

РАБОЧАЯ ПРОГРАММА МОДУЛЯ (ДИСЦИПЛИНЫ) «ХИМИЯ 2.6»

Направление (специальность) ООП 21.03.01 «Нефтегазовое дело» Профили подготовки (специализация, программа):

- «Бурение нефтяных и газовых скважин»,
- «Эксплуатация и обслуживание объектов добычи нефти»,
- «Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки»
- «Машины и оборудование нефтяных и газовых промыслов»

Квалификация

Академический бакалавр

(степень)

Базовый учебный план приема 2015 г.

 Курс
 1
 семестр
 2

 Количество кредитов
 3

 Код дисциплины
 51.БМ2.6

Виды учебной деятельности	Временной	ресурс
Лекции	8	часов (ауд,)
Лабораторные занятия	6	часов (ауд.)
Практические занятия	4	часов (ауд,)
Аудиторные занятия	18	часов (ауд,)
Самостоятельная	90	часов (ауд,)
ОТОГО	108	часов (ауд,)
Форма обучения	заочная	

Вид промежуточной аттестации

Экзамен в 2 семестре

Обеспечивающее подразделение

Кафедра «Общей и неорганической химии» ИФВТ

Заведующий кафедрой	ТХНГ		А.В. Рудаченко
	БС	1/1000	> А.Ю Дмитриев
	ГРНМ		ОС Чернова
	ТПМ	Je pr	Ф.А. Симанкин
Руководитель ООП			О.В. Брусник
Преподаватели		Huy	К.И. Мачехина
		Aparolas	П.В. Абрамова

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения данной дисциплины Б1.БМ2.6 «Химия 2.6» бакалавр приобретает знания, умения и навыки, обеспечивающие достижение целей Ц2, Ц5 ООП 21.03.01. «Нефтегазовое дело»:

Код цели	Формулировка цели	Требования ФГОС и заинтересованных работодателей
Ц2	Готовность выпускников к междисциплинарной экспериментально- исследовательской деятельности для решения задач, связанных с разработкой инновационных эффективных методов бурения нефтяных и газовых скважин, разработкой и эксплуатацией месторождений углеводородов, их транспорта и хранения.	Требования ФГОС, критерии АИОР, соответствие международным стандартам EUR–ACE и FEANI. Потребности научно-исследовательских центров Институт химии нефти СО РАН и предприятий нефтегазовой промышленности, предприятия ООО «Газпром», АК «Транснефть»
Ц5	Готовность выпускников к самообучению и непрерывному профессиональному самосовершенствованию в условиях автономии и самоуправления.	Требования ФГОС, критерии АИОР, соответствие международным стандартам EUR-ACE и FEANI, запросы отечественных и зарубежных работодателей

Общей целью изучения дисциплины Б1.БМ2.6 «Химия 2.6» является формирование знаний, умений и навыков и компетенций, необходимых для производственной, научно-исследовательской и проектной деятельности специалиста.

2. МЕСТО МОДУЛЯ (ДИСЦИПЛИНЫ) В СТРУКТУРЕ ООП

Согласно $\Phi \Gamma O C$ и $O O \Pi$ 21.03.01 «Нефтегазовое дело» дисциплина Химия 2.6 относится к модулю естественнонаучных и математических дисциплин.

Код дисциплины	Наименование дисциплины	Кредиты	Форма контроля
ООП			
Б1.БМ2 Модуль естественнонаучных и математических дисциплин			
	Базовая часть		
Б1.БМ2.6	Химия 2.6	3	ЭКЗ.

ПРЕРЕКВИЗИТЫ:

Б1.БМ2.5 «Химия 1.6»

КОРРЕКВИЗИТЫ:

Б1.ВМ 4.6 «Химия нефти и газа».

Б1.ВМ 4.8.1 «Физическая и коллоидная химия».

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В соответствии с требованиями ООП освоение дисциплины Б1.БМ2.6 «Химия 2.6», направлено на формирование у студентов следующих компетенций (результатов обучения), в т. ч. в соответствии с ФГОС ВПО, критериям АИОР, согласованных с требованиями международных стандартов EURACE и FEANI (табл. 1).

Таблица 1 Составляющие результатов обучения, которые будут получены при изучении дисциплины Б1.БМ2.6 «Химия 2.6»

Результаты обучения	Составляющие результатов обучения					
(компетенци и из ФГОС)	петенци Кол Знать Кол Уметь Кол		Код	Владеть		
P1 (OK – 7)		Знать место и роль химии в познании окружающего мира Химические свойства элементов и их неорганических и органических соединений ряда подгрупп периодической системы Д.И. Менделеева		Применять классические законы и определять основные физико-химические характеристики веществ для решения профессиональных задач		Теоретическими методами описания свойств сложных веществ на основе электронного строения их атомов и положения в Периодической системе химических элементов
		Реакционную способность веществ, их химическую идентификацию		Анализировать и оценивать информацию, используя современные образовательные и информационные технологии в области неорганической и органической химии. Планировать и осуществлять свою деятельность с учетом результатов анализа		Навыками проведения химических экспериментов и методами качественного и количественного анализа одно- и многокомпонентных систем. Навыками обмена естественнонаучной информации с использованием баз данных и информационных справочников по химии
P3 (OK – 7, OΠK – 6, ΠK-1)		Знать методы поиска учебной и научной-технической литературы, патентной проработки информации		Самостоятельно работать с учебной, методической и справочной литературой		Опытом работы с электронными библиотечными или иными официальными научно-техническими ресурсами баз данных

В результате освоения дисциплины Б1.БМ2.6 «Химия 2.6» бакалавром должны быть достигнуты следующие результаты:

Таблица 2 Планируемые результаты освоения обучения

Код	Результат
P1	Приобретение профессиональной эрудиции и широкого кругозора в области математических, естественных и социально-экономических наук и использование их в профессиональной деятельности. (РД1, РД2, РД3, РД4)
Р3	Уметь самостоятельно учиться и непрерывно повышать квалификацию в течение всего периода профессиональной деятельности (РД3)

Планируемые результаты освоения дисциплины (модуля):

№ п/п	Результат
РД1	Демонстрировать глубокое знание и понимание сути основных законов
	химии и химических превращений, знание свойств и способов получения
	веществ.
РД2	Проводить стехиометрические расчеты; определять термодинамическую
	возможность протекания химических процессов; записывать уравнения
	реакций химических превращений веществ и их получения; проводить
	аналогии в изменении свойств химических соединений.
РД3	Выявлять взаимосвязь между структурой, свойствами и реакционной
	способностью химических соединений.
РД4	Применять полученные знания для определения, формулирования и
	решения проблем, связанных с профессиональной деятельностью.
РД5	Самостоятельно приобретать знания и умения, связанные с вопросами
	химии для повышения профессионального уровня.

В процессе освоения дисциплины Б1.БМ2.6 «Химия 2.6» у студентов развиваются следующие компетенции:

Общекультурные:

• способностью к самоорганизации и самообразованию (ОК-7);

Общепрофессиональные:

• способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности (ОПК-6);

Профессиональные:

• способностью применять процессный подход в практической деятельности, сочетать теорию и практику (ПК-1).

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Структура дисциплины

Структура дисциплины Б1.БМ2.6 «Химия 2.6» по разделам и видам учебной деятельности с указанием временного ресурса в часах представлена в табл.3.

Структура дисциплины по разделам и формам организации обучения

- 77		иторная работа (ч	СРС	Итого	
Название раздела	Лекции	Практические занятия	Лаб. работы	(час.)	(час.)
		2 семестр			
1. Электрохимические системы	2	2		18	22
2. Комплексные соединения	2			17	19
3. Введение в неорганическую химию		2		20	22
4. Химия р-элементов	2		6	17	25
5. Органическая химия	2			18	20
Итого:	8	4	6	90	108

4.2. Содержание дисциплины

Раздел 1. Электрохимические системы

Лекция, Практическое занятие, СРС, ИДЗ. Особенности химической связи в металлах. Зонная теория как распространение метода МО на кристаллы; объяснение электропроводности металлов зонной теорией. Объяснение пластичности металлов.

Окислительно-восстановительные реакции. Электродные потенциалы. Механизм возникновения электродного потенциала на границе металл – раствор. Стандартные электродные потенциалы. Их измерение с помощью водородного электрода. Уравнение Нернста. Электрохимический ряд активности металлов, его свойства. Стандартные окислительно-восстановительные потенциалы, направление протекания ОВР.

Гальванические элементы как источники электрической энергии. Электродвижущая сила, ее измерение, ее связь с энергией Гиббса. Концентрационные элементы. Топливные элементы. Аккумуляторы.

Электролиз расплавов и растворов электролитов. Напряжение разложения и перенапряжение. Порядок разрядки ионов на электродах. Электролиз с растворимым анодом. Количественные характеристики электролиза. Применение электролиза.

Химическая и электрохимическая коррозия металлов и способы защиты металлов от коррозии.

Лекция 1. Электрохимические процессы

<u>Практическое занятие 1.</u> Окислительно-восстановительные реакции

Раздел 2. Комплексные соединения

Лекция, СРС, ИДЗ. Строение комплексных соединений (КС), классификация и номенклатура КС. Поведение комплексных соединений в растворах, константы нестойкости КС. Рассмотрение химической связи в КС с точки зрения электростатической теории, метода валентных связей, теории кристаллического поля (ТКП). Объяснение на их основе координационных чисел комплексообразователей, формы, окраски и магнитных свойств комплексных соединений.

Лекция 2. Комплексные соединения

Раздел 3. Введение в неорганическую химию

Практическое занятие. СРС, ИДЗ. Распространение химических элементов в космосе и земной коре. Кларк. Распространенные, редкие, рассеянные, благородные, радиоактивные, искусственные элементы.

Простые вещества, периодичность в изменении их свойств. Взаимодействие простых веществ с кислотами, щелочами и водой. Бинарные соединения (оксиды, халькогениды, гидриды, нитриды), закономерное изменение кислотно-основных свойств однотипных бинарных соединений. Кислотно-основные свойства по

Бренстеду-Лоури и Льюису. Трехэлементные соединения – гидроксиды (кислоты, основания, амфолиты, соли). Формальный показатель. Закономерности изменения свойств.

<u>Практическое занятие 2.</u> Взаимодействие металлов с кислотами, щелочами и водой.

Раздел 4. Химия р-элементов

Лекция, Лабораторные работы, СРС, ИДЗ. **Химия р-элементов VI группы.** Особенности электронного строения атомов р-элементов VI группы. Общая характеристика элементов. Электронное строение атомов, элементы типические и полные электронные аналоги. Закономерное изменение свойств.

Важнейшие халькогены — кислород и сера. Строение атома, основные характеристики. Распространение в природе. Аллотропные модификации. Их физические и химические свойства. Кислород. Строение атома и молекулы О₂. Распространенность, природные соединения, получение, окислительная активность, применение кислорода. Озон: образование и строение молекулы с позиции метода ВС, получение, окислительная активность, применение. Проблемы «Озонового слоя» в жизнедеятельности человека. Пероксид водорода: строение молекулы, свойства, получение, применение. Пероксиды, надпероксиды, озониды. Применение.

Сера. Состав и строение простых веществ. Аллотропия серы. Окислительновосстановительные свойства простых веществ, взаимодействие с водой, кислотами и щелочами. Соединения серы со степенью окисления -2. Сульфиды металлов: классификация по отношению к кислотам и воде, гидролиз. Сероводород. Соединения серы со степенью окисления +4. Сульфиты и гидросульфиты. Соединения серы со степенью окисления +6. Сульфаты и гидросульфаты.

Селен, теллур, полоний. Природные соединения. Взаимодействия селена и теллура с водородом, сопоставление строения и свойств халькогенидов. Соединения селена и теллура в положительных степенях окисления. Применение селена, теллура и их важнейших соединений.

р-Элементы пятой группы. Электронное строение атомов характеристика свойств. Азот. Строение атома, основные характеристики. Возможные степени окисления. Молекулярный азот. Получение. физические и химические свойства. Нитриды элементов. Аммиак. Взаимодействие с водой и кислотами. Гидразин и гидроксиламин: состав и строение молекул, свойства. Оксиды получение, Азотная кислота и ee соли: окислительные взаимодействие с металлами и неметаллами. Взаимодействие азотной кислоты различной концентрации с металлами. Соли азотной кислоты и их применение. Нитраты аммония, калия и натрия. «Царская водка». Азотистоводородная кислота и ее соли (азиды). Применение азота и его важнейших соединений. Азотные удобрения.

Фосфор. Нахождение в природе. Получение, аллотропные модификации и свойства, дифосфин, фосфиды металлов. Оксиды фосфора: получение, состав молекул, отношение к воде. Фосфорноватистая, фосфористая и фосфорные кислоты (состав и строение молекул, получение, диссоциация, окислительновосстановительные свойства) и их соли. Соединение фосфора с галогенами. Применение фосфора и его важнейших соединений. Фосфорные удобрения.

Мышьяк, сурьма, висмут. Нахождение в природе. Получение, свойства простых веществ. Водородные соединения, их сравнение с водородными соединениями азота и фосфора. Оксиды, гидроксиды (кислоты и основания) и соли мышьяка, сурьмы и висмута в с.о. +3, +5. Закономерности изменения их основно-кислотных и окислительно-восстановительных свойств. Соединения с серой и галогенами. Применение мышьяка, сурьмы, висмута и их важнейших соединений.

р-Элементы четвертой группы. Электронное строение атомов, общая характеристика элементов, закономерности изменения свойств. Углерод. Нахождение

в природе. Аллотропия углерода. Карбиды металлов. Оксиды углерода. Угольная кислота и ее соли. Цианистоводородная, циановая, роданистоводородная кислоты и их соли. Соединения углерода с серой и галогенами. Применение углерода и его важнейших соединений. Роль углерода в органической химии.

Кремний. Нахождение в природе, получение и свойства простого вещества. Оксид кремния (IV), его аллотропные модификации, взаимодействие с кислотами и щелочами. Кремниевые кислоты, силикагель. Простые силикаты, стекла. Сложные природные силикаты, алюмосиликаты. Цеолиты. Соединения кремния с водородом (силаны), с металлами (силициды), с углеродом (карборунд), с галогенами. Применение кремния и его важнейших соединений.

Германий, олово, свинец. Нахождение в природе, получение простых веществ. Аллотропные модификации олова. Взаимодействие простых веществ с кислотами и щелочами. Оксиды, гидроксиды, их соли: получение, основно-кислотные свойства, гидролиз, окислительно-восстановительные свойства. Соединения с водородом, галогенами. Применение германия, олова, свинца и их важнейших соединений.

<u>Лекция 3.</u> Химия р-элементов

<u>Лабораторная работа 1.</u> р-элементы VI группы

<u>Лабораторная работа 2.</u> р-элементы V группы

<u>Лабораторная работа 3.</u> р-элементы IV группы

Раздел 5. Органическая химия

Лекция, СРС, ИДЗ. Алканы. Природа С-С и С-Н связей в алканах. Понятие о конформациях и конфермерах алканов. Природные источники алканов. Методы синтеза: гидрирование непредельных углеводородов, синтез через диалкидкупраты, электролиз солей карбоновых кислот, восстановление карбонильных соединений. Химические свойства. Селективность радикальных реакций и относительная стабильность алкильных радикалов. Термический и каталитический крекинг.

Ароматичность. Ароматические углеводороды. Строение. Молекулярные орбитали бензола. Конденсированные ароматические углеводороды: нафталин, фенантрен, антрацен, азулен и др. Гетероциклические пяти- и шестичленные ароматические соединения (пиррол, фуран, тиофен, индол, азолы, пиридин, хинолин). Свойства арренов. Получение ароматических углеводородов в промышленности — каталитический риформинг нефти, переработка коксового газа и каменноугольной смолы.

Высокомолекулярные соединения (ВМС). Органические полимерные материалы. Методы получения полимеров и олигомеров, полимеризация и поликонденсация. Важнейшие представители полимеров. Применение полимеров и олигомеров. Молекулярная масса полимеров. Растворы ВМС. Набухание. Особенности полимерного состояния вещества.

Химическая идентификация. Вещество и его чистота. Аналитический сигнал и его виды. Качественный и количественный анализ. Физико-химический и физический анализ.

<u>Лекция 4.</u> Общие закономерности в органической химии

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Для достижения планируемых результатов обучения, в дисциплине Б1.БМ2.6 «Химия 2.6» используются различные образовательные технологии:

1. Информационно-развивающие технологии, направленные на формирование системы знаний, запоминание и свободное оперирование ими.

Используется лекционно-семинарский метод, самостоятельное изучение литературы, применение новых информационных технологий для самостоятельного пополнения знаний, включая использование технических и электронных средств информации.

2. Деятельностные практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений при проведении

экспериментальных исследований, обеспечивающих возможность качественно выполнять профессиональную деятельность.

Используется анализ, сравнение методов проведения химических исследований, выбор метода, в зависимости от объекта исследования в конкретной производственной ситуации и его практическая реализация.

- 3. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие проблемного мышления, мыслительной активности, способности видеть и формулировать проблемы, выбирать способы и средства для их решения. Используются виды проблемного обучения: освещение основных проблем общей и неорганической химии на лекциях, учебные дискуссии, коллективная деятельность в группах при выполнении лабораторных работ, решение задач повышенной сложности. При этом используются первые три уровня (из четырех) сложности и самостоятельности: проблемное изложение учебного материала преподавателем; создание преподавателем проблемных ситуаций, а обучаемые вместе с ним включаются в их разрешение; преподаватель создает проблемную ситуацию, а разрешают её обучаемые в ходе самостоятельной деятельности.
- 4. Личностно-ориентированные технологии обучения, обеспечивающие в ходе учебного процесса учет различных способностей обучаемых, создание необходимых условий для развития их индивидуальных способностей, развитие активности личности в учебном процессе. Личностно-ориентированные технологии обучения реализуются в результате индивидуального общения преподавателя и студента при защите лабораторных работ, при выполнении домашних индивидуальных заданий, решении задач повышенной сложности, на еженедельных консультациях.

Для целенаправленного и эффективного формирования запланированных компетенций у обучающихся, выбраны следующие сочетания форм организации учебного процесса и методов активизации образовательной деятельности, представленные в табл. 4.

Методы и формы организации обучения (ФОО)

Таблица 5

Методы	ФОО			
	Лекции	Лабораторные работы	Практические занятия	CPC
Работа в группе		+		
Методы проблемного обучения	+	+	+	+
Обучение на основе опыта		+		
Опережающая самостоятельная		+		+
работа				
Поисковый метод	+	+		+
Исследовательский метод		+		

6. ОРГАНИЗАЦИЯ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

6.1 Виды и формы самостоятельной работы (СРС)

Самостоятельная работа по дисциплине Б1.БМ2.6 «Химия 2.6», направленная на углубление и закрепление знаний студента, на развитие практических умений, включает в себя текущую СРС:

- работа с лекционным материалом;
- подготовка к практическим занятиям;
- подготовка к лабораторным работам;
- изучение тем, вынесенных на самостоятельную проработку;
- выполнение индивидуальных домашних заданий;

• подготовка к зачету и экзамену.

Творческая проблемно-ориентированная самостоятельная работа по дисциплине Б1.БМ2.6 «Химия 2.6», направленная на развитие интеллектуальных умений, общекультурных и профессиональных компетенций, развитие творческого мышления у студентов, включает в себя следующие виды работ по основным проблемам курса:

- поиск, анализ, структурирование информации;
- выполнение расчетных работ, обработка и анализ данных;
- решение задач повышенной сложности, в том числе комплексных и олимпиадных задач;
- участие в олимпиадах по химии (профиль).

6.2. Содержание самостоятельной работы студентов по дисциплине

1. Темы индивидуальных домашних заданий

№ п/п	Тема				
	2семестр				
1.	Определение степени окисления элементов в соединении; определение стехиометрических коэффициентов в окислительно-восстановительных реакциях методом электронного баланса; определение окислителя и восстановителя; расчет эквивалентных масс окислителей и восстановителей. Установление возможности протекания окислительно-восстановительных				
2.	реакций. Расчеты значений электродного потенциала по уравнению Нернста; составление схем гальванических элементов с записью уравнения токообразующей реакции и вычислением электродвижущей силы; составление схем и уравнений процесса электролиза; расчет количественных характеристик по закону Фарадея; вычисление по значениям электрохимических потенциалов константы равновесия окислительно-восстановительных реакций; составление схем коррозионных гальванических элементов; описание методов защиты от коррозии.				
3.	Описание состава комплексных соединений; описание строения комплексных соединений с использованием ТКП; классифицирование комплексных соединений по различным признакам; название комплексных соединений; запись комплексных соединений по названию; составление схем диссоциации и выражение константы нестойкости для комплексных соединений.				
4.	Составление уравнений химических реакций для соединений р-элементов; расчеты по химическим уравнениям с использованием стехиометрических законов.				
5.	Классификация органических соединений; определение изомеров и гомологов; название органических соединений по различным номенклатурам.				

2. Темы, выносимые на самостоятельную проработку

	, , , , , , , , , , , , , , , , , , , ,			
№ п/п	Тема			
	2 семестр			
1.	Коррозия металлов и способы защиты от коррозии.			
2.	Распространение химических элементов в космосе и земной коре.			
3.	Закономерное изменение кислотно-основных свойств однотипных			
	бинарных соединений. Общие сведения о теориях кислот и оснований.			
4.	Химия ВМС. Важнейшие представители. Получение. Применение.			

6.3. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателя.

Самоконтроль зависит от определенных качеств личности, ответственности за результаты своего обучения, заинтересованности в положительной оценке своего труда, материальных и моральных стимулов, от того насколько обучаемый мотивирован в достижении наилучших результатов. Задача преподавателя состоит в том, чтобы создать условия для выполнения самостоятельной работы (учебно-методическое обеспечение), правильно использовать различные стимулы для реализации этой работы (рейтинговая система), повышать её значимость, и грамотно осуществлять контроль самостоятельной деятельности студента (фонд оценочных средств).

7. СРЕДСТВА ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ ОЦЕНКИ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ

Оценка качества освоения дисциплины Б1.БМ2.6 «Химия 2.6» производится по результатам следующих контролирующих мероприятий:

Таблица 5

Контролирующие мероприятия	Результаты обучения по дисциплине
Выполнение и защита лабораторных работ и практических	РД1, РД2, РД3, РД4
заданий	
Защита индивидуальных заданий	РД1, РД2, РД5
Экзамен	РД1, РД2

Для оценки качества освоения дисциплины Б1.БМ2.6 «Химия 2.6» при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств):

- вопросы входного контроля;
- контрольные вопросы, задаваемых при выполнении и защитах лабораторных работ;
- контрольные вопросы, задаваемые при проведении практических занятий,
- вопросы, выносимые на экзамены и зачеты и др.

Вопросы входного контроля

1. Какая масса серной кислоты соответствует 1,5 моль? Сколько молекул содержится в этом количестве вещества?

- 2. Определите: а) количество оксида углерода (IV) в 66,0 г этого вещества; б) объем, занимаемой 140 г азота при н.у.; в) число молекул в 5,6 л водорода при н.у.
- 3. Перманганат калия и сероводород в среде серной кислоты взаимодействуют согласно уравнению:

 $2KMnO_4 + 5H_2S + 3H_2SO_4 = 2MnSO_4 + 5S + K_2SO_4 + 8H_2O$ Какая масса $KMnO_4$ и какой объем H_2S (при н.у.) взаимодействуют в этой реакции, если образуется 80 г серы?

- 4. Запишите полную электронную формула серы. Укажите валентные электроны. Охарактеризуйте последний электрон четырьмя квантовыми числами.
- 5. Для ряда однотипных молекул $H_2O H_2S H_2Se H_2Te$ объясните изменение характеристик и свойств химической связи:
- 1) длины, 2) валентного угла, 3) полярности, 4) вида межмолекулярных взаимодействий.
- 6. Определите тип гибридизации центрального атома в молекуле HNO₃.
- 7. Для реакции $A(\Gamma) + 2B(\Gamma) = C(\Gamma)$:
- А) Напишите математическое выражение для скорости реакции.
- Б) Во сколько раз возрастет скорость реакции при повышении температуры на 30 $^{\circ}$ С (температурный коэффициент $\gamma = 2$)?
- 8. Вычислите состав равновесной смеси и константу равновесия (Kр) реакции:

$$CO + Cl_2 = COCl_2$$
,

если исходные концентрации равны $[CO]_0 = 0.03$ моль/л, $[Cl_2]_0 = 0.02$ моль/л, а равновесная концентрация $[CO]_0 = 0.021$ моль/л.

9. Напишите выражение для константы равновесия гетерогенной системы:

$$CO2(\Gamma) + C(\kappa) = 2CO(\Gamma)$$
.

Как изменится скорость прямой реакции – образования CO, если концентрацию CO₂ уменьшить в четыре раза? Как следует изменить давление, чтобы повысить выход CO?

10. Вычислите молярную концентрацию, молярную концентрацию эквивалента и моляльность 16 %-ного (по массе) раствора хлорида алюминия, плотность которого 1,149 г/см3.

Вопросы, задаваемые при защите лабораторных работ

- 1. Охарактеризуйте химические свойства элементов IV группы главной подгруппы.
- 2. Перечислите аллотропные модификации атома углерода с указанием типа гибридизации атома углерода.
- 3. Напишите формулу сульфида цинка, какие свойства и почему проявляет данное соединении в OBP?
- 4. Определите тип гибридизации центрального атома в ионе PO_4^{3-} .

Примеры экзаменационных вопросов и задач

1. Расставьте коэффициенты в окислительно – восстановительной реакции, определите окислитель, восстановитель, тип OBP:

$$H_3PO_2 + AgNO_3 + H_2O \rightarrow H_3PO_4 + Ag + HNO_3$$

- 2. Составьте схему алюминиево-кадмиевого гальванического элемента, запишите электродные процессы и токообразующую реакцию. Вычислите:
- А) ЭДС при стандартных условиях и энергию Гиббса;
- Б) ЭДС и энергию Гиббса при 27 °С и концентрациях $0.01~{\rm M~Al^{3+}}$ и $0.01~{\rm M~Cd^{2+}}$.
- 3. При электролизе раствора сульфата некоторого двухвалентного металла на катоде выделилось 104,8 г металла. Сила тока равна 5 А. Время электролиза 10 ч. Какой металл получен при электролизе?

- 4. Две железные пластинки покрасили: одну краской с алюминиевой пудрой, а другую с бронзовой. Составьте схемы коррозионных гальванических микроэлементов, которые образуются при повреждении слоя краски, схемы анодного и катодного процессов при его работе, химическое уравнение реакции.
- Для комплексного соединения [Co(NH₃)₆]Cl₃:
- а) дайте название
- б) укажите комплексный ион
- в) выразите K_{μ} и K_{μ}
- г) классифицируйте:
 - по заряду комплексного иона
 - по лиганду
- д) укажите класс соединения
- 6. Напишите продукты возможных реакций металлов с растворами солей:

a)
$$Ag + Mg(NO_3)_2 =$$

$$\delta$$
) Zn + AgNO₃ =

$$B) Mn + CuSO_4 =$$

$$\Gamma$$
) Pt + CuSO₄ =

7. В схеме превращений:

$$Fe \xrightarrow{Cl_2} X_1 \xrightarrow{NaOH(p-p)} X_2 \xrightarrow{Br_2,NaOH} X_3$$

веществом Х₃ является

- 1) FeBr₃ 2) NaFeO₂ 3) FeBr₂ 4) Na₂FeO₄ Напишите все уравнения химических реакций
- 8. Установите соответствие между формулой соли и её названием.

- A) гидразин

 1) NH4NO3
 Б) аммиак

 2) N2H4
 В) нитрат аммония

 3) HN3
 Г) азотистоводород

 4) NH2OH
 Д) нитрит аммония

 Г) азотистоводородная кислота

- Е) гидроксиламин
- 9. Объем газа (н.у.), выделившегося при взаимодействии 98,9 мл 20 %-го раствора серной кислоты (ρ =1,1394 г/см³) с 8,1 г алюминия равен _____ л. (ответ дать с точностью до десятых)
- 10. Каков тип гибридизации орбиталей серы в молекуле SO_3 ? Сколько σ и π -связей имеется в этой молекуле?
- 11. Назовите соединения по систематической номенклатуре и, где возможно, по радикалофункциональной. Укажите класс соединений:

8. РЕЙТИНГ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ

Оценка качества освоения дисциплины в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной и итоговой аттестации студентов Томского политехнического университета», утверждёнными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (*максимально 60 баллов*), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен, зачёт) производится в конце семестра (оценивается в баллах (*максимально 40 баллов*), на экзамене (зачёте) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. *Максимальный итоговый рейтинг соответствует 100 баллам*.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Общая и неорганическая химия: учебник / Н. С. Ахметов. 7-е изд., стер. Москва: Высшая школа, 2009. 743 с.
- 2. Угай А.Я. Общая и неорганическая химия. М.: Высшая школа, 1997. 527 с.
- 3. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. М.: Химия, 2013. 632 с.

Дополнительная литература:

- 1. Стась Н.Ф., Плакидкин А.А., Князева Е.М. Лабораторный практикум по общей и неорганической химии. Томск: ТПУ, 2013. 210 с.
- 2. Руководство к практическим занятиям по общей химии [Электронный ресурс]: учебное пособие / Л. М. Смолова; Национальный исследовательский Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 4.1 МВ). Томск: Изд-во ТПУ, 2010. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2011/m283.pdf
- 3. Справочник по общей и неорганической химии [Электронный ресурс]: учебное пособие / Н. Ф. Стась; Национальный исследовательский Томский политехнический университет (ТПУ), Институт физики высоких технологий (ИФВТ), Кафедра общей и неорганической химии (ОНХ). 1 компьютерный файл (pdf; 1.8 МВ). Томск: Изд-во ТПУ, 2012. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2012/m250.pdf
- 4. Решение задач по общей химии [Электронный ресурс]: учебное пособие / Н. Ф. Стась, А. В. Коршунов; Национальный исследовательский Томский политехнический университет (ТПУ), Институт физики высоких технологий (ИФВТ), Кафедра общей и неорганической химии (ОНХ). 2-е изд. 1 компьютерный файл (pdf; 1.8 МВ). Томск: Изд-во ТПУ, 2014. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из

- корпоративной сети ТПУ. Системные требования: Adobe Reader. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2014/m232.pdf
- 5. Общая химия [Электронный ресурс] : учебник для бакалавров / Н. Л. Глинка. 19-е изд. Мультимедиа ресурсы (10 директорий; 100 файлов; 740МВ). Москва: Юрайт, 2013. 1 Мультимедиа CD-ROM. Бакалавр. Базовый курс. —Бакалавр. Углубленный курс. —Электронные учебники издательства Юрайт. Электронная копия печатного издания. Доступ из корпоративной сети ТПУ. Системные требования: Pentium 100 MHz, 16 Mb RAM, Windows 95/98/NT/2000, CDROM, SVGA, звуковая карта, Internet Explorer 5.0 и выше.. http://www.lib.tpu.ru/fulltext2/m/2013/FN/fn-2442.pdf

• программное обеспечение и Internet-ресурсы:

- 1. Князева Е.М. Электронный учебник «Неорганическая химия» (экспертное заключение №194). Электронный адрес: http://stud.lms.tpu.ru/course/view.php?id=2
- 2. Мачехина К.И. Персональный сайт в портале ТПУ: http://portal.tpu.ru/SHARED/m/MACHEKHINAKSU
- 3. Химический тренажер: http://exam.tpu.ru/dasboard/object/bank/form?d=21
- 4. Виртуальные лабораторные работы по общей и неорганической химии http://lms.tpu.ru/course/view.php?id=8341
- 5. Учебные пособия по курсу «Общая и неорганическая химия: учебное пособие для самостоятельной работы студентов» http://portal.tpu.ru/departments/kafedra/onh/education, http://www.lib.tpu.ru/catalog_arm.html
- 6. Банк-3000 для промежуточного контроля знаний http://portal.tpu.ru/SHARED/s/SLD/student2 http://www.ptable.com/#Orbital динамическая таблица Менделеева

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

No	Наименование (компьютерные классы, учебные	Адрес учебных
п/п	лаборатории, оборудование)	кабинетов
1.	Установка для создания низкого вакуума 1 шт	634034, г. Томск,
	Баня водяная 1шт	пр. Ленина, 43а,
	Печь муфельная 1шт	ауд. 201а
2.	Водяная баня 1шт	634034, г. Томск,
	Термостат 1шт	пр. Ленина, 43а,
	Установка для создания низкого вакуума 1шт	ауд. 201б
3.	Фотокалориметр КФК-3-01 1шт	634034, г. Томск,
	Установка для создания низкого вакуума 1шт	пр. Ленина, 43а,
		ауд. 201в
4.	Установка ФПТ-1-11 2шт.	634034, г. Томск,
	Установка ФПТ 1-12 1шт.	пр. Ленина, 43а,
	Колбонагреватель 1шт.	ауд. 201г
	Печь муфельная 1шт.	
	Фотометр КФК-3-01 1шт.	
	Водяная баня 1шт.	
	Установка для создания низкого вакуума 1шт.	
	Блок питания Б5-47 1шт.	
5.	Блок питания Б5-47 1шт.	634034 г, Томск,
	Баня водяная 1шт.	пр. Ленина 43а,
	Установка для создания низкого вакуума 1шт.	ауд. 201д
6.	Весы лабораторные 7шт.	634034 г. Томск,
	Компьютер 1шт.	пр. Ленина 43а,
	Телефон 1шт.	ауд. 201е
7.	Мультимедийное оборудование 1шт.	634034 г. Томск,
	Компьютер 2шт.	пр. Ленина 43а,
	Роль-штора 1шт.	ауд. 211
	Доска POLYVISION 3шт.	
	Дистиллятор 1шт.	
	Телефон 1шт.	
8.	Компьютерный класс, компьютеры - 10 шт, точек доступа -	
	10 шт, рабочих мест - 10 шт.	пр Ленина 43а,
		ауд. 207
9.	Установка для создания низкого вакуума 1 шт	634034, г. Томск,
	Баня водяная 1шт	пр. Ленина, 43а,
10	Печь муфельная 1шт	ауд. 201а
10.	Водяная баня 1шт	634034 г. Томск,
	Термостат 1шт	пр. Ленина 43а,
11	Установка для создания низкого вакуума 1шт	ауд. 201б
11.	Фотокалориметр КФК-3-01 1шт	634034 г. Томск,
	Установка для создания низкого вакуума 1шт	пр. Ленина 43а,
12	Установка ФПТ-1-11 2шт.	ауд. 201в
12.	Установка ФПТ 1-11 2шт. Установка ФПТ 1-12 1шт.	634034 г. Томск,
		пр. Ленина 43а,
	Колбонагреватель 1шт.	ауд. 201г
	Печь муфельная 1шт.	
	Фотометр КФК-3-01 1шт. Водяная баня 1шт.	
	Установка для создания низкого вакуума 1шт.	
	з становка для создания низкого вакуума 1ш1.	<u> </u>

	Блок питания Б5-47 1шт.	
13.	Блок питания Б5-47 1шт.	634034 г. Томск,
	Баня водяная 1шт.	пр. Ленина 43а,
	Установка для создания низкого вакуума 1шт.	ауд. 201д
14.	Весы лабораторные 7шт.	634034 г. Томск,
	Компьютер 1шт.	пр. Ленина 43а,
	Телефон 1шт.	ауд. 201е
15.	Мультимедийное оборудование 1шт.	634034 г. Томск,
	Компьютер 2шт.	пр. Ленина 43а,
	Роль-штора 1шт.	ауд. 211
	Доска POLYVISION 3шт.	
	Дистиллятор 1шт.	
	Телефон 1шт.	
16.	Компьютерный класс, компьютеры - 10 шт, точек доступа -	634034 г. Томск,
	10 шт, рабочих мест - 10 шт.	пр. Ленина 43а,
		ауд. 207

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями $\Phi\Gamma$ ОС по направлению подготовки 21.03.01 «Нефтегазовое дело», профили подготовки:

- «Бурение нефтяных и газовых скважин»,
- «Эксплуатация и обслуживание объектов добычи нефти»,
- «Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки»
- «Машины и оборудование нефтяных и газовых промыслов» и профилю.

Программа одобрена на заседании кафедры ОНХ

(протокол № 110 от «4» июня 2015 г.)	
Автор: ассистент каф. ОНХ	Мачехина К.И.
ассистент каф. ОНХ	Абрамова П.В.
Рецензент: профессор каф. ОНХ	Ильин А.П.