«	>>	2015 г
		А.А. Захарова
ин	ститута	Кибернетики
Ди	ректор	
УΊ	ВЕРЖ,	ДАЮ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ИЗМЕРИТЕЛЬНЫХ ПРОЦЕССОВ

НАПРАВЛЕНИЕ ПОДГОТОВКИ: 270401 «Стандартизация и метрология» ПРОФИЛЬ ПОДГОТОВКИ: Компьютеризация измерений и контроля

КВАЛИФИКАЦИЯ (СТЕПЕНЬ): магистр

БАЗОВЫЙ УЧЕБНЫЙ ПЛАН ПРИЕМА: 2015 г.

КУРС 2 CEMECTP 3

КОЛИЧЕСТВО КРЕДИТОВ 6

ПРЕРЕКВИЗИТЫ «Автоматизация измерений, контроля и испытаний»,

«Информационно-измерительные системы»

КОРЕКВИЗИТЫ «Сенсорные сети»

ВИДЫ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ И ВРЕМЕННОЙ РЕСУРС:

 Лекции
 16 час.

 Практические занятия
 32 час.

 Лабораторные занятия
 16 час.

 АУДИТОРНЫЕ ЗАНЯТИЯ
 64 час.

 САМОСТОЯТЕЛЬНАЯ РАБОТА
 152 час.

ИТОГО 216 час.

ФОРМА ОБУЧЕНИЯ Очная

ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ Экзамен, дифференцированный зачет, курсовая работа

ОБЕСПЕЧИВАЮЩЕЕ ПОДРАЗДЕЛЕНИЕ Кафедра компьютерных измерительных систем и метрологии Института кибернетики

ЗАВЕДУЮЩИЙ КАФЕДРОЙ д.т.н., профессор О.В. Стукач

РУКОВОДИТЕЛЬ ООП к.т.н., доцент А.И. Заревич

ПРЕПОДАВАТЕЛЬ ассистент Л.И. Худоногова

1. Цели и задачи освоения модуля (дисциплины)

Целью дисциплины «Программное обеспечение измерительных процессов» является изучение современных программных средств сбора и обработки измерительной информации, принципов и схем их применения.

К задачам изучения дисциплины относятся:

- получение знаний в области существующего программного обеспечения, используемого для автоматизации измерительных процессов, принципов написания программ и специфики использования программного обеспечения в измерительных системах;
- формирование умений и навыков применять полученные знания в процессе разработки программных продуктов для автоматизации измерительных процессов в информационно-измерительных системах.

2. Место модуля (дисциплины) в структуре ООП

Дисциплина «Программное обеспечение измерительных процессов» относится к вариативной части профессионального цикла дисциплин учебного плана направления 270401.

Пререквизитами дисциплины являются дисциплины «Автоматизация измерений, контроля и испытаний», «Информационно-измерительные системы». Кореквизитами является дисциплина «Сенсорные сети».

3. Результаты освоения модуля (дисциплины)

В результате освоения дисциплины студенты приобретут знания, умения и навыки, соответствующие результатам основной образовательной программы. Студент будет:

Знать:

современную терминологию, основные принципы создания и применения программного обеспечения измерительных процессов;

существующие языки программирования, их классификацию;

измерительные сигналы, основные инструменты их согласования;

специфику аппаратного обеспечения, используемого в измерительных системах, принципы взаимодействия аппаратной и программной частей;

Уметь:

использовать профессиональную терминологию, как на русском, так и на английском языке при описании работы программного обеспечения измерительных процессов;

создавать алгоритмы работы программного обеспечения для измерительных систем с учетом существующих возможностей и ограничений;

проводить разработку программного обеспечения измерительных процессов;

проводить исследования, находить и исправлять ошибки в написанных программах;

проводить вызов и тестирование инструментальных драйверов измерительного оборудования;

конфигурировать платы сбора данных для работы с написанным программным обеспечением.

Владеть:

навыками написания, тестирования, отладки программ в среде LabVIEW;

методами программного согласования измерительных сигналов;

опытом работы с инструментальными драйверами устройств, платой сбора данных NI DAQ;

навыками оформления результатов выполнения самостоятельных работ с использованием современных информационных технологий.

Процесс изучения дисциплины направлен на формирование у студента следующих компетенций:

1) Общекультурных:

- способность совершенствовать и развивать свой интеллектуальный и общекультурный уровни (OK-1);
- способность и готовность к творческой адаптации к конкретным условиям выполняемых задач и их инновационным решениям (OK-2);
- способность собирать, обрабатывать с использованием современных информационных технологий и интерпретировать необходимые данные для формирования суждений по соответствующим социальным, научным, техническим и этическим проблемам (ОК-4);
- способность к профессиональной эксплуатации современного оборудования и приборов (в соответствии с целями ООП магистратуры) (ОК-13);
- способность оформлять, представлять и докладывать результаты выполненной работы (ОК-15).

2) Профессиональных:

- проводить работы по автоматизации процессов измерений, испытаний и контроля в производстве и научных исследованиях (ПК-9);
- выбирать оптимальные контрольно-измерительные технологии при создании продукции с учетом требований качества, надежности, стоимости и сроков исполнения, безопасности жизнедеятельности и экологической чистоты производства (ПК-14);
- организовывать самостоятельную и коллективную научноисследовательскую работу (ПК-22);
- проводить моделирование процессов и средств измерений, испытаний и контроля с использованием современных информационных технологий проектирования и проведения исследований; разрабатывать

методики и организовывать проведение экспериментов и испытаний с анализом их результатов (ПК-25).

4. Структура и содержание модуля (дисциплины)

4.1 Содержание разделов дисциплины:

1. Языки программирования.

Предмет дисциплины, ее объем, содержание и связь с другими дисциплинами учебного плана. Роль дисциплины в подготовке магистров по направлению, ее цели и задачи. Общие сведения о языках программирования, их классификация.

2. Структурный подход в программировании.

Структуры данных. Введение в структурное программирование. Алгоритмы обработки измерительной информации.

3. Драйвера устройств.

Понятие драйвера. Вызов и тестирование драйверов устройств. Инструментальный драйвер NI-DAQ.

4. Платы сбора данных.

Компоненты платы сбора данных. Параметры систем сбора данных. Работа с платой NI-DAQ.

5. Датчики и сигналы.

Обзор систем сбора данных. Классификация датчиков и сигналов.

6. Согласование сигналов.

Конфигурация и функции системы согласования сигналов. Фильтрация. Изоляция. Деформация.

7. Технология виртуальных приборов LabVIEW.

Понятие виртуального прибора. Виртуальные приборы для генерации сигналов. Аналоговый ввод и вывод сигналов. Ввод и вывод дискретных сигналов.

8. Передача данных в LabVIEW.

Протоколы передачи данных. Виртуальные приборы и функции работы с протоколом TCP/IP. Модель «клиент-сервер».

4.2 Структура дисциплины по разделам и видам учебной деятельности. Табпипа 1

	11	A		()	CDC	D
$N_{\underline{0}}$	Название раздела/темы	Аудиторная работа (час)			CPC	Всего
Π/Π		Лекции	Лаб.	Практ.	(час)	
			занятия	занятия		
1	Языки программирования	2	-	2	8	12
	Структурный подход в программировании	2	2	2	6	12
3	Драйвера устройств	2	2	-	10	14
4	Платы сбора данных	2	2	4	20	28
5	Датчики и сигналы	2	-	6	30	38

6	Согласование сигналов	2	2	6	28	38
7	Технология виртуальных приборов LabVIEW	2	4	6	30	42
8	Передача данных в LabVIEW	2	4	6	20	32
Ито	oro	16	16	32	152	216

5. Образовательные технологии

Для решения поставленных задач и достижения планируемых результатов в процессе обучения используются образовательные технологии, приведенные в таблице 2.

Таблица 2.

№ п/п	Используемая технология	Лекции	Лаб. работы	СРС
1	Самообучение		+	+
2	Работа в команде		+	
3	Проблемное обучение	+	+	
4	Обучение на основе опыта	+		+
5	Компьютерное обучение	+	+	+

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

Самостоятельная работа студентов (СРС) включает в себя текущую и творческую.

- 6.1 Текущая СРС подразумевает следующие виды работ:
- работа с учебными пособиями, лекционным материалом и Интернет-источниками;
 - выполнение домашних заданий;
 - изучение тем, вынесенных на самостоятельную проработку,
 - подготовку к практическим занятиям;
 - подготовку к текущему и промежуточному контролю (экзамену).

Темы на самостоятельную проработку:

- Объектно-ориентированное программирование.
- Языки программирования Паскаль, C, C++, Java.
- Измерение с различными источниками сигналов. Заземление источников сигналов.
 - Синхронизация устройств сбора данных.
- 6.2. Творческая проблемно ориентированная самостоятельная работа (TCP) включает в себя поиск, анализ, структурирование и презентацию заданной информации.

Темы ТСР:

- Эволюция языков программирования: от машинного до объектноориентированного.
 - Разработка драйверов устройств сбора информации.

6.3 Контроль самостоятельной работы

Текущий контроль осуществляется в виде следующих оценочных мероприятий:

- защиты письменных отчётов по лабораторным работам;
- выполнения контрольных работ;
- устных опросов.

Оценка текущей успеваемости студентов определяется в баллах в соответствии с рейтинг-планом, предусматривающем все виды учебной деятельности.

Промежуточная аттестация студентов проводится в форме письменного экзамена в соответствии с утвержденным учебным планом.

6.4 Учебно-методическое обеспечение самостоятельной работы студентов

самостоятельной работе При студенты имеют возможность пользоваться источниками, приведенными в разделе 9 «Учебно-методическое и информационное обеспечение дисциплины», образовательными ресурсами, представленными на сайте кафедры КИСМ, также компьютерных классах кафедры КИСМ в свободное от аудиторных занятий время.

7. Средства (ФОС) текущей и итоговой оценки качества освоения модуля (дисциплины)

Для организации текущего контроля разработаны и используются следующие средства оценки качества освоения дисциплины:

- список контрольных вопросов по каждой лабораторной работе;
- перечень теоретических вопросов по каждой лекции;
- комплект тестов для проведения контрольных работ.

Для итоговой оценки качества используются экзаменационные билеты, содержащие теоретическую часть и вопрос-ситуацию.

8. Рейтинг качества освоения модуля (дисциплины)

В соответствии с рейтинговой системой текущий контроль производится ежемесячно в течение семестра путем балльной оценки качества усвоения теоретического материала (ответы на вопросы) и результатов практической деятельности (решение задач, выполнение заданий, решение проблем).

Промежуточная аттестация (экзамен, зачет) производится в конце семестра также путем балльной оценки. Итоговый рейтинг определяется суммированием баллов текущей оценки в течение семестра и баллов

промежуточной аттестации в конце семестра по результатам экзамена или зачета.

Максимальный итоговый рейтинг составляет 100 баллов, которые распределяются следующим образом:

текущий контроль – 60 баллов;

экзамен – 40 баллов.

Допуск к сдаче экзамена осуществляется при наличии более 33 баллов по результатам текущего контроля. Кроме того, обязательным является выполнение всех лабораторных работ.

Окончательная оценка успехов студента по дисциплине выставляется в зачетную книжку в 5-бальной системе после сдачи экзамена в письменной форме. Минимально допустимое количество баллов, которое необходимо набрать по итогам промежуточной аттестации – 22.

Рейтинг-план освоения дисциплины в течение семестра приведен таблице 3.

Таблица 3

де	Текущий контроль					
Неде ли	Теоретический материал Практическая деятельность					
	Название раздела	Контрол. материал	Баллы	Название лаб. работ	Баллы	Итого
1	Языки программирования	Тесты	1	-	-	1
2						1
	13 31	Тесты	1			2
-	программировании					2
5	Драйвера устройств	Тесты	1	Драйвера измерительного оборудования:		13
6				калибратора Fluke 5520A, мультиметра NI PXI 4072.		13
7	Платы сбора данных	Тесты	1	Разработка вольтметра на базе платы сбора	10	24
8				данных NI DAQ. Непрерывный буферизированный сбор данных.		24
9	Датчики и сигналы	Тесты	1	Аналоговый ввод, синхронизированный по	10	35
10				фронту дискретного сигнала.		35
	Согласование сигналов	Тесты	1	Использование аппаратных фильтров для		36
12				защиты от наложения спектров.		36
	Технология виртуальных	Тесты	1	Виртуальные приборы для генерации		47
14	приборов LabVIEW			сигналов стандартной формы (синусоидальный, треугольный,		47
15				прямоугольный, пилообразный).		47
	1	Тесты	1	Синхронизация передачи данных. Основы	12	60
1 /	LabVIEW			передачи данных по ТСР/ІР протоколу.		60
18						60
Итого						60

9. Учебно-методическое и информационное обеспечение модуля (дисциплины)

Основная литература:

1. Трэвис Дж., Кринг Дж. Lab VIEW для всех. 4-е издание. Издательство: ДМК Пресс, 2011. – 880 с.

- 2. Ярочкин В.И. Информационная безопасность: Учебник для вузов. М.: Академический Проект, 2009. 544 с.
- 3. Хлебников, А.А. Информационные технологии: учебник для вузов. Москва: КноРус, 2014. 466 с.
- 4. Белов, В.В. Проектирование информационных систем: учебник / В.В. Белов, В.И. Чистякова. Москва: Академия, 2013. 352 с.
- 5. LabView. Центр измерительных технологий и промышленной автоматизации Форум. [Электронный ресурс] Режим доступа: http://www.automationlabs.ru/forum/forumdisplay.php?f=1 Загл. с экрана.

Дополнительная литература:

- 1. Официальный сайт среды разработки LabView [Электронный ресурс] Режим доступа: http://www.labview.ru/ Загл. с экрана.
- 2. Олифер В.Г. Компьютерные сети: принципы, технологии, протоколы: учебное пособие для вузов / В. Г. Олифер, Н. А. Олифер. 4-е изд. Санкт-Петербург: Питер, 2014. 943 с.
- 3. Юрагов Е. Программное обеспечение измерительных процессов. Ч.1. Методы и средства программирования информационно-измерительных систем: учебное пособие. Издательство МГОУ, 2011. 257 с.
- 4. Языки программирования [Электронный ресурс] Режим доступа: http://www.hardforum.ru/f196/ Загл. с экрана.

10. Материально-техническое обеспечение модуля (дисциплины)

Практические работы выполняются специализированных В компьютерных аудиториях кафедры КИСМ ИК (аудитории 605 и 505 18-го **учебного** корпуса), оснащенных современным компьютерным измерительным оборудованием. При проведении работ используется программное обеспечение LabVIEW 2009.

Лекции проводятся в учебных аудиториях 18 корпуса, оборудованных мультимедийным оборудованием (проектор, аудиосистема, моноблок).

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС по направлению и профилю подготовки 270401 «Стандартизация и метрология».

Программа одобрена на заседании кафедры «Компьютерных измерительных систем и метрологии» (протокол № __ от «__» _____ 2015 г.).

Автор	<u>Л.И. Худоногова</u>
Рецензент	