

УТВЕРЖДАЮ Директор ИФВТ ТПУ А.Н. Яковлев

«29» февраля 2016 г.

РАБОЧАЯ ПРОГРАММА МОДУЛЯ (ДИСЦИПЛИНЫ)

М2.В3.3 МЕТОДЫ ТЕСТИРОВАНИЯ ЭКСПЛУАТАЦИОННЫХ ХАРАКТЕРИСТИК НАНОМАТЕРИАЛОВ

НАПРАВЛЕНИЕ (СПЕЦИАЛЬНОСТЬ) ООП **22.04.01** Материаловедение и технологии материалов

ПРОФИЛЬ

«Производство изделий из наноструктурных материалов»

КВАЛИФИКАЦИЯ (СТЕПЕНЬ) магистр

БАЗОВЫЙ УЧЕБНЫЙ ПЛАН ПРИЕМА 2016 г.

KYPC 2 CEMECTP 3

КОЛИЧЕСТВО КРЕДИТОВ 6

ПРЕРЕКВИЗИТЫ Технология изготовления объемных наноматериалов; Физическая химия. Неорганическая химия.

КОРЕКВИЗИТЫ Выпускная квалификационная работа магистра. Научно-исследовательская работа в семестре

ВИДЫ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ И ВРЕМЕННОЙ РЕСУРС:

Лекции 16 час.

Лабораторные работы

Практические занятия 32 час.

Аудиторные занятия 48 час.

Самостоятельная работа 168 час.

ИТОГО 216 час.

ФОРМА ОБУЧЕНИЯ очная

ВИЛ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ экзамен

ОБЕСПЕЧИВАЮЩЕЕ ПОДРАЗДЕЛЕНИЕ кафедра НМНТ ИФВТ

ЗАВЕДУЮЩИЙ КАФЕДРОЙ

О.Л. Хасанов

РУКОВОДИТЕЛЬ ООП

С.В. Панин

ПРЕПОДАВАТЕЛЬ

Г.В. Лямина

2016 г.

СОДЕРЖАНИЕ

1. Цели освоения модуля (дисциплины)	3
2. Место модуля (дисциплины) в структуре ООП	3
3. Результаты освоения модуля (дисциплины)	3
4. Структура и содержание модуля (дисциплины)	6
4.1. Аннотированное содержание разделов модуля (дисциплины):	6
4.1.1. Содержание лекций	6
4.1.2.Содержание практических занятий	7
4.2 Структура модуля (дисциплины) по разделам и видам учебной	
деятельности	8
5. Образовательные технологии	8
6. Организация и учебно-методическое обеспечение самостоятельной рабо	ТЫ
студентов	9
6.1. Текущая и творческая проблемно-ориентированная СРС	9
6.2. Содержание самостоятельной работы студентов по модулю	
(дисциплине)	10
6.3. Контроль самостоятельной работы	10
6.4. Учебно-методическое обеспечение самостоятельной работы	
студентов	11
7. Средства (ФОС) текущей и итоговой оценки качества освоения модуля	
(дисциплины)	11
8. Рейтинг качества освоения модуля (дисциплины)	13
9. Учебно-методическое и информационное обеспечение модуля	
(дисциплины)	13
10. Материально-техническое обеспечение модуля (дисциплины)	15
Приложение	16

1. ЦЕЛИ ОСВОЕНИЯ МОДУЛЯ (ДИСЦИПЛИНЫ)

Цель преподавания дисциплины — дать представление о методах тестирования эксплуатационных свойств объемных материалов и наноматериалов и научить эксплуатировать современное оборудование, используемое для этих целей.

Цель дисциплины соответствует целям ООП подготовки магистра по направлению 150100 Материаловедение и технологии материалов:

2. МЕСТО МОДУЛЯ (ДИСЦИПЛИНЫ) В СТРУКТУРЕ ООП

Модуль (дисциплина) относится К профессиональному циклу общеобразовательной является вариативной программы. Дисциплина ориентирована, основном, ДЛЯ студентов, обучающихся наноматериалов и нанотехнологий Томского политехнического университета. Для успешного освоения дисциплины студентам необходимо иметь представление о современном материаловедении, уметь проводить анализ и обработку данных с использованием современных компьютерных программ. Иметь опыт работы в приложениях Microsoft Office. Знать основы физической химии материалов, химические и механические свойства керамических материалов, металлов и сплавов.

Соответственно *пререквизитами* данного курса являются дисциплины «Технология изготовления объемных наноматериалов», «Математическое моделирование и современные проблемы наук о материалах и процессах», «Физическая химия», «Неорганическая химия». Соответственно *кореквизитами* являются выпускная квалификационная работа магистра и научно-исследовательская работа в семестре

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ МОДУЛЯ (ДИСЦИПЛИНЫ)

Таблица 3.1.

Компетенции и результат обучения

Компетенции	Результаты
готовностью самостоятельно выполнять исследования на	Р.7. Внедрять системы управления
современном оборудовании и приборах (в соответствии с целями	качеством продукции в области
магистерской программы) и ставить новые исследовательские	материаловедения, эксплуатировать
задачи (ОК-7).	оборудование, позволяющее
готовностью проводить экспертизу процессов, материалов,	диагностировать материалы и изделия
методов испытаний (ОПК-8);	из них, в том числе наноматериалы.
готовностью к внедрению системы управления качеством	
продукции в сфере профессиональной деятельности (ПК-18);	
способностью самостоятельно использовать технические средства	
для измерения и контроля основных параметров технологических	
процессов, структуры и свойств материалов и изделий из них,	
планирования и реализации исследований и разработок (ПК-11)	
готовностью к использованию современных информационно-	Р.1. Осуществлять сбор, анализ и
коммуникационных технологий, глобальных информационных	обобщение научно-технической
ресурсов в научно-исследовательской и расчетно-	информации в области
аналитической деятельности в области материаловедения и	материаловедения и технологии
технологии материалов (ПК-1);	материалов с использованием
способностью самостоятельно осуществлять сбор данных,	современных информационно-

Компетенции	Результаты
изучать, анализировать и обобщать научно-техническую	коммуникационных технологий,
информацию по тематике исследования, разрабатывать и	глобальных информационных
использовать техническую документацию в профессиональной	ресурсов
деятельности (ПК-5);	

Таблица 3.2.

Знания, умения, владения

Профессио	Уметь	Знать
нальный		
опыт		
(владеть)		
20 . Опытом	y.20.17.1.	3.20.17.1.1. Знать устройства дилатометров горизонтального типа
определения	Эксплуатировать	высокотемпературный дилатометр, атмосферный дилатометр
_	оборудование,	3.20.17.1.2. Знать условия выбора материалов оснастки дилатометров
эксплуатаци	позволяющие	(держатели, толкатели, термопары)
онных		3.20.17.1.3. Знать материалы оснастки дилатометров (держатели,
свойств	спекания,	толкатели, термопары), условия совмещения комплектующих
материалов	коэффициенты	дилатометра с исследуемыми образцами
И	линейного расширения	3.20.17.1.4. Знать методики регистрации кривых для определения
наноматериа		КЛТР керамических и металлических материалов
лов		3.20.17.1.5. Знать методики регистрации кривых для определения
	У.20.17.2. Определять	кинетики спекания керамических и композиционных материалов
а стойкость	термические свойства	3.20.17.2.1. Знать программное обеспечение (Proteus Analysis),
M CTONKOCTB,	материалов: КЛТР,	позволяющие интерпретировать дилатометрические кривые. 3.20.17.2.2. Знать влияние природы, структуры и строения материала
	степень усадки,	на тепловое расширение материалов
Я		3.20.17.2.3. Знать термодинамические параметры химических
устойчивост	тепловые эффекты	процессов
ь)	материалов.	apo 4000
	Y.20.17.3.	3.20.17.3.1. Знать устройства потенциостатов и полярографов.
	Эксплуатировать	3.20.17.3.2. Знать способы сбора электрохимических ячеек, способы
	оборудование,	подготовки исследуемым материалов для использования в качестве
	позволяющие	электродов
	определять	
	электрохимические	
	параметры коррозии:	
	потенциостат,	
	полярограф. У.20.17.4.	2 20 17 4 1 20000 00000000000000000000000000000
	Обрабатывать	3.20.17.4.1. Знать окислительно-восстановительные процессы, происходящие на границе раздела металлов с растворами электролитов
	коррозионные	3.20.17.4.2. Знать способы определения потенциалов и токов коррозии
	диаграммы:	из коррозионных диаграмм
	рассчитывать	3.20.17.4.3. Знать специфику коррозионных испытаний
	потенциалы и токи	наноматериалов
	коррозии; описывать	3.20.17.4.4. Знать природу процессов пассивации металлов, в том числе
	процессы разрядки	наноструктурированных.
	электролита,	
	определять	
	равновесные	
	потенциалы	
	восстановителя и	
	окислителя	2 20 17 5 1 2
	У.20.17.5. Оценивать	3.20.17.5.1. Знать специфику процессов травления и основные
	коррозионную устойчивость	компоненты травителей 3.20.17.5.2. Знать классификацию типов коррозии
	I =	3.20.17.5.2. Знать классификацию типов коррозии 3.20.17.5.3. Знать методики коррозионных испытаний по убыли или
	мстодами гравимстрии	э.40.17.2 энать методики коррозионных испытании по уоыли или

Рабочая программа учебной дисциплины «Методы тестирования эксплуатационных

рактеристик наноматериалов»					
Профессио	Уметь	Знать			
нальный					
опыт					
(владеть)					
(владетв)	н минерооколин	THAT IS A COOK I			
	и микроскопии	прибыли массы			
		3.20.17.5.4. Знать методики коррозионных испытаний с			
		использованием микроскопов (определение толщины окисленной			
		пленки, глубины коррозионных язв)			
		3.20.17.5.5. Знать методики проведения ускоренной коррозии			
		материалов			
1 . Опытом	У.1.17.1 . собирать	3.1.17.1.1. Знать современные базы данных научных публикаций в			
составления	данные для	России и за рубежом по коррозии наноматериалов и термическому			
критических	составления обзора по	поведению материалов			
литературных	коррозии	0.1.17.1.2. 0			
обзоров в	наноматериалов и	3.1.17.1.2. Знать условия использования данных, содержащихся в			
области	термическому	научных публикаций			
технологии	поведению				
материалов и	материалов				
наноматериало	Y.1.17.2.	3.1.17.2.1. Знать методологию составления аналитического обзора,			
В	анализировать и	включающего описание научных достижений и критику по коррозии			
	обобщать научно-	наноматериалов и термическому поведению материалов			
	техническую				
	информацию по				
	коррозии				
	наноматериалов и				
	термическому				
	поведению				
	материалов				

4. СТРУКТУРА И СОДЕРЖАНИЕ МОДУЛЯ (ДИСЦИПЛИНЫ)

4.1. Аннотированное содержание разделов модуля (дисциплины):

4.1.1. Содержание лекций

(Всего – 16 часов; 1 лекция – 4 часа)

№ лекции	СОДЕРЖАНИЕ ЛЕКЦИИ				
	МОДУЛЬ 1. ТЕРМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА				
1	Предмет и задачи термического анализа: термогравиметрический (ТГ) и дифференциальный термогравиметрический анализ (ДТГ), дифференциальный термический анализ (ДТА), дифференциальная сканирующая колориметрия (ДСК). Дифференциальный термический анализ (ДТА). Особенности анализа бинарных и сложных соединений.				
	МОДУЛЬ 2. ДИЛАТОМЕТРИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ				
2	Характеристика метода. Определение изменений длины образцов при нагреве и охлаждении или при изотермической выдержке. Температурный контроль в дилатометре. Определение коэффициента теплового расширения и изучения фазовых превращений в материалах.				
MO	ЦУЛЬ 3. ОЦЕНКА КОРРОЗИОННОЙ УСТОЙЧИВОСТИ МАТЕРИАЛОВ				
3	Общие сведения о коррозии. Виды коррозии. Классификация коррозионных процессов. Химическая коррозия металлов. Электрохимическая коррозия. Катодные процессы при коррозии (кислородная и водородная деполяризация). Ряд термодинамической стабильности металлов. Коррозия металла имеющего включения другого металла. Методы защиты от коррозии.				

N.C.				
No	СОДЕРЖАНИЕ ЛЕКЦИИ			
лекции	СОДЕТЖАПИЕ ЛЕКЦИИ			
	Общая характеристика методов оценки коррозионной устойчивости			
	Способы выражения скорости коррозии. Через число частиц, реагирующих на			
	единице поверхности. Через среднюю толщину слоя. Объемные методы			
	измерения скорости. Выражение скорости через единицы плотности тока.			
	Методическое оформление ускоренных коррозионных испытаний.			
	Электрохимические методы оценки коррозионной устойчивости			
	Потенциодинамический метод. Кинетика анодных реакций.			
1	Стадийное протекание анодного окисления металлов. Анодное растворение			
4	металлов при больших анодных поляризациях. Катодное восстановление			
	окислителей. Поляризационные кривые, описывающие восстановление			
	кислорода в водном растворе на поверхности корродирующего металла. Типы			
	поляризационных диаграмм. Диаграммы Пурбе			

4.1.2. Содержание практических занятий (Всего –32 часа)

№ ПЗ	СОДЕРЖАНИЕ ПРАКТИЧЕСКОГО ЗАНЯТИЯ	час.
	І. ТЕРМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА	
1	Аппаратура и приборы термического анализа Приборы и аппараты для термических исследований. Градуировка термопар. Устройство установок для термического анализа, Пирометр Курнакова, Дериватограф.	2
2	Расчет температуры по величине термо-э.д.с. применение простой дифференциальной и комбинированной термопар в термическом анализе.	2
3	Методы записи, расшифровки и оценки термограмм Методы записи и оценки температур в термическом анализе. Оценки характеристичных температур для эндо- и экзотермических процессов	2
4	Расшифровка термограмм. Влияние скорости реакций и условия проведения эксперимента (размер тигля, формы держателя, пробы, скорости нагрева, влияние атмосферы в печи) на форму дифференциальной кривой.	2
5	Термическая характеристика процессов плавления, разложения, образования бинарных и сложных соединений	2
6	Применение термического анализа для количественного и качественного анализа неорганических соединений. Основные принципы количественного и качественного термического анализа.	2
7	Применение термического анализа для определения термодинамических свойств веществ. Применение термического анализа для исследования однокомпонентных систем. Р-Т-проекции, Р-У-проекции, У-Т-проекции. Полиморфизм. Методы исследования полиморфных превращений. Фазовые превращения второго рода. Псевдооднокомпонентные системы.	2
8	Применение термического анализа для определения термодинамических свойств вещества. Определение теплот фазовых превращений и теплот химических реакций по результатам термических исследований. Расчет теплот плавления и образования.	2
	ІІ. ДИЛАТОМЕТРИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ	
	Определение коэффициента линейного расширения. Определение критических точек Определение критических точек и областей превращений по кривым, показывающим изменения длины изучаемого образца при нагреве или при охлаждении.	2

№ ПЗ	СОДЕРЖАНИЕ ПРАКТИЧЕСКОГО ЗАНЯТИЯ	Час.
10	Изучение фазовых превращений Анализ дилатограмм металлов, сплавов и керамических материалов. Приборы для дилатометрического анализа Механические, оптические и электрические дилатометры. Устройство дилатометра	2
11	Принцип работы дилатометра NETZSCH DIL 402 Е/7-Ру. Особенности прибора. Части оборудования. Измерительная часть. Печь. Система защитного оборудования. Сведения о применении продувочных газов. Подача охлаждающей воды. Пирометр. Шкаф управления. Система откачки. Система продувочного газа. Термостатический контроль	2
12	Работа на приборе. Подготовка образцов. Твердые образцы. Пастообразные образцы. Порошковые образцы. Введение образца.	2
	III. ОЦЕНКА КОРРОЗИОННОЙ УСТОЙЧИВОСТИ МАТЕРИАЛОВ	
13	Определение стабильности металлов при электрохимической коррозии	2
14	Расчет потенциалов и токов коррозии	2
15	Анализ диаграмм Пурбе	2
16	Коррозионное поведение наноструктурных материалов. Устные сообщения (конференциеделя)	2
Всего		32

4.2 Структура модуля (дисциплины) по разделам и видам учебной деятельности

Структура модуля (дисциплины) по разделам и формам организации обучения

Иозромно познано	Аудиторная	CPC	Итого	
Название раздела	Лекции	П3	(час)	111010
Основы термических методов анализа	4	16	48	68
Дилатометрический метод исследования	4	8	32	44
Оценка коррозионной устойчивости материалов	8	16	88	112
Итого	16	32	168	216

216 48 168 16 32

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Методы и формы организации обучения (ФОО)

ФОО Методы	Лекции	Лабораторные работы	Практи ческие занятия	СРС
<i>IT</i> -методы	+	+		
Работа в команде		+		
Case-study			+	+
Игра				
Методы проблемного обучения	+		+	+
Обучение на основе опыта				·

ФОО Методы	Лекции	Лабораторные работы	Практи ческие занятия	СРС
Опережающая самостоятельная работа			+	+
Проектный метод				
Поисковый метод			+	+
Исследовательский метод				

6. ОРГАНИЗАЦИЯ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

6.1. Текущая и творческая проблемно-ориентированная СРС

При изучении дисциплины предусмотрено несколько типов внеаудиторной (самостоятельной) работы:

Текущая самостоятельная работа

- **1. Подготовка к лекции** включает работу с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса, (опережающая самостоятельная работа).
- **2.** Подготовка к практическим занятиям включает оформление отчета, проработку лекционного материала, и изучение тем, вынесенных на самостоятельную проработку.
- **3. Подготовка к экзамену** включает работу с лекционным материалом, отчетами по экспериментальным лабораторным работам и материалов, выносимым на самостоятельное изучение.

Творческая проблемно-ориентированная самостоятельная работа

- **4. Конспект.** Выполняется по отдельным темам, которые не рассматриваются на лекции. Проводится с использованием ресурсов научнотехнической библиотеки ТПУ и библиотечного фонда кафедры НМНТ. Включает анализ научных и учебных публикаций по заранее определенной преподавателем теме.
- **5. Подготовка устного сообщения**. Выполняется по каждому модулю по материалу, выносимому на самостоятельное обучение.

6.2. Содержание самостоятельной работы студентов по модулю (дисциплине)

Материал, выносимый на самостоятельную проработку, оформляется в виде конспекта (развернутого плана). Оформление материала предполагает проработку литературы, рекомендуемой преподавателем. Соответственно у каждого студента в конце семестра должна быть собрана информация по всем темам.

6.3 Контроль самостоятельной работы

Виды контроля СРС

Тип контроля	Способ осуществления и тип самостоятельной работы
	The state of the s

Тип контроля	Способ осуществления и тип самостоятельной работы					
Тест	Проводятся на практических занятиях (10 минут).					
	Позволяют контролировать качество проработки					
	лекционного материала, уровень усвоения тем, выносимых					
	на самостоятельное изучение, контролировать уровень					
	опережающей самостоятельной работы.					
Проверка конспектов	Проводится на практических занятиях.					
	Позволяет контролировать качество проработки тем,					
	выносимых на самостоятельное изучение, оценить					
	способность студента к анализу научных публикаций по					
	заранее определенной преподавателем теме					
Устное сообщение	Проводится на практических занятиях во время					
	конференц-недель. Включает подготовку компьютерной					
	презентации и краткого реферата.					

6.4 Учебно-методическое обеспечение самостоятельной работы студентов

Включает основную и дополнительную литературу (см. раздел 10). При подготовке к семинарам студенты могут воспользоваться научной литературой, подобранной преподавателем по определенной теме (*Case-study*)

7. СРЕДСТВА (ФОС) ТЕКУЩЕЙ И ИТОГОВОЙ ОЦЕНКИ КАЧЕСТВА ОСВОЕНИЯ МОДУЛЯ (ДИСЦИПЛИНЫ)

Примеры тестовых вопросов

- 1. Термические методы анализа изучают
- а) свойства вещества при нагревании или охлаждении
- б) строение вещества при нагревании охлаждении;
- в) способы измерения температуры в процессе нагревания охлаждения.
- 2. В ходе термического анализа методами ДТА и ДСК исследуются:
- а) физические свойства;
- б) термические эффекты физических и химических процессов;
- в) химические свойства.
- 3. Коэффициент линейного расширения зависит от
- А) градиента температур

Примеры контрольных заданий

- 1.Почему химически чистое железо более стойко против коррозии, чем техническое железо? Составьте электронные уравнения процессов происходящих при коррозии технического железа во влажном воздухе.
- 2. В каких средах подвергается коррозии никель? Составьте электронные уравнения анодного и катодного процессов коррозии, если предположить, что никель содержит макропримеси ртути.

характеристик наноматериалов»

3. Рассчитайте потенциалы и токи коррозии для нижеприведенных материалов. Сделайте выводы о влиянии размера зерна на коррозионную устойчивость материалов.

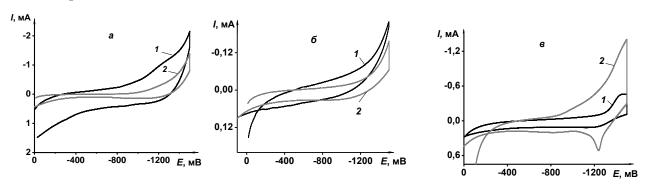


Рис. 1. Коррозионные диаграммы для крупнокристаллического (1) и наноструктурированного (2) титана в кислой (а), нейтральной (б) и щелочной (в) средах

Темы рефератов для устного сообщения на конференциеделе

- 1. История развития метода термического анализа.
- 2. Использование методов термического анализа при разработке и изучении керамических материалов.
- 3. Использование нанотехнологий для борьбы с коррозией металлов
- 4. Коррозионная устойчивость наноструктурированных металлов и сплавов
- 5. Использование методов термического анализа при разработке и изучении композитов.

Пример экзаменационного билета Экзаменационный билет 1

- 1. Дилатометрический метод исследования. Характеристика метода. Определение изменений длины образцов при нагреве и охлаждении или при изотермической выдержке.
- **2.** Электрохимические методы оценки коррозионной устойчивости. Потенциодинамический метод. Анодные поляризационные кривые
- **3.** Приведите пример протекторной защиты железа. Составьте электронные уравнения анодного и катодного процессов коррозии в кислой среде, содержащей растворенный кислород; составьте схему гальванического элемента.

8. РЕЙТИНГ КАЧЕСТВА ОСВОЕНИЯ МОДУЛЯ (ДИСЦИПЛИНЫ)

Промежуточная аттестация (экзамен) производится в конце семестра также путем балльной оценки. Итоговый рейтинг определяется суммированием баллов текущей оценки в течение семестра и баллов промежуточной аттестации в конце семестра по результатам экзамена или зачета. Максимальный итоговый рейтинг соответствует 100 баллам. См. файл приложение 2

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ МОДУЛЯ (ДИСЦИПЛИНЫ)

Основная литература

- 1. Лямина Г. В., Вайтулевич Е. А., Божко И. А., Панина (Сон) А. А. Методы диагностики эксплуатационных свойств материалов: Учебное пособие. Томск: ТПУ, 2012 106 с.
- 2. Божко И.А., Иванов Ю.Ф., Качаев А.А., Вайтулевич Е.А., Лямина Г.В. Методы исследования структуры и свойств керамических материалов: Учебное пособие. Томск: ТПУ, 2013 93 с.
 - 3. Журнал «Коррозия: материалы, защита». Изд-во «Наука и технологии»
- 4. Мальцева Г. Н. / под ред. С. Н. Виноградова. Коррозия и защита оборудования от коррозии: Учеб. пособие. Пенза: Изд-во Пенз. гос. ун-та, 2000. 211 с.
- 5. Н.Л. Венедиктов, Дилатометрический метод исследования стали. Методические указание. Изд-во «Тюменского государственного нефтегазового университета». Тюмень. 2003. 12 с.
- 6. Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение. М:Техносфера, 2005. 320 с.

Дополнительная литература

- 1. Гуфан Ю. М. Термодинамическая теория фазовых переходов. Ростов н/Д: Издательство Ростовского университета, 1982. 172 с.
- 2. Хеммингер И., Хене Г. Калориметрия. Теория и практика. М.: Химия, 1990. 176 с. Новоселова А.В. Методы исследования гетерогенных равновесий. М.: Высш. шк., 1990. –162 с.
 - 3. Новоженов В.А. Термический анализ. Барнаул: Изд-во АГУ, 1983. –80 с.
 - 4. Шестак М.В. Теория термического анализа. -М.: Мир, 1987. -328 с.
- 5. Новоженов В. А. Калориметрические методы исследования неорганических веществ. Барнаул: Изд-во АГУ, 1994. –96 с.
 - 6. Журнал «Коррозия металлов»
- 7. Н.Л. Венедиктов, Дилатометрический метод исследования стали. Методические указание. Изд-во «Тюменского государственного нефтегазового университета». Тюмень. 2003. 12 с.
- 8. Хеммингер И., Хене Г. Калориметрия. Теория и практика. М.: Химия, 1990.-176 с.
- 9. Переработка полимеров в твердой фазе. Физико-химические основы / Баронин Г.С., Кербер М.Л., Минкин Е.В., Радько Ю.М.. М.: Машиностроение, 2002. 320 с.
- 10. Майорова А.Ф. Термоаналитические методы исследования / / Соросовский образовательный журнал. − 1998. − № 10. − С. 50–54.
- 11. Höhne G., Hemminger W.F., Flammersheim H.-J. Differential Scanning Calorimetry 2-nd ed. Springer, 2003. 298 p.
- 12. Wunderlich B. Thermal Analysis of Polymeric Materials Springer, 2005. 894 p.
- 13. Handbook of Thermal Analysis and Calorimetry, V. 3: Applications to Polymers and Plastics. Elsevier, 2002. 828 p.
- 14. Ehrenstein G.W., Riedel G., Trawiel P. Thermal Analysis of Plastics. Theory and Practice. Hanser Gardner, 2004. 396 p.

Электронные ресурсы

1. Сайт о нанотехнологиях в России [Электронный ресурс]:

учебной дисциплины «Методы тестирования эксплуатационных характеристик наноматериалов»

http://www.nanoware.ru/

- 2. Нанотехнологическое сообщество [Электронный ресурс]: http://www.nanometer.ru
- 3. Интернет-журнал о нанотехнологиях. [Электронный ресурс]: http://www.nanodigest.ru/
- 4. Нанобиотехнология. [Электронный ресурс]: http://www.community.livejournal.com/ru_nanobiotech
- 5. Российский электронный НАНОЖУРНАЛ. [Электронный ресурс]: http://www.nanorf.ru/
- 6. Нанотехнологии. Научно-информационный портал по нанотехнологиям [Электронный ресурс]: http://www.nano-info.ru/
- 7. Нанотехнологии: сегодня и будущее. [Электронный ресурс]: http://www.nanoevolution.ru/cat/nanomedicina/
- 8. Федеральный интернет-портал "Нанотехнологии и наноматериалы" [Электронный ресурс]: http://www.portalnano.ru/
- 9. Портал нанотехнологического общества России [Электронный ресурс]: http://www.ntsr.info/
- 10. Сайт Государственной корпорации «Российская корпорация нанотехнологий» (РОСНАНО) [Электронный ресурс]: http://www.rusnano.com/

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МОДУЛЯ (ДИСЦИПЛИНЫ)

Для выполнения исследований и организации учебного процесса используются компьютерная техника, мультимедиа проекторы, современные программные продукты. Кафедры располагает собственными компьютерными классами с общим числом компьютеров – 10, объединенных в локальную сеть с выходом в Интернет (ауд. 209, 15 корпус). Для ознакомления с оборудованием предусмотрено:

- растровый электронный микроскоп сверхвысокого разрешения JSM-7500;
- дифрактометр рентгеновский XRD-7000S;
- вакуумный электронный высокотемпературный дилатометр DIL 402 E/7/G-Py.

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС 3 + по направлению и профилю подготовки 22.04.01 Материаловедение и технологии материалов

Программа одобрена на заседании кафедры НМНТ ИФВТ протокол № 53 от «09» февраля 2016 г

Автор доцент, к.х.н. <u>Г.В. Лямина</u> Рецензенты доцент, к.ф.м. <u>Лом</u> .А. Божко доцент, к.т.н. <u>Э.С. Двилис</u>

характеристик наноматериалов»

ПРИЛОЖЕНИЕ 1

СОДЕРЖАНИЕ КУРСА

І. ОСНОВЫ ТЕРМИЧЕСКИХ МЕТОДОВ АНАЛИЗА

- **1.** Предмет и задачи термического анализа: термогравиметрический (ТГ) и дифференциальный термогравиметрический анализ (ДТГ), дифференциальный термический анализ (ДТА), дифференциальная сканирующая колориметрия (ДСК).
- **2.** Дифференциальный термический анализ (ДТА). Особенности анализа бинарных и сложных соединений.
- **3.** Дифференциальная сканирующая колориметрия (ДСК). Способы определения температурных интервалов разложения веществ и фазовых переходов. Количественное определение тепловых эффектов.
- **4.** Термогравиметрический (ТГ) и дифференциальный термогравиметрический анализ (ДТГ). Способы определения температурных интервалов разложения веществ, определение потерь массы.

5. Аппаратура и приборы термического анализа

Приборы и аппараты для термических исследований. Принципы устройства и характеристики гальванометров и нагревательных элементов в термографии. Закономерности термо-э.д.с. Выбор термоэлектродов. Расчет температуры по величине термо-э.д.с. применение простой дифференциальной и комбинированной термопар в термическом анализе. Градуировка термопар. Устройство установок для термического анализа, Пирометр Курнакова, Дериватограф.

6. Методы записи, расшифровки и оценки термограмм

Методы записи и оценки температур в термическом анализе. Оценки характеристичных температур для эндо- и экзотермических процессов. Условия применения простой и дифференциальной записи термических эффектов. Комбинированная запись, ее преимущество перед другими видами записи. Расшифровка термограмм. Влияние скорости реакций и условия проведения эксперимента (размер тигля, формы держателя, пробы, скорости нагрева, влияние атмосферы в печи) на форму дифференциальной кривой. Термическая характеристика процессов плавления, разложения, образования бинарных и сложных соединений.

7. Применение термического анализа для количественного и качественного анализа неорганических соединений

Основные принципы количественного и качественного термического анализа. Влияние различных факторов (примеси, химические взаимодействия, атмосфера печи) на точность количественного и качественного анализа. Ограничение площадей пиков кривых.

8. Применение термического анализа для определения термодинамических свойств веществ

Применение термического анализа для исследования однокомпонентных систем. Р-Т-Полиморфизм. проекции. Р-У-проекции, У-Т-проекции. Методы исследования полиморфных превращений. Фазовые превращения Псевдооднокомпонентные системы. Термический анализ двухкомпонентных систем. Правило фаз. Метод Таммана. Уравнение Шредера-Ле Шателье для идеальных растворов. Уравнение Ван-Лаара. Образование твердых растворов в двойных системах. Твердые с эвтектикой и перитектикой. Т–Х-проекция диаграммы состояния конденсированной системы с ограниченными твердыми растворами. Образование соединений в системах. Образование соединеий стехиометрического состава, соединений нестехиометрического состава. Применение термического анализа для определения термодинамических свойств вещества. Определение теплот фазовых превращений и теплот химических реакций по результатам термических исследований. Расчет теплот

Рабочая программа учебной дисциплины «Методы тестирования эксплуатационных характеристик наноматериалов» ПЛАВЛЕНИЯ И Образования.

ІІ. ДИЛАТОМЕТРИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ

1. Характеристика метода

Определение изменений длины образцов при нагреве и охлаждении или при изотермической выдержке. Температурный контроль в дилатометре. Определение коэффициента теплового расширения и изучения фазовых превращений в материалах.

- 1.1 Определение коэффициента линейного расширения
- **1.2 Определение критических точек** Определение критических точек и областей превращений по кривым, показывающим изменения длины изучаемого образца при нагреве или при охлаждении.
- **1.3 Изучение фазовых превращений** Анализ дилатограмм металлов, сплавов и керамических материалов.
- **1.4 Приборы для дилатометрического анализа** Механические, оптические и электрические дилатометры. Устройство дилатометра
- 1.5 Принцип работы дилатометра NETZSCH DIL 402 E/7-Py
 - 1.5.1. Особенности прибора
 - **1.5.2. Части оборудования.** Измерительная часть. Печь. Система защитного оборудования. Сведения о применении продувочных газов. Подача охлаждающей воды. Пирометр. Шкаф управления. Система откачки. Система продувочного газа. Термостатический контроль
 - **1.5.3. Работа на приборе.** Подготовка образцов. Твердые образцы. Пастообразные образцы. Порошковые образцы. Введение образца.

III. Оценка коррозионной устойчивости материалов

- **1. Общие сведения о коррозии.** Виды коррозии. Классификация коррозионных процессов. Химическая коррозия металлов. Электрохимическая коррозия. Катодные процессы при коррозии (кислородная и водородная деполяризация). Ряд термодинамической стабильности металлов. Коррозия металла имеющего включения другого металла. Методы защиты от коррозии.
- 2. Общая характеристика методов оценки коррозионной устойчивости
- **3.** Способы выражения скорости коррозии. Через число частиц, реагирующих на единице поверхности. Через среднюю толщину слоя. Объемные методы измерения скорости. Выражение скорости через единицы плотности тока.
- 4. Методическое оформление ускоренных коррозионных испытаний
- 5. Электрохимические методы оценки коррозионной устойчивости
- **5.1.** Потенциодинамический метод. Кинетика анодных реакций. Стадийное протекание анодного окисления металлов. Анодное растворение металлов при больших анодных поляризациях. Катодное восстановление окислителей. Поляризационные кривые, описывающие восстановление кислорода в водном растворе на поверхности корродирующего металла. Типы поляризационных диаграмм
- 5.2. Диаграммы Пурбе.
- 6. Коррозионное поведение наноструктурных материалов.

ПРИЛОЖЕНИЕ 2 Рейтинг-план освоения дисциплины

×	Текущий контроль								
ел	Теоретический материал		Практическая деятельность				Итого		
Недели	Темы лекций	Балл	Название практических занятий	Балл	Индивидуальные задания	Балл	Баллы		
1	Модуль 1. Термические методы анализа		Аппаратура и приборы термического анализа	2			2		
2			Устройство установок для термического анализа, Пирометр Курнакова, Дериватограф.	2			2		
3	Модуль 2. Дилатометрический метод исследования		Методы записи и оценки температур в термическом анализе.	2			2		
4			Расшифровка термограмм.	2			2		
	Всего по контрольной точке (аттестации) № 1								
5	Модуль 3. Оценка коррозионной устойчивости материалов Общие сведения о коррозии.		Термическая характеристика процессов плавления, разложения, образования бинарных и сложных соединений	2			2		
6			Основные принципы количественного и качественного термического анализа.	2			2		
7	Модуль 3. Оценка коррозионной устойчивости материалов Электрохимические методы оценки коррозионной устойчивости		Применение термического анализа для исследования однокомпонентных систем	2			2		
8			Определение теплот фазовых превращений и теплот химических реакций по результатам термических исследований	2			2		
			Всего по контрольной точке (аттестации) № 2				8		
9		1	Конференциеделя		Подготовка к КН 1	10	10		
10			Определение коэффициента линейного расширения	2			2		
11		_	Анализ дилатограмм металлов, сплавов и керамических материалов.	2			2		
12			Принцип работы дилатометра NETZSCH DIL 402 Е/7-Ру	2			2		
12		T	Всего по контрольной точке (аттестации) № 3			1	16		
13			Работа на приборе. Подготовка образцов. Определение стабильности металлов при электрохимической коррозии	4			4		
15			Расчет потенциалов и токов коррозии	4			4		
16		+	Анализ диаграмм Пурбе	4			4		
17		1	Определение электродных потенциалов	4			4		
18		<u> </u>	Конференциеделя Коррозионное поведение наноструктурных материалов. Устные сообщения	-	Подготовка к КН 2	10	10		
	Всего по контрольной точке (аттестации) № 4								
	Сумма баллов		•	40		20	60		
Итоговая текущая аттестация							60		
Экзамен						40			
Итого баллов по дисциплине						100			