярные взаимодействия, их проявления, природа (ориентационный, индукционный и дисперсионный эффект) и энергия. Агрегатные состояния вещества с позиций химических связей между его частицами. Кристаллическая и аморфная структуры твердого состояния. Классификация кристаллов по типу химической связи между частицами.

Лекция 1. Строение вещества. Периодический закон.

Лекция 2. Химическая связь.

Раздел 3. Закономерности протекания химических реакций

Лекция, Лабораторная работа, СРС, ИДЗ. Основные термодинамические (ТД) понятия: ТД система, химическая фаза и компонент, гомо- и гетерогенные системы, ТД параметры и функции. Первый закон термодинамики, тепловой эффект изохорного и изобарного процессов. Внутренняя энергия и энтальпия. Энтальпия образования вещества и химической реакции. Закон Гесса и его следствия, термохимические расчёты. Энтропия: второй закон термодинамики, закономерности изменения энтропии. Энергия Гиббса. Направление протекания химических реакций. Термодинамически устойчивые вещества. Химическое равновесие. Обратимые и необратимые химические реакции. Химическое равновесие с позиций термодинамики и кинетики. Закон действия масс для равновесия. Константа равновесия, ее связь с энергией Гиббса. Принцип Ле Шателье, его практическое значение. Химическая кинетика. Система основных понятий химической кинетики: гомогенные и гетерогенные реакции; простые и сложные реакции; молекулярность: моно-, би- и тримолекулярные реакции; механизм химических реакций; последовательные, параллельные, цепные реакции. Скорость химической реакции. Закон действия масс для скоростей простых и сложных реакций. Кинетические уравнения, порядок реакции и порядок по веществу, экспериментальный способ установления частных порядков. Константа скорости химической реакции. Энергия активации. Уравнение Аррениуса, методы расчета энергии активации. Понятие о катализе. Гомогенный и гетерогенный катализ. Катализаторы, механизм влияния катализатора на скорость химической реакции.

<u>Лекция 3.</u> Закономерности протекания химических реакций.

<u>Лабораторная работа 2.</u> Скорость химической реакции.

Раздел 4. Дисперсные системы. Растворы

Лекиия, Практическое занятие, Лабораторные работа, СРС, ИДЗ. Закономерности процессов растворения. Концентрация растворов. Способы выражения концентрации растворов: массовая доля растворенного вещества, молярная концентрация, молярная концентрация эквивалента, титр, моляльная концентрация, мольные доли. Перерастёт концентрации одного способа выражения В другой. Активность. Растворы неэлектролитов. Коллигативные свойства растворов: давление насыщенного пара растворителя над раствором, температуры кипения и замерзания, осмотическое давление. Теория электролитической диссоциации. Показатели диссоциации: степень, константа, изотонический коэффициент. Особенности растворов сильных электролитов. Произведение растворимости малорастворимых электролитов. Электролитическая диссоциация воды, ионное произведение воды. Водородный показатель. Индикаторы.

Лекция 4. Растворы.

Практическое занятие 2. Способы выражения концентрации растворов.

Лабораторная работа 3. Ионообменные реакции, гидролиз солей.

Раздел 5. Специальные вопросы химии

СРС, ИДЗ. Химическая идентификация веществ. Вещество и его чистота. Аналитический сигнал и его виды. Качественный и количественный анализ. Физикохимический и физический анализ.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Для достижения планируемых результатов обучения, в дисциплине Б1.БМ2.5 «Химия 1.6» используются различные образовательные технологии:

1. Информационно-развивающие технологии, направленные на формирование системы знаний, запоминание и свободное оперирование ими.

Используется лекционно-семинарский метод, самостоятельное изучение литературы, применение новых информационных технологий для самостоятельного пополнения знаний, включая использование технических и электронных средств информации.

2. Деятельностные практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений при проведении экспериментальных исследований, обеспечивающих возможность качественно выполнять профессиональную деятельность.

Используется анализ, сравнение методов проведения химических исследований, выбор метода, в зависимости от объекта исследования в конкретной производственной ситуации и его практическая реализация.

- 3. Развивающие проблемно-ориентированные технологии, направленные развитие проблемного мышления, мыслительной активности, способности видеть и формулировать проблемы, выбирать способы и средства для их решения. Используются виды проблемного обучения: освещение основных проблем общей и неорганической химии на лекциях, учебные дискуссии, коллективная деятельность в группах при выполнении лабораторных работ, решение задач повышенной сложности. При этом используются первые три уровня (из четырех) сложности и самостоятельности: проблемное изложение учебного материала преподавателем; создание преподавателем проблемных ситуаций, а обучаемые вместе с ним включаются в их разрешение; преподаватель создает проблемную ситуацию, а разрешают её обучаемые в ходе самостоятельной деятельности.
- 4. Личностно-ориентированные технологии обучения, обеспечивающие в ходе учебного процесса учет различных способностей обучаемых, создание необходимых условий для развития их индивидуальных способностей, развитие активности личности в учебном процессе. Личностно-ориентированные технологии обучения реализуются в результате индивидуального общения преподавателя и студента при защите лабораторных работ, при выполнении домашних индивидуальных заданий, решении задач повышенной сложности, на еженедельных консультациях.

Для целенаправленного и эффективного формирования запланированных компетенций у обучающихся, выбраны следующие сочетания форм организации учебного процесса и методов активизации образовательной деятельности, представленные в табл. 4.

Методы и формы организации обучения (ФОО)

Таблина 5

Методы	ФОО			
	Лекции	Лабораторные	Практические	CPC
		работы	занятия	
Работа в группе		+		
Методы проблемного обучения	+	+	+	+
Обучение на основе опыта		+		
Опережающая самостоятельная		+		+
работа				
Поисковый метод	+	+		+
Исследовательский метод		+		

6. ОРГАНИЗАЦИЯ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

6.1 Виды и формы самостоятельной работы (СРС)

Самостоятельная работа по дисциплине Б1.БМ2.5 «Химия 1.6», направленная на углубление и закрепление знаний студента, на развитие практических умений, включает в себя текущую СРС:

- работа с лекционным материалом;
- подготовка к практическим занятиям;
- подготовка к лабораторным работам;
- изучение тем, вынесенных на самостоятельную проработку;
- выполнение индивидуальных домашних заданий;
- подготовка к самостоятельным и контрольным работам;
- подготовка к зачету и экзамену.

Творческая проблемно-ориентированная самостоятельная работа по дисциплине Б1.БМ2.5 «Химия 1.6», направленная на развитие интеллектуальных умений, общекультурных и профессиональных компетенций, развитие творческого мышления у студентов, включает в себя следующие виды работ по основным проблемам курса:

- поиск, анализ, структурирование информации;
- выполнение расчетных работ, обработка и анализ данных;
- решение задач повышенной сложности, в том числе комплексных и олимпиадных задач;
- участие в олимпиадах по химии (профиль).

6.2. Содержание самостоятельной работы студентов по дисциплине

1. Темы индивидуальных домашних заданий

№ п/п	Тема
	Ісеместр
1.	Расчеты по химическим формулам и уравнениям с использованием стехиометрических законов
2.	Составление электронных формул атомов, определение валентных электронов, характеристика состояния электронов в атоме при помощи набора квантовых чисел.
3.	Описание химических связей в молекулах с использованием методов ВС и МО, описание строения комплексных соединений с использованием ТКП.
4.	Расчет тепловых эффектов реакций, расчет изменения энтропии и энергии Гиббса при протекании реакций.
5.	Описание состояния химического равновесия с использованием принципа Ле Шателье-Брауна, расчет константы равновесия.
6.	Расчет скорости реакции на основе закона действующих масс, характеристика влияния внешних условий на скорость реакции.
7.	Расчет концентрации растворов (6 способов выражения концентрации), расчет давления пара, температур кипения и затвердевания, осмотического давления растворов электролитов и неэлектролитов.
8.	Составление уравнений ионообменных реакций, гидролиза солей; расчет констант диссоциации и гидролиза.

2. Темы, выносимые на самостоятельную проработку

	, 1 1 v
№ п/п	Тема
	1 семестр
1.	Основные положения АМУ. Газовые законы. Методы определения атомных и
	молекулярных масс.
2.	Состав ядра, изотопы, ядерные реакции, радиоактивность
3.	Методы исследования строения молекул и структуры кристаллических веществ
4.	Вклад русских ученых (Менделеева, Каблукова, Кистяковского) в развитие
	учения о растворах
5.	Общие сведения о теориях кислот и оснований

6.3. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателя.

Самоконтроль зависит от определенных качеств личности, ответственности за результаты своего обучения, заинтересованности в положительной оценке своего труда, материальных и моральных стимулов, от того насколько обучаемый мотивирован в достижении наилучших результатов. Задача преподавателя состоит в том, чтобы создать условия для выполнения самостоятельной работы (учебно-методическое обеспечение), правильно использовать различные стимулы для реализации этой работы (рейтинговая система), повышать её значимость, и грамотно осуществлять контроль самостоятельной деятельности студента (фонд оценочных средств).

7. СРЕДСТВА ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ ОЦЕНКИ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ

Оценка качества освоения дисциплины Б1.БМ2.5 «Химия 1.6» производится по результатам следующих контролирующих мероприятий:

Таблица 5

Контролирующие мероприятия	Результаты обучения по дисциплине
Выполнение и защита лабораторных работ и практических	РД1, РД2, РД3, РД4
заданий	
Защита индивидуальных заданий	РД1, РД2, РД5
Экзамен	РД1, РД2

Для оценки качества освоения дисциплины Б1.БМ2.5 «Химия 1.6» при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств):

- вопросы входного контроля;
- контрольные вопросы, задаваемых при выполнении и защитах лабораторных работ;
- контрольные вопросы, задаваемые при проведении практических занятий,
- вопросы, выносимые на экзамены и зачеты и др.

Вопросы выходного контроля

1. Определите простое это вещество или сложное, классифицируйте и дайте название.

- c. CaO
- d. NO
- e. HClO₄
- f. $Ba(OH)_2$
- g. KHSO₄
- h. Na₂SO₄
- i. HNO₃
- j. SO_3
- k. ZnOHNO₂
- 2. Определите степень окисления марганца в следующих химических соединениях: MnO₂, MnSO₄, KMnO₄, Na₂MnO₄.
- 3. Реакция СаО+СО2 ← СаСО3+Q. Определите направление смещения равновесия при:
 - уменьшении температуры;
 - увеличении давления;
 - уменьшении концентрации СО₂.
- 4. Запишите константу равновесия для реакции:

$$I_{2(\Gamma)} + H_2 S_{(\Gamma)} \longleftrightarrow 2H I_{(\Gamma)} + S_{(K)}$$

Вопросы, задаваемые при защите лабораторных работ

- 1. Для солей: CrI₃, RbI:
- запишите схему гидролиза (все ступени)
- определите число ступеней
- определите среду и рН
- сделайте вывод о влиянии на гидролиз соли следующих факторов:
 - увеличение температуры;
 - разбавление;
 - добавление KCl, NaOH, HCl, (NH₄)₂SO₄.
- 2. Из 330 г раствора хлорида калия с массовой долей 14% выпарили 150 мл воды. Массовая доля KCl в полученном растворе %. (Ответ дать с точностью до десятых).

Примеры экзаменационных вопросов и задач

1. Укажите формулу гидрокарбоната магния.

Ответы: 1) $(CuOH)_2CO_3$ 2) Cu(HCO₃)₂

3) Cu₂C

4) CuCO₃

2. Укажите количество молекул, которое содержится в 28 г азота.

Ответы

- 1) $12.04 \cdot 10^{23}$
- 2) $24.08 \cdot 10^{23}$ 3) $6.02 \cdot 10^{23}$
- 4) 12.04·10²²
- 3. Некоторый газ массой 82.8 г занимает объем 32.7 л при 13 °C и давлении 104 кПа. Вычислите молярную массу газа.
- 4. Охарактеризуйте четырьмя квантовыми числами помеченный кружком электрон:

Ответы: 1)
$$n = 5$$
, $l = 2$, $m = 1$, $s = 1/2$ 2) $n = 4$, $l = 2$, $m = 0$, $s = \frac{1}{2}$

3)
$$n = 4$$
, $l = 3$, $m = 0$, $s = 1/2$ 4) $n = 4$, $l = 2$, $m = 0$, $s = -1/2$

5. Укажите тип гибридизации атомных орбиталей центрального атома в молекуле СF₄.

Ответы: 1)
$$sp$$
 2) sp^2 3) sp^3 4) sp^3d^2

6. По уравнению реакции и стандартным энтальпиям образования веществ вычислите энтальпию реакции (кДж). Ответ округлите до целого числа.

$$CaCO_3(\kappa p) = CaO(\kappa p) + CO_2(\Gamma)$$

$$\Delta H_{\rm f}^{\,0}, \, \kappa Дж/моль$$
 -1206.9 -635,5 -393,5

7. Для обратимой реакции

$$2H_2O(\Gamma) + C(\kappa) \leftrightarrows CO_2(\Gamma) + 2H_2(\Gamma)$$

укажите математическое выражение закона действующих масс.

$$K = \frac{[CO_2]}{[H_2O]} \quad K = \frac{[CO_2] \cdot [H_2]}{[H_2O]} \quad 3) \quad K = \frac{[CO_2] \cdot [H_2]^2}{[H_2O]^2} \quad 4) \quad K = \frac{[CO_2] \cdot [H_2]^2}{[H_2O]^2 \cdot [C]}$$

8. Укажите, во сколько раз возрастет скорость прямой реакции $A(\Gamma) + 2B(\Gamma) \leftrightarrows C(\Gamma)$ при увеличении общего давления в 6 раза.

- 9. Вычислите массу (г) H_3PO_4 , которая потребуется для приготовления 500 мл раствора с молярной концентрацией эквивалентов равной 0.05 моль/л.
- 10. Запишите уравнение гидролиза хлорида никеля (II) в ионном и молекулярном виде по 1-ой ступени. Укажите продукт, образующийся в результате этого процесса, кроме соляной кислоты.

Ответы: 1) Ni(OH)₂ 2) NiHCl 3) NiOHCl 4) Ni(OH)₂Cl

8. РЕЙТИНГ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ

Оценка качества освоения дисциплины в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной и итоговой аттестации студентов Томского политехнического университета», утверждёнными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (*максимально 60 баллов*), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен, зачёт) производится в конце семестра (оценивается в баллах (*максимально 40 баллов*), на экзамене (зачёте) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. *Максимальный итоговый рейтинг соответствует 100 баллам*.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

• основная литература:

- 1. Общая и неорганическая химия: учебник / Н. С. Ахметов. 7-е изд., стер. Москва: Высшая школа, 2009. 743 с.Угай А.Я. Общая и неорганическая химия. М.: Высшая школа, 1997. 527 с.
- 2. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. М.: Химия, 2013. 632 с.

• дополнительная литература:

- 1. Стась Н.Ф., Плакидкин А.А., Князева Е.М. Лабораторный практикум по общей и неорганической химии. Томск: ТПУ, 2013. 210 с.
- 2. Руководство к практическим занятиям по общей химии [Электронный ресурс]: учебное пособие / Л. М. Смолова; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 4.1 МВ). Томск: Изд-во ТПУ, 2010. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2011/m283.pdf
- 3. Справочник по общей и неорганической химии [Электронный ресурс]: учебное пособие / Н. Ф. Стась; Национальный исследовательский Томский политехнический университет (ТПУ), Институт физики высоких технологий (ИФВТ), Кафедра общей и неорганической химии (ОНХ). 1 компьютерный файл (pdf; 1.8 МВ). Томск: Изд-во ТПУ, 2012. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader.Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2012/m250.pdf
- 4. Решение задач по общей химии [Электронный ресурс]: учебное пособие / Н. Ф. Стась, А. В. Коршунов; Национальный исследовательский Томский политехнический университет (ТПУ), Институт физики высоких технологий (ИФВТ), Кафедра общей и неорганической химии (ОНХ). 2-е изд. 1 компьютерный файл (pdf; 1.8 МВ). Томск: Изд-во ТПУ, 2014. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2014/m232.pdf
- 5. Общая химия [Электронный ресурс] : учебник для бакалавров / Н. Л. Глинка. 19-е изд.. Мультимедиа ресурсы (10 директорий; 100 файлов; 740МВ). Москва: Юрайт, 2013. 1 Мультимедиа CD-ROM. Бакалавр. Базовый курс. —Бакалавр. Углубленный курс. —Электронные учебники издательства Юрайт. Электронная копия печатного издания. Доступ из корпоративной сети ТПУ. Системные требования: Pentium 100 MHz, 16 Mb RAM, Windows 95/98/NT/2000, CDROM, SVGA, звуковая карта, Internet Explorer 5.0 и выше.. http://www.lib.tpu.ru/fulltext2/m/2013/FN/fn-2442.pdf

• программное обеспечение и Internet-ресурсы:

- 1. Князева Е.М. Электронный учебник «Неорганическая химия» (экспертное заключение №194). Электронный адрес: http://stud.lms.tpu.ru/course/view.php?id=2
- 2. Мачехина К.И. Персональный сайт в портале ТПУ: http://portal.tpu.ru/SHARED/m/MACHEKHINAKSU
- 3. Химический тренажер: http://exam.tpu.ru/dasboard/object/bank/form?d=21
- 4. Виртуальные лабораторные работы по общей и неорганической химии http://lms.tpu.ru/course/view.php?id=8341

- 5. Учебные пособия по курсу «Общая и неорганическая химия: учебное пособие для самостоятельной работы студентов» http://portal.tpu.ru/departments/kafedra/onh/education, http://www.lib.tpu.ru/catalog_arm.html
- 6. Банк-3000 для промежуточного контроля знаний http://portal.tpu.ru/SHARED/s/SLD/student2 http://www.ptable.com/#Orbital динамическая таблица Менделеева

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

No	Наименование (компьютерные классы, учебные	Адрес учебных
Π/Π	лаборатории, оборудование)	кабинетов
1.	Установка для создания низкого вакуума 1 шт	634034, г. Томск,
	Баня водяная 1шт	пр. Ленина, 43а,
	Печь муфельная 1шт	ауд. 201а
2.	Водяная баня 1шт	634034, г. Томск,
	Термостат 1шт	пр. Ленина, 43а,
	Установка для создания низкого вакуума 1шт	ауд. 201б
3.	Фотокалориметр КФК-3-01 1шт	634034, г. Томск,
	Установка для создания низкого вакуума 1шт	пр. Ленина, 43а,
		ауд. 201в
4.	Установка ФПТ-1-11 2шт.	634034, г. Томск,
	Установка ФПТ 1-12 1шт.	пр. Ленина, 43а,
	Колбонагреватель 1шт.	ауд. 201г
	Печь муфельная 1шт.	
	Фотометр КФК-3-01 1шт.	
	Водяная баня 1шт.	
	Установка для создания низкого вакуума 1шт.	
	Блок питания Б5-47 1шт.	
5.	Блок питания Б5-47 1шт.	634034 г, Томск,
	Баня водяная 1шт.	пр. Ленина 43а,
	Установка для создания низкого вакуума 1шт.	ауд. 201д
6.	Весы лабораторные 7шт.	634034 г. Томск,
	Компьютер 1шт.	пр. Ленина 43а,
	Телефон 1шт.	ауд. 201е
7.	Мультимедийное оборудование 1шт.	634034 г. Томск,
	Компьютер 2шт.	пр. Ленина 43а,
	Роль-штора 1шт.	ауд. 211
	Доска POLYVISION 3шт.	
	Дистиллятор 1шт.	
	Телефон 1шт.	
8.	Компьютерный класс, компьютеры - 10 шт, точек доступа -	634034 г. Томск,
	10 шт, рабочих мест - 10 шт.	пр Ленина 43а,
		ауд. 207
9.	Установка для создания низкого вакуума 1 шт	634034, г. Томск,
	Баня водяная 1шт	пр. Ленина, 43а,
	Печь муфельная 1шт	ауд. 201а
10.	Водяная баня 1шт	634034 г. Томск,
	Термостат 1шт	пр. Ленина 43а,
	Установка для создания низкого вакуума 1шт	ауд. 201б
11.	Фотокалориметр КФК-3-01 1шт	634034 г. Томск,
	Установка для создания низкого вакуума 1шт	пр. Ленина 43а,

		ауд. 201в
12.	Установка ФПТ-1-11 2шт.	634034 г. Томск,
	Установка ФПТ 1-12 1шт.	пр. Ленина 43а,
	Колбонагреватель 1шт.	ауд. 201г
	Печь муфельная 1шт.	
	Фотометр КФК-3-01 1шт.	
	Водяная баня 1шт.	
	Установка для создания низкого вакуума 1шт.	
	Блок питания Б5-47 1шт.	
13.	Блок питания Б5-47 1шт.	634034 г. Томск,
	Баня водяная 1шт.	пр. Ленина 43а,
	Установка для создания низкого вакуума 1шт.	ауд. 201д
14.	Весы лабораторные 7шт.	634034 г. Томск,
	Компьютер 1шт.	пр. Ленина 43а,
	Телефон 1шт.	ауд. 201е
15.	Мультимедийное оборудование 1шт.	634034 г. Томск,
	Компьютер 2шт.	пр. Ленина 43а,
	Роль-штора 1шт.	ауд. 211
	Доска POLYVISION 3шт.	
	Дистиллятор 1шт.	
	Телефон 1шт.	
16.	Компьютерный класс, компьютеры - 10 шт, точек доступа -	634034 г. Томск,
	10 шт, рабочих мест - 10 шт.	пр. Ленина 43а,
		ауд. 207

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями Φ ГОС по направлению подготовки 21.03.01 «Нефтегазовое дело», профили подготовки:

- «Бурение нефтяных и газовых скважин»,
- «Эксплуатация и обслуживание объектов добычи нефти»,
- «Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки»
- «Машины и оборудование нефтяных и газовых промыслов» и профилю.

Программа одобрена на заседании кафедры ОНХ

(протокол № 110 от «4» июня 2015 г.)	
Автор: ассистент каф. ОНХ	Мачехина К.И.
ассистент каф. ОНХ	_ Абрамова П.В.
Рецензент: профессор каф. ОНХ	<u>И</u> льин А.П.