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Abstract—The ab initio investigations have been performed for the atomic structure of the Zr–He, Zr–vac,
and Zr–vac–He systems with concentrations of helium atoms and vacancies (vac) of ~6 at %. A helium-
induced instability of the zirconia lattice has been revealed in the Zr–He system, which disappears with the
formation of vacancies. The most preferred positions of impurities in the metal lattice have been determined.
The energy of helium dissolution and the excess volume introduced by helium have been calculated. It has
been established that the presence of helium in the Zr lattice leads to a significant decrease in the energy of
vacancy formation.
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1. INTRODUCTION
Zirconium-based alloys are among the most

important structural materials for fuel elements of
pressurized water nuclear reactors [1]. During the
operation of water nuclear reactors, these alloys accu-
mulate helium impurity atoms formed in (n, α)
nuclear reactions, as well as a large number of defects
of both the thermodynamic and radiation origin.
Owing to their low solubility in the metal, helium
atoms are trapped by defects of the crystal lattice that
contain excess volume regions, such as vacancies, dis-
locations, and grain boundaries. This leads to the for-
mation of “lattice defect + helium” complexes, which
are referred to in the literature as gas-filled bubbles
[2–5]. In particular, the interaction of helium with
vacancies in the metal results in the formation of
vacancy complexes filled with helium [4, 5]. In [6, 7],
it was reported that such helium bubbles can be formed
at low temperatures with the participation of a single
vacancy and a few helium atoms.

An increase in the concentration of vacancies in the
material leads to an increase in the material volume.
This phenomenon is called swelling. Furthermore, the
accumulation of helium at the grain boundaries in
polycrystals and the formation of vacancy complexes
filled with helium in their volume cause the embrittle-
ment of the material. These processes lead to the deg-
radation of the performance properties of the struc-
tural materials [8–12]. The prevention of such unde-
sirable phenomena requires a comprehensive
investigation of the properties of the metal containing

point defects, such as vacancies and impurity atoms.
Important information on the properties of the mate-
rials containing these defects can be obtained from
first-principles calculations within the framework of
the density functional theory.

The purpose of this study is to perform the ab initio
investigations of the atomic structure of the Zr–He,
Zr–vac, and Zr–vac–He systems with concentrations
of impurity atoms and vacancies (vac) of ~6 at %. In
particular, we have determined the most energetically
favorable positions of the helium atoms in the lattice of
a perfect Zr crystal and in the crystal with vacancies,
calculated the energy of helium dissolution and the
excess volume introduced by helium into the metal
lattice, and investigated the influence exerted by the
helium impurity on the energy of vacancy formation in
zirconium.

2. COMPUTATIONAL METHOD AND DETAILS
The self-consistent calculations of the total crystal

lattice energies of pure zirconium and the Zr–He, Zr–
vac, and Zr–vac–He systems were carried out within
the framework of the electron density functional the-
ory in the generalized gradient approximation [13]
using the linearized augmented plane-wave method
[14, 15] implemented in the FLEUR program package
[16]. The muffin-tin sphere radii of the Zr and He
atoms were chosen to be equal to 2.3 and 1.0 a.u.,
respectively. The used value of the cutoff parameter of
the plane-wave basis kmax = 4.0 a.u.–1 corresponded to
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~170 basic functions per atom. In each self-consistent
iteration, the eigenvalues of the Hamiltonian were
calculated in 14 k-points of the Brillouin zone for the
hexagonal close-packed (hcp) structures and in
10 k-points for the face-centered cubic (fcc) and
body-centered cubic (bcc) structures. The self-consis-
tent electron density calculation was performed until
the convergence was no worse than 0.0001 meV/a.u.3,
which corresponded to the convergence of the total
crystal lattice energy of no worse than 0.001 meV. The
optimization of the lattice parameters was carried out
for all the systems under consideration. In addition,
the relaxation of the crystal lattice of the metal near
the vacancy was performed for the Zr–vac system.

The computational cell of the Zr–He system con-
tained 16 metal atoms and one helium atom in the tet-
rahedral or octahedral interstitial site. The computa-
tional cells of the systems containing a vacancy (Zr–
vac and Zr–vac–He) included 15 metal atoms and
one vacant lattice site, whereas the computational cell
of the Zr–vac–He system additionally contained one
more helium atom in the tetrahedral or octahedral
interstitial site near the vacancy or in the vacancy.

3. RESULTS AND DISCUSSION
3.1. Atomic Structure of the Zr–He System

In the first stage of our study, we investigated the
stability of the fcc, bcc, and hcp zirconium lattices in
the case where the concentration of dissolved helium
atoms located in the tetrahedral or octahedral intersti-
tial sites was equal to ~6 at %. The calculated depen-
dences of the total crystal lattice energies Etot of the
Zr16He system on the specific volume Ω per metal
atom are shown in Fig. 1. It can be seen from this fig-
ure that the most energetically favorable structure is
the hcp zirconium structure with a helium atom
located in the octahedral interstitial site. In this case,
the total energy (Ω) reaches (for the minimum
specific volume Ωmin = 23.7 Å3/atom) the minimum
value among all the structures considered for the
Zr16He system. However, we note that, in the octahe-
dral coordination of the helium atom, the difference
between the total energies of the hcp and fcc zirco-
nium lattices with the specific volume Ω = Ωmin does
not exceed 2 meV/atom, whereas in the tetrahedral
coordination of the impurity atom, the total energy
Etot(Ωmin) for all the three considered crystal lattices

exceeds the total energy (Ωmin) by no more than
19 meV/atom. This means that all the crystal struc-
tures under consideration, except for the bcc lattice
with the octahedral coordination of the helium atom,
can be realized with an increase in the temperature to
T ~ 250 K (in this case, the difference between the
total energies is 21 meV/atom), whereas at operating
temperatures of nuclear reactor fuel elements (350–
400°C), all the structures considered in our study can

hcp
totE

hcp
totE

be realized. It should also be noted that the hydrostatic
compression (the transition to the range of specific
volumes Ω < Ωmin) leads to the coexistence of these
structures also at lower temperatures. Thus, it is found
that, at a helium concentration of ~6 at %, the crystal
structure of zirconium exhibits an instability both with
an increase in the temperature and under hydrostatic
pressure.

This behavior of the system can be understood by
analyzing the results obtained in our earlier work [17],
where we investigated the stability of the crystal lattice
of the Zr–He system at a higher helium concentration
as compared to that considered in the present study. In
[17], we also calculated the dependences Etot(Ω) for
different crystal lattices of pure zirconium and the Zr–
He system. By comparing the results obtained in the
present study with the data reported in [17], we can
conclude that the location of a helium atom in the zir-
conium lattice, in some sense, is equivalent to a com-
pression of the crystal. Indeed, the higher helium con-
centration considered in [17] stabilizes the bcc zirco-
nium lattice, which is realized in the pure metal only
under pressure, i.e., with a decrease in the specific vol-
ume of the metal from the equilibrium value Ωmin =
23.27 Å3/atom to the value of ~18.5 Å3/atom [17,
Fig. 1]. The lower helium concentration (~6 at %)
considered in the present study probably correspond
to lower pressures in pure zirconium and, therefore, to
higher values of the specific volume Ω as compared to

Fig. 1. Dependences of the total crystal lattice energy of
the Zr–He system on the specific volume Ω per metal
atom of the hcp, fcc, and bcc lattices for the tetrahedral
and octahedral coordinations of the helium atom. The
energy is measured from the total energy of the hcp struc-
ture of pure zirconium.
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the previous case. In particular, according to the data
presented in [17, Fig. 1], for pure zirconium in the
range of specific volumes Ω ~19.3 Å3/atom, the func-
tional dependences Etot(Ω) of all the crystal structures
under consideration come very close to each other and
intersect. This indicates that the crystal lattice of the
metal is characterized by the instability at pressures
corresponding to the aforementioned specific volume.

As is known, the presence of impurity atoms in a
crystal leads to an increase in the crystal volume. In
the present study, we calculated the values of the
excess volume ΔΩ introduced by the helium atom into
the fcc, bcc, and hcp zirconium lattices, which was
determined as the difference between the volume of
the crystal with helium impurity atoms and the volume
of the pure crystal. The calculations demonstrated that
the smallest excess volume is introduced by helium
atoms into the hcp lattice and that the minimum value
of this volume ΔΩ ~ 6.2 Å3/atom corresponds to the
octahedral coordination of the helium atoms. This
correlates with the conclusion that the most energeti-
cally favorable structure is the hcp zirconium struc-
ture. The latter is most likely associated with the fact
that the size of the tetrahedral interstitial sites in the
crystal lattices under consideration is almost two times
smaller than the size of the octahedral interstitial sites.

The energy of helium dissolution in zirconium was
calculated according to the formula

(1)
where Etot(ZrnHe), Etot(Zrn), and Etot(He) are the total
energies of the ZrnHe system, pure zirconium, and an
isolated helium atom, respectively, and n is the num-
ber of zirconium atoms in the computational cell (in
this case, n = 16). For the total energy Etot(He), we
used the value of –78.5044 eV obtained in our self-
consistent calculation of a single helium atom.

The calculated energies of helium dissolution in
zirconium are presented in Table 1. As can be seen
from this table, the energy of helium dissolution has
positive values for all the three crystal structures under
consideration. This suggests that, under normal con-
ditions, helium does not dissolve in zirconium and can
penetrate into the bulk of the material only under spe-
cific conditions, for example, during the implantation
of helium ions into the metal or as a result of the (n, α)
nuclear reactions occurring in the material under irra-

Δ = − −tot tot tot(Zr He) (Zr ) (He),n nE E E E

diation with neutrons. The minimum and maximum
energies of helium dissolution in zirconium corre-
spond to the bcc and hcp zirconium lattices, respec-
tively. Moreover, in the case of the bcc zirconium lat-
tice, the energy of helium dissolution in tetrahedral
interstitial sites is less than that in octahedral intersti-
tial sites, whereas the opposite situation is observed in
the fcc and hcp structures of zirconium. For compar-
ison, Table 1 also presents the results obtained from
the calculations of the energies of helium dissolution
in zirconium at a higher impurity concentration [17].
It can be seen that, at the higher concentration of
helium impurity atoms, the energies of helium disso-
lution in interstitial sites of all the crystal lattices under
consideration are less than the corresponding values at
the helium concentration of ~6 at % by 0.2–0.6 eV,
with the exception of the octahedral interstitial sites of
the fcc lattice, where the dissolution energy remains
almost unchanged. A similar dependence of the
energy of impurity dissolution on the impurity con-
centration was observed in [18] for bcc transition met-
als Fe, Cr, and Mo at lower helium concentrations
(~0.8 and ~1.8 at %), where the decrease in the disso-
lution energy was of the order of 0.06–0.18 eV. The rel-
atively small change in the dissolution energy in this
case is associated with the fact that the aforemen-
tioned concentrations are close to each other. This
functional dependence of the energy of helium disso-
lution in the metal on the helium concentration
apparently is determined by the significant increase in
the lattice parameters of the crystal with an increase in
the helium concentration under conditions of a very
weak chemical interaction between helium and zirco-
nium.

3.2. Atomic Structure of the Zr–vac System

In this study, we also investigated the atomic struc-
ture of the Zr–vac system. The dependences of the
total crystal lattice energy of the Zr–vac system on the
specific volume per lattice (including vacant) site are
shown in Fig. 2. It can be seen from this figure that the
most energetically favorable structure is the hcp struc-
ture of the metal, because the total energy in this case
reaches the minimum value among all the structures
considered for the Zr–vac system. The equilibrium
specific volumes Ωv for the hcp, fcc, and bcc struc-

Table 1. Energy of helium dissolution in zirconium

Lattice type

ΔE, eV

Tetrahedral interstitial site Octahedral interstitial site

this work  [17] this work  [17]

hcp 3.67 3.08 3.61 3.19
fcc 3.37 3.09 3.28 3.28
bcc 2.84 2.63 3.25 3.02
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tures are equal to 22.85, 22.74, and 22.36 Å3/site,
respectively. The values of the equilibrium specific
volume Ω of pure zirconium without vacancies for the
same structures are equal to 23.26, 23.06, and
22.77 Å3/site, respectively. Thus, the presence of ~6 at %
vacancies in zirconium leads to a decrease in the equi-
librium specific volume of the sample by 1.4–1.8%.
These values are in good agreement with the experi-

mental data obtained in [19] and, qualitatively, with
the results of the ab initio calculation using the
Green’s function method [20].

The energies of vacancy formation Ev in the hcp,
fcc, and bcc zirconium lattices were calculated
according to the formula

(2)

where Etot(Zrn) is the total energy of the perfect zirco-
nium crystal (here, n is the number of atoms in the
computational cell) and Etot(Zrn – 1) is the total energy
of the zirconium crystal with a vacancy. The calcu-
lated energies of vacancy formation Ev in different
crystallographic modifications of zirconium (with the
inclusion of the relaxation of the crystal lattice and
without it), as well as the results obtained in the calcu-
lations of other authors [20–28] and the correspond-
ing experimental data [29], for the three crystal struc-
tures under consideration, are presented in Table 2.
According to our calculations taking into account the
relaxation of the crystal lattice, the minimum and
maximum energies of vacancy formation are observed
in the bcc and fcc zirconium lattices, respectively. In
the first case, the minimum energy of vacancy forma-
tion apparently is caused by the lowest (among the
structures under consideration) degree of close pack-
ing of zirconium atoms in the bcc crystal, where each
atom has eight nearest neighbors, whereas in the fcc
and hcp crystal lattices, each zirconium atom has
12 nearest neighbors. This also explains the most sig-
nificant influence of the relaxation on the vacancy for-
mation energy Ev in the bcc zirconium lattice, which
manifests itself in a decrease of this energy by 0.77 eV
(as compared to 0.05 and 0.11 eV in the fcc and hcp
crystals, respectively). In the second case, the maxi-
mum energy of vacancy formation apparently is asso-

−= − −v tot 1 tot(Zr ) (Zr )( 1)/ ,n nE E E n n

Fig. 2. Dependences of the total energy of the Zr–vac sys-
tem on the specific volume Ω per lattice (including vacant)
site of the hcp, fcc, and bcc structures. The energy is mea-
sured from the total energy of the hcp structure of the Zr–
vac system.

Ω, Å3/site

bcc
fcc
hcp

22 23 24 25

Table 2. Energy of vacancy formation Ev in different crystallographic modifications of zirconium

Lattice type

Ev, eV

this work
calculations of other 

authors experimentwithout the inclusion of 
the relaxation

with the inclusion of 
the relaxation

fcc 2.23 2.18 1.77 [20] 1.70 [29]
bcc 2.18 1.41 1.68 [20]

2.34, 2.30 [28]
hcp 2.15 2.04 1.86 [21]

1.75 [22]
1.79 [23]
1.74 [24]

1.93, 2.07 [25]
1.55 [26]

1.70, 1.86 [27]
2.07 [28]
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ciated with the fact that the distance between the near-
est neighbors in the fcc zirconium lattice (2.26 Å) is
significantly shorter than that in the hcp zirconium
crystal (2.58 and 3.22 Å), and, consequently, the bind-
ing forces between the atoms in the fcc zirconium lat-
tice are stronger than those in the hcp zirconium lat-
tice.

The energy of vacancy formation in the hcp zirco-
nium lattice, which was calculated in [21–28], varies
in the range from 1.55 to 2.07 eV. This spread of the
values can be explained by the use of a number of
methods (ab initio or semi-empirical) and calculation
conditions (with the inclusion of the relaxation and
without it), as well as by different concentrations of
vacancies. The value of Ev obtained in our calculation
is within this spread and agrees satisfactorily with the
experimental data. The vacancy formation energies
found by us for the fcc and bcc zirconium lattices are
in reasonable agreement with the results obtained in
the calculations of other authors.

3.3. Atomic Structure of the Zr–Vac–He System

The calculated dependences of the total energy of
the Zr–vac–He system on the specific volume per lat-
tice (including vacant) site for the three crystal struc-
tures under consideration are shown in Fig. 3. For
each of these structures, we analyzed three variants of
the location of the helium atoms in the metal lattice:
(i) tetrahedral interstitial site of the first coordination
sphere of the vacancy, (ii) octahedral interstitial site of
the first coordination sphere of the vacancy, and

(iii) vacancy. It can be seen from Fig. 3 that the most
energetically favorable position of the helium atom in
all the crystal lattices under investigation is the
vacancy. For all three variants of the arrangement of
the helium atoms, the most energetically favorable
structure is the hcp zirconium lattice. It is interesting
to note that, in the immediate vicinity of the vacancy,
the octahedral interstitial site, which is energetically
more favorable for helium in the Zr–He system
(Fig. 1), becomes energetically less favorable with
respect to the tetrahedral interstitial site in the Zr–
vac–He system.

Table 3 presents the energies of helium dissolution
in the Zr–vac system for the three crystal structures
under consideration, which were calculated according
to the formula

(3)− −Δ = − −v tot 1 tot 1 tot(Zr He) (Zr ) (He),n nE E E E

Fig. 3. Dependences of the total energy of the Zr–vac–He system on the specific volume Ω per lattice (including vacant) site of
the hcp, fcc, and bcc structures for the tetrahedral and octahedral coordinations of the helium atom, as well as for the He atom
in a vacancy. As in Fig. 2, the energy is measured from the total energy of the hcp structure of the Zr–vac system.
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Table 3. Energy of helium dissolution in the tetrahedral and
octahedral interstitial sites of the Zr–vac system near the
vacancy and in the vacancy

Lattice type

ΔEv, eV

vacancy tetrahedral 
interstitial site

octahedral 
interstitial site

hcp 1.51 2.51 2.97
fcc 1.49 2.27 2.60
bcc 1.42 2.18 2.20
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where Etot(Zrn – 1He), EtotZrn –1, and Etot(He) are the
total energies of the Zr–vac–He system, the Zr–vac
system, and an isolated helium atom, respectively. As
can be seen from Table 3, the energy of helium disso-
lution in the Zr–vac system has positive values for all
the three crystal lattices under consideration. In each
of these lattices, the energy of helium dissolution in
the system has the minimum value in the case where
the helium atom is located in the vacant site of the zir-
conium crystal.

A comparison of the data presented in Tables 1 and
3 demonstrates that, in the presence of vacancies in
zirconium, the energy of helium dissolution in tetra-
hedral interstitial sites of the hcp and fcc zirconium
lattices and in octahedral interstitial sites of the bcc
zirconium lattice decreases by ~1.1 eV. In this case, the
energy of helium dissolution in octahedral interstitial
sites of the hcp and fcc lattices and in tetrahedral inter-
stitial sites of the bcc structure decreases by ~0.67 eV.
Apparently, this is associated with the fact that the Zr–
vac system is as if under a negative pressure, because
the presence of vacancies in the metal leads to a
decrease in the equilibrium specific volume of the
sample, as was noted in Subsection 3.2. In this case,
the excess volume introduced by helium upon the dis-
solution in the Zr–vac system is effectively reduced,
which leads to a decrease in the dissolution energy.

We are not aware of papers devoted to the investi-
gation of vacancy–helium complexes in zirconium.
Therefore, we compared our results with the data
obtained from theoretical studies on the energetics of
matrix–vacancy–helium systems, where the role of
the matrix was played by the bcc (α-Fe, Cr, Mo, W, V,
Nb, Ta) [6, 18, 30], fcc (Ni, Cu, Ag, Pd) [18], and hcp
(Er, Sc, Y, Gd, Tb, Dy, Ho, Lu) [31–33] metals. The
energies of helium dissolution in the crystal with
vacancies, which were calculated in the aforemen-
tioned works, have positive values, as in our case for
zirconium. For all the crystal structures under consid-
eration, the minimum energy of helium dissolution
corresponds to the situation where the helium atom is
located in the vacancy. In this case, the energy of
helium dissolution in tetrahedral interstitial sites is less
than that in octahedral interstitial sites. All this is con-
sistent with the results of the present study.

We also calculated the energy of vacancy formation
in the Zr–He system for the three crystal structures
under consideration according to the formula

(4)

where Etot(Zrn – 1He) and Etot(ZrnHe) are the total
energies of the Zr–He systems in the presence of a
vacancy and without it, respectively, and ν is number
of vacancies in the computational cell (in this case,
ν = 1). The calculated energies of vacancy formation
Ev(Zr–He) in different crystallographic modifica-
tions of the Zr–He system are presented in Table 4. A
comparison of these results with the data obtained for
the defect-free pure metal (see the vacancy formation
energies without the inclusion of the relaxation in
Table 2) demonstrates that the presence of helium in
zirconium decreases the energy of vacancy formation
in all the systems studied in the present work. Since
the Zr–He and Zr–vac–He systems were considered
without taking into account the relaxation of the crys-
tal lattice of the metal in the vicinity of defects, the
energies of vacancy formation in the Zr–He system
were compared with the corresponding (unrelaxed)
values for the pure metal.

4. CONCLUSIONS

In this work, we carried out the ab initio investiga-
tions of the atomic structure of the Zr–He, Zr–vac,
and Zr–vac–He systems with concentrations of
helium atoms and vacancies of ~6 at % for the hcp,
fcc, and bcc lattices of the metal. The calculations of
the total energies of these systems demonstrated that
the presence of helium with a concentration of ~6 at %
in the Zr–He system gives rise to an instability of the
hcp zirconium lattice, where the formation of vacan-
cies in this system, on the contrary, results in the sta-
bilization of the zirconium lattice. The most preferred
positions of the helium atom in the Zr–vac–He sys-
tem are vacancies, the presence of which decreases the
energy of helium dissolution in zirconium. It was
found that the presence of helium in the zirconium
lattice leads to a significant decrease in the energy of
vacancy formation.
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