МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЮРГИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

УΤ	ВЕРЖДАЮ)
3a	м. директој	оа по УР ЮТИ ТПУ
		В.Л. Бибик
«	>>	<u>2</u> 014 г.

МАШИНЫ И ОРУДИЯ ДЛЯ ОБРАБОТКИ ПОЧВЫ

Методические указания для выполнения практической работы №1 по курсу «Машины и оборудование в растениеводстве» для бакалавров очной и заочной форм обучения, обучающихся по направлению 35.03.06 «Агроинженерия»

Составитель А.Н. Капустин

Издательство Юргинского технологического института (филиала) Томского политехнического университета 2014 УДК 631.3 ББК 30.82 0-64

Машины и орудия для обработки почвы: методические указания к выполнению лабораторной работы по курсу «Машины и оборудование в растениеводстве» для студентов, обучающихся по направлению 35.03.06 «Агроинженерия», очной и заочной форм обучения / сост.: А.Н. Капустин; Юргинский технологический институт. — Юрга: Изд-во Юргинского технологического института (филиала) Томского политехнического университета, 2014. — 64 с.

УДК 631.3 ББК 30.82

к изданию методическим Агроинженери:	1 1
« <u> </u>	20 г.
Зав. кафедрой АИ кандидат техн. наук, доцент	О.Ю. Ретюнский
Председатель учебно-методической комиссии	А.Н. Капустин

Методические указания рассмотрены и рекомендованы

Pецензент Кандидат технических наук, доцент кафедры АИ ЮТИ ТПУ $A.П.\ C$ ырбаков

© Составление. ФГБОУ ВПО НИ ТПУ Юргинский технологический институт (филиал), 2014 © Капустин А.Н., составление, 2014

ВВЕДЕНИЕ

Методические указания предназначены для использования при выполнении контрольной работы №2 по курсу «Машины и оборудование в растениеводстве» (раздел: «Почвообрабатывающие машины и орудия»).

Методические указания включают описание порядка выполнения работ и применяемые расчетные формулы. Перед каждой работой даются краткие теоретические выкладки.

Основная цель методических указаний — помощь студентам закрепить знания, полученные при изучении теории и расчета рабочих органов почвообрабатывающих машин, выработать навыки выбора оптимальных режимов их работы.

1 ПРОЕКТИРОВАНИЕ РАБОЧЕЙ ПОВЕРХНОСТИ ОТВАЛА

Цель работы. Спроектировать лемешно-отвальную поверхность корпуса плуга общего назначения и определить основные параметры его; вычислить скоростной коэффициент формулы В. П. Горячкина и силу сопротивления плуга при различных скоростях движения.

Теоретическая часть

Лемешно-отвальные корпуса являются рабочими органами плугов, лемешных лущильников, окучников и др. Лемех подрезает пласт снизу и вместе с отвалом отделяет его сбоку (от стенки борозды). Перемещаясь по рабочей поверхности, пласт крошится и оборачивается. Качество обработки почвы зависит от типа отвала, гранулометрического состава, задернелости и влажности почвы.

Рабочая поверхность отвала может быть построена перемещением прямолинейной образующей параллельно борозды некоторой дну ПО кривой NN 1), направляющей (рис. расположенной В плоскости, перпендикулярной лезвию лемеха ОО. Касательная к направляющей кривой в нижней образует горизонтальной ee точке cплоскостью УГОЛ характеризующий установку лемеха к дну борозды. При движении линии ОО по направляющей кривой получают образующие 1-1, 2-2, 3-3 и т.д. Эти линии образуют углы уі по отношению к стенке борозды, изменение которых в зависимости от высоты zi указывает на тип отвала.

Все отвалы с горизонтальной образующей делят на четыре типа: цилиндрические, культурные, полувинтовые, скоростные. Значения углов γ і и ϵ_0 приведены в таблице 1.

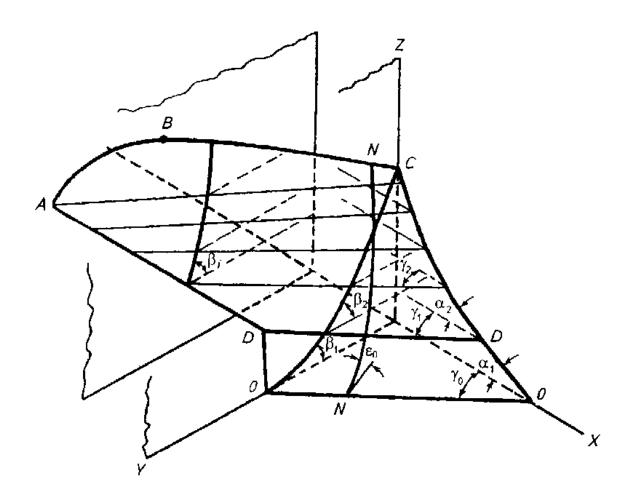


Рис. 1 Характерные элементы и углы плужного корпуса: OO, DD - образующие; γ і -угол сдвига (угол между образующей и стенкой борозды по высоте zі); α і - угол подъема; β і - угол оборота пласта

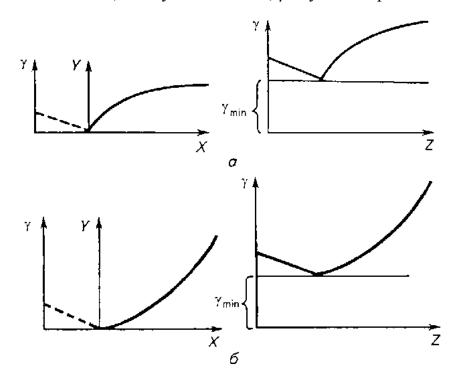


Рис. 2 Закономерность изменения углов γ по высоте zi: а — для культурного отвала; б — для полувинтового отвала

150 ... 200

Тип отвала Высота ϵ_0 γ_{max} - γ_{min} γ_0 - γ_{min} γ_0 расположения плоскости со Значением γ_{min} , MM Цилиндрический 45 ... 55 30 ... 35 0 0 40 ... 45 25 ... 30 2 ... 7 Культурный 1 ... 3 50 ... 100 35 ... 40 20 ... 25 7 ... 15 2 ... 4 50 ...100 Полувинтовой

Пределы изменения углов γ_i и ϵ_0 , град

Для культурного отвала (рис. 45, *a*) изменение углов от \square γ_{min} до γ_{max} определяют из графика, построенного по уравнению кривой

27

$$y = 6.2 x^2 / (x^2 + 100)$$

а для полувинтового отвала (рис. 45, δ)

38

Скоростной

$$y=x^2$$
 (2)

5 ... 7

1 ... 2

где y - текущая координата для определения углов γ i (ее наносят на график в произвольном масштабе), см;

x - расстояние по высоте между рассматриваемым сечением и сечением с утлом γ_{min} см.

По этим зависимостям можно построить крошащую поверхность отвала с достаточно развитой оборачивающей способностью его крыла, особенно у полувинтового отвала.

Углы между образующими поверхности отвала и стенкой борозды определяют по формуле

$$\gamma_{i} = \gamma_{min} + \frac{\gamma_{max} - \gamma_{max}}{y_{max} - y_{min}} \cdot y_{i}$$
(3)

где γi — ординаты, вычисленные по формулам (1) или (2) для каждой образующей

Дробный сомножитель выражения (3) представляет собой масштаб графика углов γi , град/см,

$$\frac{\gamma_{\text{max}} - \gamma_{\text{min}}}{y_{\text{max}} - y_{\text{min}}} = \lambda \tag{4}$$

Сечение корпуса продольно-вертикальной плоскостью дает возможность на профильной проекции определить угол подъема α , а поперечно-вертикальной плоскостью — угол β , характеризующий оборачивающую способность (см. рис. 1).

Для определения параметров корпуса плуга рассматривают кинематику пласта (рис. 3). Профиль борозды строят для пласта размером b х a (здесь b — ширина захвата, a — глубина вспашки). Пласт ABCO после оборота занимает положение A'B'C'O'. Однако если учесть, что пласт при прохождении лемешно-отвальной поверхности вспушивается, то глубина пласта увеличивается на $25 \, \text{мм}$.

Ломаную линию $COAB'_1A'_1O'_1$ называют профилем борозды. Она определяет форму и размеры лобового контура AOEDLT. При построении лобового контура координаты характерных точек E, D, L принимают из следующих соображений. Точка E должна находиться на высоте H=b и отстоять от стенки борозды на 5...10 мм. Максимальную высоту H_{max} поверхности отвала (точка D) принимают исходя из условия непересыпания пласта при его обороте, T. е. H_{max} принимают равной диагонали пласта:

$$H_{\text{max}} = \sqrt{b^2 + a^2} \tag{5}$$

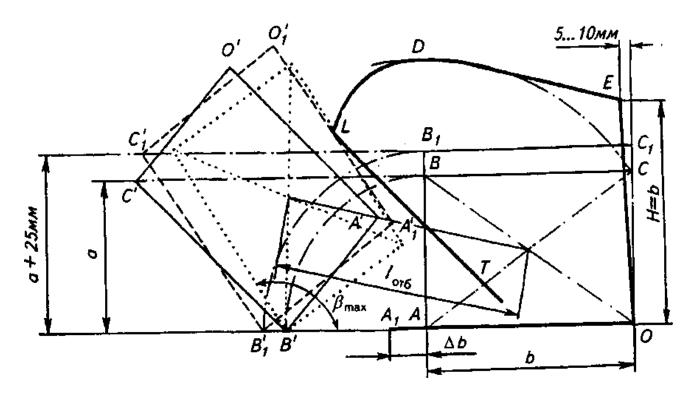


Рис. 3 Построение лобовой поверхности корпуса

Для уменьшения трения поверхности отвала о пласт стык верхнего и бороздного обрезов (точка L) должен придерживать вспушенный пласт посередине его ширины $O'_1 A'_1$ и иметь одну точку касания. Поэтому линию бороздного обреза LT проводят параллельно линии A'O'.

Для полного подрезания пласта лезвие лемеха увеличивают на $\triangle b = 2...3$ см по отношению к ширине пласта b.

Наиболее подходящей в качестве направляющей кривой является парабола. Направляющая кривая NN (см. рис. 1) располагается в плоскости, перпендикулярной лезвию лемеха, которая проходит через задний конец лемеха (для полувинтового отвала) или на расстоянии 2 /3 длины лезвия от носка лемеха (для культурного отвала).

Для построения направляющей кривой $N_1N'_1$, (рис. 47) определяют расчетное значение радиуса R, которое находится в пределах

$$R_{min} < R < R_{max}$$
 причем

$$R_{\min} = \frac{b}{(0.5 \cdot \pi - \varepsilon_0) \cdot \cos \gamma_0}$$

$$R_{\text{max}} = \frac{b \cdot \sqrt{k_1 - 1}}{k_1^2 \cdot (\cos \gamma_0 - \frac{\cos \gamma_0}{\sqrt{k_1^2 - \sin^2 \gamma_0}})}$$
(6)

где $k_1 = b/a$

Минимальное значение радиуса R_{min} определяют из условия полного размещения пласта на отвале, а максимальное ограничивается условием отсутствия задирания пласта бороздным обрезом. . Для культурных отвалов ориентировочно можно принять

$$1,35b < R < 1,75b,$$
 (7)

для полувинтовых

$$1,10b < R < 1,55b,$$
 (8)

Высоту направляющей кривой h принимают такой, чтобы через край отвала не пересыпалась почва, т. е. $h = z_{max}$

Используя результаты построения лемешно-отвальнои поверхности, можно вычислить значение коэффициента є и рассчитать силу сопротивления плуга при различных скоростях движения по формуле В. П. Горячкина:

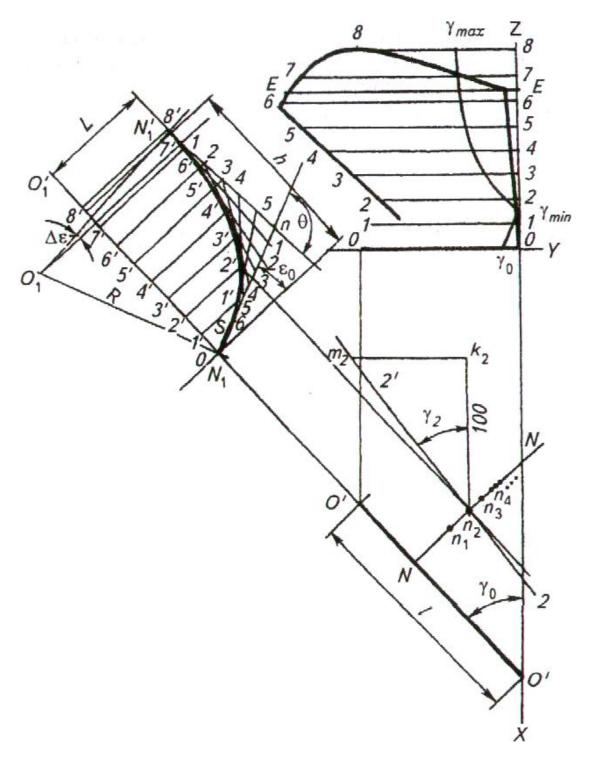


Рис.4 Построение направляющей кривой

$$P = f \cdot G + k \cdot a \cdot b \cdot n + \varepsilon \cdot a \cdot b \cdot n \cdot v^{2}$$
(9)

где f - коэффициент протаскивания плуга с учетом трения рабочих органов о дно и стенку борозды; G-сила тяжести плуга, H; k -удельное сопротивление почвы смятию, H/M a, b - размеры пласта, M; n — число корпусов; ε — скоростной коэффициент, $\kappa \Gamma/M^3$; V - скорость движения плуга, M/C

Если параметры f и k обладают относительной стабильностью для плугов различных моделей и могут быть приняты для расчетов по прототипу, то ϵ существенно зависит от формы отвала, соотношения сторон пласта, длины пласта, размещающегося на отвале, и его следует рассчитывать применительно к этим условиям.

Мощность, необходимая для отбрасывания пласта, состоит из затрат мощности на перемещение центра тяжести на расстояние

 $l_{\text{отб}}$ (см. рис. 3) и на поворот пласта на угол \square β_{max} за время \square Δt . Пласт должен быть вычерчен в положении схода с отвала, когда касание остается лишь в точке L.

Мощность, затрачиваемую на перемещение, Вт, определяют через импульс силы:

$$\mathbf{N}_1 = \mathbf{m} \cdot \mathbf{v}_1^2 / \Delta t \tag{10}$$

где m — масса пласта, кг; V — скорость бокового смещения пласта, м/с; Δt — время перемещения пласта по отвалу, с.

Величины из выражения (10) рассчитывают по формулам

$$m = \rho \cdot a \cdot b \cdot L_{\text{IIJI}}$$

$$v_1 = v \cdot l_{\text{OTO}} / L_{\text{IIJI}}$$

$$\Delta t = L_{\text{IIII}} / v$$

где р — плотность почвы в начальном состоянии пласта, кг/м 3 ; a, b, Lпл, — размеры пласта, м; V — скорость движения плуга, м/с.

Мощность, расходуемую на поворот пласта, можно вычислить по формуле

$$N_2 = I \cdot \beta_{\text{max}}^2 / \Delta t^3 \tag{12}$$

где $I = m \cdot (a^2 + b^2)/12$ - момент инерции пласта, кг • м²; $\Box \beta_{\text{max}}$ - угол поворота пласта, рад.

Суммарная мощность на отбрасывание пласта

$$N = N_1 + N_2 \tag{13}$$

Расчетная сила для отбрасывания пласта

$$P_{\text{OTO}} = N/v_1 \tag{14}$$

Учитывая среднее значение углов γ і лемешно-отвальной поверхности и угол трения почвы по стали, можно вычислить третье слагаемое формулы В. П. Горячкина (9) для одного корпуса плуга

$$\varepsilon \cdot a \cdot b \cdot v^2 = P_{\text{OTO}} \cdot tg(\gamma + \varphi) \qquad (15)$$

С учетом предыдущих выражений равенство (15) приводится к виду

$$\varepsilon = \frac{\rho}{L_{\text{III}}} \left(l_{\text{OTO}} + \frac{(a^2 + b^2) \cdot \beta_{\text{max}}^2}{12 \cdot l_{\text{OTO}}} \right) \cdot \text{tg}(\gamma + \phi) \quad (64)$$

Таким образом, изложенная методика позволяет определить значения параметров рабочей поверхности корпуса плуга, необходимые для ее проектирования, и коэффициент є, используемый при расчете силы сопротивления плуга.

Практическая часть

Содержание работы: спроектировать лемешно-отвальную поверхность корпуса плуга, определить основные параметры корпуса плуга и перемещения пласта, вычислить коэффициент ε в рациональной формуле В. П. Горячкина, рассчитать силу сопротивления плуга P при различных скоростях движения и графически показать зависимость P = f(v) (скорость движения v принять равной 1 м/c, 1,5 м/c, 2 м/c, 2,5 м/c и 3 м/c).

Исходные данные. В таблице 2 приведены следующие исходные параметры: глубина пахоты a, отношение ширины захвата корпуса к глубине пахоты $k_I = b/a$, угол наклона лемеха ко дну борозды ϵ 0, углы наклона образующих к стенке борозды γ 0, $\gamma_{m\,i\,n}$, $\gamma_{m\,a\,x}$ тип отвала — культурный К и полувинтовой Π .

Табл. 2 Исходные данные к проектированию рабочей поверхности

Номер варианта	а, м	k ₁	є _{0, град}	Y 0, град	Ymin, град	Ү тах, град	Тип отвала
1	2	3	4	5	6	7	8
1	0,24	1,46	28	41	39	45	К
2	0,20	1,50	28	41	39	46	К
3	0,25	1,40	29	42	41	45	К
4	0,22	1,36	29	42	40	45	К
5	0,25	1,37	29	42	40	46	К
6	0,26	1,35	30	43	41	46	К
7	0,21	1,43	30	43	41	47	К
8	0,27	1,30	30	43	42	47	К
9	0,24	1,46	22	35	33	44	П
10	0,20	1,50	23	35	33	45	П
1	2	3	4	5	6	7	8
11	0,25	1,40	23	36	34	46	П

продолжение табл. 2

1	2	3	4	5	6	7	8
12	0,22	1,36	24	36	34	47	П
13	0,26	1,35	24	37	34	48	П
14	0,21	1,43	25	37	35	49	П
15	0,27	1,30	25	38	35	50	П
16	0,24	1,46	28	41	39	45	К
17	0,20	1,50	28	41	39	46	К
18	0,25	1,40	29	42	41	45	К
19	0,22	1,36	29	42	40	45	К
20	0,25	1,37	29	42	40	46	К
21	0,26	1,35	30	43	41	46	К
22	0,21	1,43	30	43	41	47	К
23	0,27	1,30	30	43	42	47	К
24	0,24	1,46	22	35	33	44	П
25	0,20	1,50	23	35	33	45	П
26	0,25	1,40	23	36	34	46	П
27	0,22	1,36	24	36	34	47	П
28	0,26	1,35	24	37	34	48	П
29	0,21	1,43	25	37	35	49	П
30	0,27	1,30	25	38	35	50	П

Для расчета силы тяги плуга необходимо также знать параметры, указанные в таблице 3, а скорость движения v принять равной 1, 1,5, 2, 2,5 и 3 м/с.

Табл. 3 Исходные данные к расчету силы тяги плуга

Номер варианта	Масса плуга, кг	Число корпу- сов	Угол трения, град	Коэффициент протаскивания плуга в борозде	Удельное сопротивление почвы смятию, H/cм ²	Плотность почвы, кг/м ³
1	2	3	4	5	6	7
1	990	5	29	0,50	4	1350
2	1570	9	30	0,45	3,5	1350
3	1000	5	31	0,55	4,5	1400
4	1010	6	32	0,47	4	1400
5	960	5	33	0,43	4	1350
6	780	4	34	0,52	5	1500

продолжение табл. 3

1	2	3	4	5	6	7
7	1600	9	35	0,45	4	1450
8	810	4	34	0,50	5	1450
9	980	5	33	0,42	4,5	1400
10	1550	9	32	0,48	3,5	1300
11	1010	5	31	0,44	4,5	1450
12	1030	6	30	0,47	4	1400
13	800	4	35	0,50	4,5	1450
14	1580	9	34	0,48	4	1400
15	790	4	33	0,46	5	1500
16	990	5	29	0,50	4	1350
17	1570	9	30	0,45	3,5	1350
18	1000	5	31	0,55	4,5	1400
19	1010	6	32	0,47	4	1400
20	960	5	33	0,43	4	1350
21	780	4	34	0,52	5	1500
22	1600	9	35	0,45	4	1450
23	810	4	34	0,50	5	1450
24	980	5	33	0,42	4,5	1400
25	1550	9	32	0,48	3,5	1300
26	1010	5	31	0,44	4,5	1450
27	1030	6	30	0,47	4	1400
28	800	4	35	0,50	4,5	1450
29	1580	9	34	0,48	4	1400
30	790	4	33	0,46	5	1500

Порядок выполнения работы.

- 1. На листе формата A1 в масштабе 1 : 2 построить профиль борозды COAB'A'O' (см. рис. 3) по заданным размерам $A'_1B'_1C'_1O'_1$ пласта $b \times a$ и положение вспушенного пласта по его размерам $b \times (a + 25 \text{ мм})$.
- 2. Построить вертикальную проекцию (лобовой контур) *AOEDLT* лемешно-отвальной поверхности корпуса.
- 3. Рассечь лобовой контур горизонтальными плоскостями, проведя образующие через 50 мм (в масштабе через 25 мм) по всей высоте, начиная от дна борозды. Линии пронумеровать от нуля до n . Если образующие не совпадают с характерными точками, то надо провести дополнительные, например на высоте Z_E (см. рис. 4).

4. Построить график изменения угла γ =f(z) по выражениям (1), (2). Масштаб графика можно выбрать произвольно, но с условием, чтобы $y_{max} = 50...~150$ мм. Ординаты графика y_i , в пределах от z_o до z_{min} принимают по прямо пропорциональной зависимости. Значения углов γ i рассчитать по формуле (3) и записать в приведенной ниже форме.

Образующая z_0 1-1 z_{min} 2-2 3-3 4-4 ... z_{E} ... z_{max} z_i , мм

5. Построение направляющей кривой следует начинать с вычерчивания лезвия лемеха в горизонтальной проекции. Для этого под углом γ 0 к оси X провести нулевую образующую и на нее спроецировать с лобового контура конец лезвия лемеха. На лезвие нанести проекцию направляющей кривой.

Истинную форму направляющей кривой можно получить на дополнительной проекции в виде сечения. На продолжении линии O'O' выбрать точку N_1 , восстановить из нее перпендикуляр к линии и провести к нему отрезок N_1 n под углом ε 0, показывающий установку лемеха относительно дна борозды. Из точки N_1 провести перпендикуляр к этому отрезку и радиусом R отметить на перпендикуляре точку O_I , являющуюся центром окружности направляющей кривой. Расчетный радиус предварительно определить по выражениям (6)...(8).

Из центра O_I радиусом R провести дугу $N_I N'_I$, опустить перпендикуляр из точки O_I к линии OO'_I и продолжить его до пересечения с дугой. Далее из центра O_I под углом $\Delta \varepsilon = 4...5^{\circ}$ (для культурных отвалов) или $\Delta \varepsilon = 8...10^{\circ}$ (для полувинтовых отвалов) провести линию также до пересечения с дугой. Из точки пересечения провести к дуге касательную

 N'_1 n . Эта прямая образует с касательной, проведенной под углом ϵ 0 , угол $\theta = 90^\circ + \Box \epsilon$ 0 - $\Delta \epsilon$. Для культурных отвалов $\theta = 115^\circ$, для полувинтовых $\theta = 110^\circ$.

Из точки N_I отложить отрезок N_I S , равный ширине плоской части лемеха, т. е. N_I S=50...60 мм. Отрезки Sn и N'_I n следует поделить на равное число частей и одноименные точки соединить прямыми линиями. Направляющую кривую провести в виде плавной кривой, касающейся всех внешних отрезков косоугольной сетки.

- 6. На направляющую кривую нанести сечения по высоте в виде образующих линий и пронумеровать их в том порядке, что и на лобовом контуре (0— 0, 1—1, 2— 2 и т. д.). Если число линий оказалось меньше, чем на лобовом контуре, то направляющую кривую следует плавно продолжить вверх. Число образующих должно быть таким же, как и на лобовом контуре, а $h = z_{max}$
- 7. Измерить отрезки I'-I', 2'-2', ..., n'-n' на направляющей кривой на всех уровнях по высоте, перенести их на след секущей плоскости NN горизонтальной проекции отвала и присвоить те же номера: n_1 , n_2 , n_3 и т.д. Через эти точки провести образующие линии соответственно под углами γ_1 , $\gamma_2 \square$, γ_3 и т. д. к стенке борозды. Предварительно рассчитанные значения углов приведены на с. 16. Для более точного построения углов γ_1 рекомендуется вычислить γ_2 и вычертить по два катета, один из которых равен 100 мм, а другой 100 tg γ_2 и. Например , γ_2 и γ_3 и γ_4 см. .рис. 4).
- 8. Для построения горизонтальной проекции отвала перенести с лобовой проекции точки пересечения контура с образующими (рис. 5). Номера образующих на обеих проекциях должны совпадать.

При построении горизонтальной проекции необходимо обратить внимание на следующее. Верхний конец полевого обреза должен отстоять,

как и на вертикальной проекции, на 5... 10 мм от стенки борозды и располагаться между некоторыми образующими в соответствии с высотой Z_E Крыло отвала может иметь загиб вперед (петлеобразная форма проекции). В таком случае максимально удаленные точки бороздного, верхнего и полевого обрезов соединяют по вычерченным ранее образующим.

9. Чтобы построить стык лемеха с отвалом, необходимо на направляющей кривой по дуге $N_I N'_I$ отложить в виде хорды $N_I K'_I$ ширину B лемешной стали (стандартом предусмотрено B= 105, 114, 122, 132, 152 мм). На лобовой проекции отвала на высоте $\mathbf{Z}\mathbf{k} = N_I K_I$ провести дополнительную образующую KK до пересечения с контурной линией.

Величину $K_I K'_I$ перенести на след секущей плоскости NN на горизонтальной проекции и провести дополнительную образующую KK под углом γ_K к стенке борозды. Значение этого угла можно взять из графика $\gamma = f(z)$. Достроить лемех на горизонтальной проекции, проведя его бороздкой обрез в виде прямой линии. Пересечение образующей I-I с бороздным обрезом перенести на лобовой контур. Полученные точки соединить вогнутой линией.

10. Оценить оборачивающую способность отвала по значениям углов β_{i} . Для этого горизонтальную проекцию следует рассечь поперечновертикальными плоскостями с интервалом 100 мм, начиная от носка лемеха. Эти следы секущих плоскостей X_1X_1 , X_2X_2 ,... (см. рис. 5) перенести на вертикальную проекцию, ориентируясь по точкам их пересечений с образующими. Ha вертикальной проекции следы секущих плоскостей имеют криволинейную форму. Угол оборота Ві (угол между касательной и образующей линией на вертикальной проекции) показывает оборачивающую способность отвала и увеличивается по мере подъема пласта.

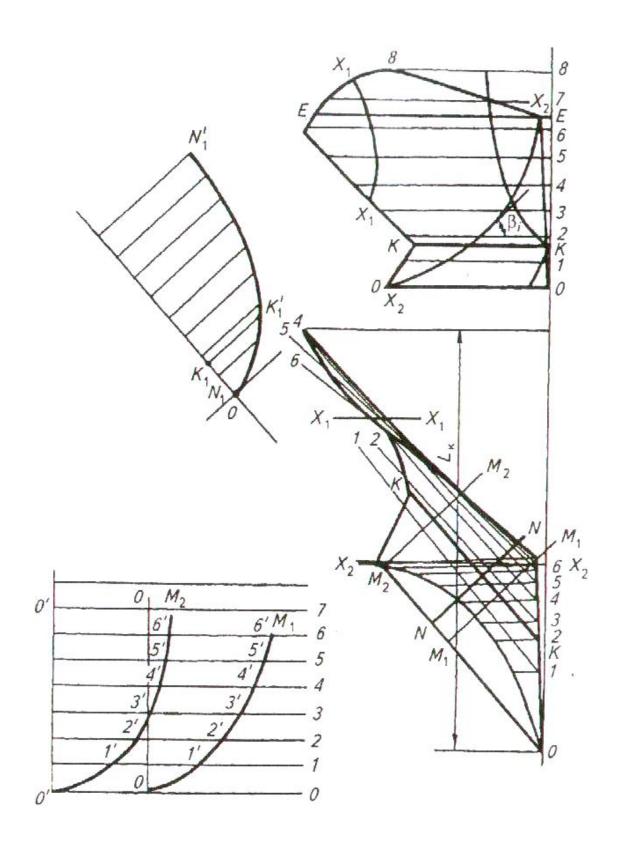


Рис.5 Построение горизонтальной проекции отвала

11. Построить полевой обрез наложением сечения на горизонтальную проекцию. Из точек пересечения образующих с полевым обрезом провести горизонтальные линии влево перпендикулярно стенке борозды и на них

отложить высоты z_i образующих, измеренные на лобовой проекции. Полученные точки соединить плавной кривой.

- 12. Шаблоны, необходимые для построения развертки, могут также служить ДЛЯ проверки точности изготовления лемешно-отвальной поверхности корпуса. Их строят методом сечений горизонтальной проекции отвала плоскостями, перпендикулярными лезвию лемеха, подобно направляющей кривой, которая тоже может служить шаблоном. Для этого провести несколько (две-три) секущих плоскостей так, чтобы эти плоскости пересекали как можно больше образующих линий M_1 — M_1 , M_2 — M_2 и т. д. В свободном углу листа нанести сетку образующих линий из лобовой проекции и пронумеровать с той же последовательностью, что и на лобовом контуре. Восстановить перпендикуляр к нулевой линии и от него отложить вправо по образующим отрезки, характеризующие полноту шаблона. Эти отрезки измерить от лезвия лемеха до соответствующей образующей на горизонтальной проекции. Полученные точки соединить плавной кривой. Аналогично можно построить и другие шаблоны.
- 13. Построить развертку с помощью двух шаблонов или одного шаблона и направляющей кривой. Если на листе нет свободного места, развертку можно изобразить на предыдущих построениях. Сначала надо вычертить прямую линию 00 (рис. 6) и отложить на ней длину лезвия лемеха *l*, измерив ее на горизонтальной проекции (см. рис. 6). Затем нанести на нее точки θ , M_1 , M_2 , θ (см. рис. 6), сохранив их точное положение на лезвии лемеха. Из точек M_1 и M_2 восстановить перпендикуляры M_1M_1 и M_2 M_2 к лезвию лемеха. На этих перпендикулярах отложить длины хорд M_1 1', 1'2', 2' 3' и т. д., измеренных на шаблонах (см. рис. 5). Таким образом, получится развертка шаблонов (см. рис. 6). Одноименные точки соединить образующими. Отложить на каждой образующей расстояние от шаблонов до контура полевого и бороздного обрезов, измерив границы горизонтальной проекции. Полученные точки соединить замкнутой кривой, которая представляет собой развертку

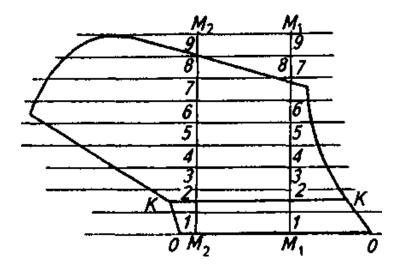


Рис.6 Построение развертки отвала

лемешно-отвальной поверхности.

- 14. Измерить и записать в рабочей тетради полученные параметры лемешно-отвальной поверхности: ширину захвата корпуса, длину и ширину лемеха, ширину его плоской части, радиус, высоту и ширину направляющей кривой.
- 15. Методом засечек построить пласт почвы в момент схода его с отвала, когда он касается отвала в одной точке L (см. рис. 3).
- 16. Определить по результатам построения и записать в рабочей тетради длину пласта $L_{\Pi\Pi}$, дальность его отбрасывания $l_{\text{отб}}$ и угол поворота β m а x.

Длину пласта $L_{\Pi J}$, размещающегося на рабочей поверхности отвала, вычисляют приближенно по известной длине проекции $L_{\rm K}$ корпуса на ось X и углу γ min

$$L_{\text{пл}} \cong L_{k}/\cos\gamma_{\min} \tag{17}$$

Величины $l_{\text{отб}}$ и β m а x измеряют непосредственно на чертеже.

- 17. Вычислить по выражению (16) скоростной коэффициент ε , рассчитать по формуле (9) силу сопротивления плуга при различных скоростях движения и графически представить зависимость P=f(v).
 - 18. Записать вывод, содержащий ответы на следующие вопросы.
- 18.1. От каких факторов зависит крошащая и оборачивающая способности лемешно-отвальной поверхности корпуса?
 - 18.2. Какими параметрами определяется тип отвала?
 - 18.3. Для чего нужна направляющая кривая?
- 18.4. Какие углы характеризуют лемешно-отвальную поверхность корпуса плуга и каково их назначение для различных типов отвала?
- 18.5. Какие факторы влияют на скоростной коэффициент е в рациональной формуле В. П. Горячкина?
- 18.6. Как изменяется сила тяги плуга с увеличением скорости движения?

2 ПРОЕКТИРОВАНИЕ ЗВЕНА ЗУБОВОЙ БОРОНЫ

Цель работы. Освоить методику проектирования звена зубовой бороны типа зигзаг.

Теоретическая часть

Жесткие зубовые бороны применяют преимущественно для рыхления верхних слоев почвы после вспашки или культивации, разрушения глыб и корки, уничтожения сорняков, а также заделывания семян и удобрений при разбросном посеве. Бороны бывают легкие, средние и тяжелые. Это деление определяется нагрузкой на зуб от массы бороны. Основные параметры зубовых борон приведены в таблице 18.

При расстановке зубьев на раме бороны необходимо учитывать следующие требования:

каждый зуб должен проводить самостоятельную борозду;

по всей ширине захвата между бороздами должно быть одинаковое расстояние;

Табл. 4 Характеристики зубовых боров

Тип	Между-	Глубина	Нагрузка	Тяговое сопроти-	Расстояні рядами зу	-	Длина	Сечение
борон	рядье, мм	хода, мм	на 1 зуб, Н	вление на 1 зуб, Н			зуба, мм	зуба
	112112			1 37 8, 11	h	h ₁ ,		
Тяжелые	5075	75125	1620	4050	300450	150300	150300	Квадрат
Средние	4055	4075	1215	2025	250350	150250	100200	То же
Легкие	2535	2040	610	1015	200300	100200	100150	Круг

для обеспечения устойчивого хода бороны сила тяги должна проходить через след центра тяжести.

Исходные данные: a — ширина междурядья, M — число поперечных планок, N — число продольных планок, k: —число ходов основного винта, h — расстояние между поперечными планками, q — нагрузка на один зуб, P_0 — тяговое сопротивление одного зуба, l--длина зуба. Значения этих параметров по вариантам задания приведены в таблице 5.

Табл. 5 Исходные данные для проектирования звена зубовой бороны

Номер	Тип	k	M	N	<i>h</i> , мм	a, MM	q.H	Ро,Н	<i>l</i> , mm
варианта	бороны								
1	2	3	4	5	6	7	8	9	10
1	Легкая	3	5	4	200	25	9	12	100
2	Легкая	2	5	5	300	35	8	10	100
3	Тяжелая	3	5	5	325	50	18	45	150
4	Тяжелая	2	5	4	375	60	20	50	200
5	Средняя	3	5	5	250	40	12	22	140
6	Средняя	2	5	4	275	45	15	25	175
7	Легкая	3	2	6	300	25	7	12	125

продолжение табл. 5

1	2	3	4	5	6	7	8	9	10
8	Легкая	2	5	6	275	30	8	15	150
9	Средняя	3	5	5	275	40	14	24	175
10	Средняя	2	5	4	300	50	13	25	200
11	Тяжелая	3	5	4	450	75	20	45	250
12	Тяжелая	2	5	5	400	70	18	47	275
13	Легкая	3	5	6	300	30	9	15	125
14	Легкая	2	5	5	250	25	10	15	100
15	Средняя	3	5	5	350	45	13	21	125
16	Тяжелая	2	5	5	400	55	20	45	300
17	Тяжелая	3	5	4	450	70	17	48	250
18	Легкая	2	5	6	275	25	8	12	120
19	Легкая	3	5	5	225	30	10	14	125
20	Тяжелая	2	5	4	425	60	16	45	250
21	Тяжелая	3	5	5	400	55	18	49	225
22	Средняя	2	5	6	325	50	15	24	175
23	Средняя	3	5	5	300	40	14	23	200
24	Легкая	2	5	6	300	25	6	11	130
25	Легкая	3	5	5	250	30	7	14	140
26	Тяжелая	3	7	5	400	50	20	50	200
27	Тяжелая	5	7	4	350	60	18	45	225
28	Легкая	4	7	6	250	25	7	12	125
29	Легкая	2	7	5	275	30	9	15	150
30	Средняя	3	7	6	250	40	12	20	150

Порядок выполнения работы. Приведенные выше требования к размещению зубьев могут быть выполнены при расположении их на развертке многоходового винта (основного и дополнительного) в точках пересечения винтовых линий с образующими цилиндра, проведенными на одинаковом расстоянии одна от другой. Для построения зубового поля необходимо выполнить следующее.

- 1. На листе миллиметровой бумаги (формат A4) нанести M+1 образующую 1-1, 2-2 и т.д. на расстоянии h одна от другой (рис. 7).
 - 2. Вычислить шаг винта

$$\mathbf{b} = \mathbf{M} \cdot \mathbf{a} \tag{18}$$

3. Определить ход основного винта

$$t = b \cdot k \tag{19}$$

4. Рассчитать число ходов дополнительного винта

$$\mathbf{k}_1 = \mathbf{M} - \mathbf{k} \tag{20}$$

5. Определить ход дополнительного винта

$$t_1 = b \cdot k_1 \tag{21}$$

- 6. На образующей 1-1 отложить отрезки AB = t , $BC = t_1$ разделив их на соответствующее число частей, равных b.
- 7. Из точки B восстановить перпендикуляр BD. Точку D пересечения его с образующей I'-I' соединить с точками A и C. Прямые AD и CD представляют собой развертку винтовых линий основного и дополнительного винтов. Вправо и влево от точки D провести ряд наклонных прямых, параллельных AD и CD и разделяющих образующие на отрезки b. Общая ширина зубового поля при этом должна быть не менее b (N+1).

Зубовое поле, построенное на M+1 образующей, представляет собой полную развертку винта, верхняя линия которой I-I' повторяет нижнюю I-I. Поэтому M планок должны быть расположены на M образующих.

8. Построить контур звена бороны, располагая среднюю часть продольных зигзагообразных планок между 2-й и 4-й образующими вдоль развертки винта с меньшим числом ходов. Крайние части продольных планок должны быть расположены вдоль развертки винта с большим числом ходов.

Для проверки правильности выбора формы звена необходимо спроектировать на образующую 1-1 все точки пересечения поперечных планок с одной из продольных, т. е. точки, в которых должны быть укреплены зубья бороны. Если по одному следу проходит только один зуб и расстояния между всеми бороздами одинаковы и равны междурядью a, то форма звена соответствует агротехническим требованиям.

Зубья на крайних поперечных планках меньше забиваются растительными остатками. Поэтому с целью уменьшения габаритных

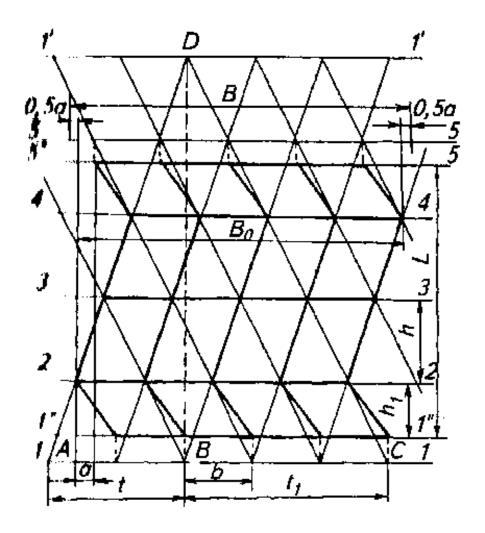


Рис. 7 Построение зубового поля бороны

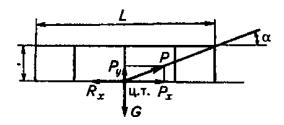


Рис. 8 Схема сил, действующих на звено зубовой бороны

размеров бороны их можно приблизить к средним планкам до расстояния h_1 (см. табл. 4). Для этого необходимо провести дополнительные образующие 1"-1" и 5"-5" на расстоянии h_1 (см. рис. 7) и спроектировать на них точки расположения зубьев с 1-й и 5-й образующих. Таким образом, зубья, расположенные на крайних планках, оказываются смещенными с развертки винтовой линии.

9. Определить конструктивные размеры звена. Ширину захвата звена можно рассчитать по формуле

$$\mathbf{B}_0 = (\mathbf{z} - 1) \cdot \mathbf{a} \tag{22}$$

где z = MN— число зубьев.

Ширина захвата бороны

$$\mathbf{B}_{6} = \mathbf{B}_{0} + \mathbf{a} \tag{23}$$

Длина звена бороны

$$L = 0.5 \cdot (h + h_1) \cdot (M - 1) \tag{24}$$

Для устойчивого хода необходимо, чтобы линия тяги проходила через след центра тяжести бороны (рис .8). Это условие соблюдается при

$$\alpha = \arctan(2 \cdot 1/L) \tag{25}$$

При силе тяжести звена бороны

$$G = q \cdot z - P_0 \cdot z \cdot tg\alpha \tag{26}$$

требуемая нагрузка на зуб будет обеспечена.

3 ПОСТРОЕНИЕ СХЕМЫ ПАРОВОГО КУЛЬТИВАТОРА

Цель работы. Обосновать параметры рыхлительных лап культиватора, расставить рабочие органы на раме культиватора при комплектовании рыхлительными и стрельчатыми универсальными лапами.

Теоретическая часть

Паровые культиваторы предназначены для сплошной обработки почвы и могут быть укомплектованы рыхлительными или стрельчатыми универсальными лапами. Как рыхлительные, так и стрельчатые лапы расстанавливаются на брусе с перекрытием лап по ширине захвата. За ширину захвата рыхлительных лап принимается ширина зоны деформации почвы в параллельном поперечному брусу направлении. Ширина этой зоны зависит от конструкции лапы, глубины ее хода и свойств почвы и может быть определена согласно схеме (рис.9) по формуле (27):

$$b_{P} = d + \frac{2 \cdot a \cdot tg(\theta/2)}{\cos(\alpha + \phi)}$$
 (27)

где: d - конструктивная ширина лапы, м; a - глубина обработки, м; θ - угол между плоскостями, ограничивающими область деформации в зависимости от типа и состояния почвы; α - угол вхождения лапы в почву

Ширину захвата рыхлительной лапы можно определить и графически. Ширина захвата стрельчатой лапы равна ее конструктивной ширине. Перекрытие Δb стрельчатых лап исключает появление огрехов при обработке почвы за счет возможных отклонений культиватора в горизонтальной плоскости.

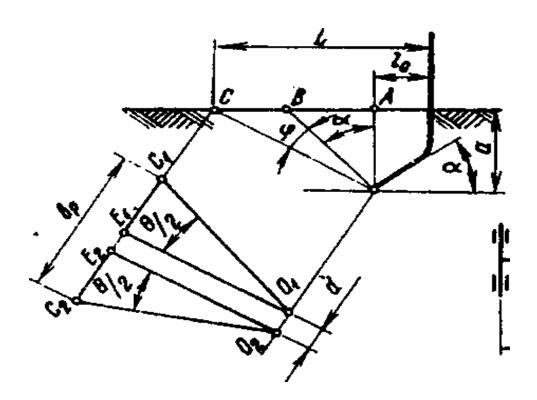


Рис. 9 Построению схемы парового культиватора

Следовательно,

$$\Delta b \ge L_r \cdot \sin \delta \tag{28}$$

где: L_{Γ} - длина грядиля, м (L_{Γ} = 0,4... 0,8 м); δ - возможный угол отклонения культиватора в горизонтальной плоскости, град. (δ = 7... 10°).

Обычно величина перекрытия составляет 35...80 мм в зависимости от типа крепления лап на раме. Так как в одних и тех же точках на брусе могут быть установлены грядили как с рыхлительными, так и со стрельчатыми лапами, то необходимо соблюдать условие $b_p > b_c$. При $b_p < b_c$ последние будут иметь недостаточное перекрытие. Если условие трудно выполнить, то рыхлительные лапы устанавливают в три ряда.

Пространство между лапами не должно забиваться растительными остатками. С этой целью лапы на раме культиватора чаще всего располагают в два или три рада в шахматном порядке. Расстояние между рядами рыхлительных лап можно определить из условия максимального использования зоны деформации по формуле (29):

$$L \ge l_0 + a \cdot tg(\alpha + \varphi) \tag{29}$$

где: l_0 - вылет носка лапы относительно стойки.

Обычно l_0 принимается в пределах 400...500 мм. Стрельчатые лапы для предотвращения забивания устанавливаются с таким расчетом, чтобы расстояние между кромками соседних лап было не менее 30...50 мм.

При одинаковой ширине захвата лап в обоих рядах их количество можно подсчитать как

$$z = \frac{B}{t} = \frac{B}{b - \Delta b}$$
 (30)

 Γ де $\, B \,$ - ширина захвата культиватора; $\, t \,$ - расстояние между следами лап.

Тяговое сопротивление второго ряда лап значительно меньше, чем первого, поэтому во втором ряду устанавливают лапы с большей шириной захвата, чем в первом.

В этом случае ширина захвата культиватора будет представлена так:

$$B = b_1 \cdot z_1 + b_2 \cdot z_2 - \Delta b \cdot (z_1 + z_2 - 1)$$
 (31)

При установке лап в два ряда их общее число должно быть нечетным и во втором ряду должно быть на одну лапу больше, чем в первом.

Практическая часть

Содержание работы: исходя из данных условия работы (табл.6), определить ширину захвата рыхлительных лап культиватора и допустимое минимальное расстояние между рядами лап при их расположении в два ряда. Построить схемы зоны деформации и расстановки рабочих органов на раме культиватора при комплектовании рыхлительными и стрельчатыми универсальными лапами.

Табл. 6 Исходные данные для построения схемы парового культиватора

Номер	В, м	а, см	d, мм	α, град	θ, град	1 _{0,} мм	f	δ, град
варианта					_			
1	2	3	4	5	6	7	8	9
1	3	10	20	35	40	155	0,60	7
2	4	11	45	30	45	125	0,50	8
3	3	12	50	25	50	140	0,40	9
4	4	13	60	30	42	205	0,42	10
5	3	14	63	45	44	165	0,.44	9
6	4	15	25	40	46	175	0,.46	7
7	3	16	40	35	50	185	0,.50	8
8	4	10	55	30	48	195	0,52	10
9	3	12	50	25	40	145	0,54	7
10	4	13	35	30	45	155	0,56	8
11	3	14	30	45	50	125	0,58	9
12	4	15	20	40	42	140	0,60	10
13	3	16	45	35	44	205	0,60	9
14	4	18	50	30	46	165	0,50	7
15	3	14	60	25	50	175	0,40	8
16	4	18	63	30	48	185	0,42	10
17	3	12	25	45	40	195	0,.44	7

18	4	10	40	40	45	145	0,.46	8
19	3	10	55	35	50	145	0,.50	9
20	4	12	50	30	42	155	0,52	10
21	3	14	35	25	44	107	^ ~ 4	
22	4	16	30	30	46	продо	лжение	гаол. б
1	2	3	4	5	6	7	8	9
23	3	11	25	45	50	205	0,58	8
24	4	14	40	40	48	165	0,60	10
25	3	10	55	40	40	175	0,60	7
26	4	18	50	35	45	185	0,50	8
27	3	12	35	30	50	195	0,40	9
28	4	15	30	25	42	145	0,42	10
29	3	16	50	35	44	175	0,.44	9
30	4	18	35	30	46	185	0,52	7

B — ширина захвата культиватора, а — глубина обработки, d - конструктивная ширина лапы, α - угол вхождения в почву, θ - угол между плоскостями, ограничивающими область деформации почвы, l_0 - вылет носка лапы относительно стойки, f - коэффициент трения почвы о лапу, δ - угол возможного отклонения грядиля.

Порядок выполнения работы.

- 1. Определить ширину зоны деформации почвы рыхлительной лапой. Эту ширину легко найти графическим путем, для чего необходимо выполнить следующие построения (рис. 9): в масштабе построить контуры рыхлительной лапы, заглубленной в почву на глубину а; провести прямые ОА, ОВ и ОС; перпендикулярно ОС провести прямые CC_2 и OC_2 ; отложить на прямой OC_2 отрезок OC_2 , равный ширине d рыхлительной лапы, провести под углом OC_2 прямые OC_1 и OC_2 и измерить ширину захвата рыхлительной лапы OC_2 прямые OC_3 прямые OC_4 и измерить ширину захвата
- 2. Определить минимальное расстояние между рядами лап (по формуле или из чертежа) и округлить его до минимальных рекомендуемых значений;
 - 3. Определить величину перекрытия по выражению (28);

- 4. Подсчитать необходимое количество лап (формула 30), округлив полученный результат до целого нечетного числа;
- 5. Построить схему расстановки рыхлительных лап на раме культиватора по аналогии со схемой (рис. 10)

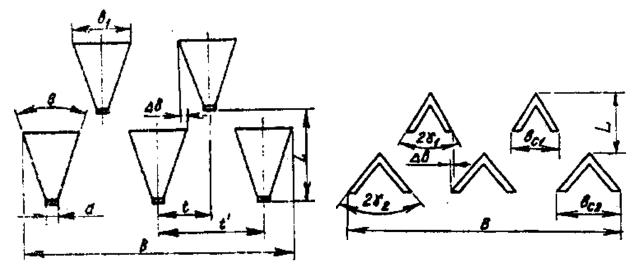


Рис.10 К построению схемы парового культиватора

Рис.11 К построению схемы парового культиватора

6. Выбрать типовые размеры, подходящие для универсальных стрельчатых с таким расчетом, чтобы их грядили можно было закрепить в тех же точках, что и грядили рыхлительных и стельных лап. Стрельчатые универсальные лапы выпускаются с шириной захвата 220, 270 и 330 мм при 2 □ γ =65° и 250. 330 и 380 мм при 2 □ γ =60°. Для этого из предлагаемого ряда размеров стрельчатых лап подобрать такие размеры, которые равны или несколько больше ширины зоны деформации рыхлительной лапы, и установить однотипные лапы в обоих рядах, чтобы сумма размеров двух стрельчатых лап различной ширины захвата была равна или несколько превышала 2b_P. Разница в размерах не должна выходить за пределы возможной величины перекрытия.

7. Построить схему расстановки стрельчатых лап на раме культиватора по аналогии со схемой (рис. 11).

4 АНАЛИЗ РАБОТЫ ДИСКОВЫХ ОРУДИЙ

Цель работы. Изучить влияние параметров дисковых орудий на показатели качества их работы.

Теоретическая часть

Почвообрабатывающие диски лущильников, борон и плутов представляют собой часть сферы радиусом R, отсеченную плоскостью SS. Большое влияние на технологические показатели работы диска оказывают его параметры: диаметр D, угол заточки 1, а также связанный с ним задний угол ε (рис. 12).

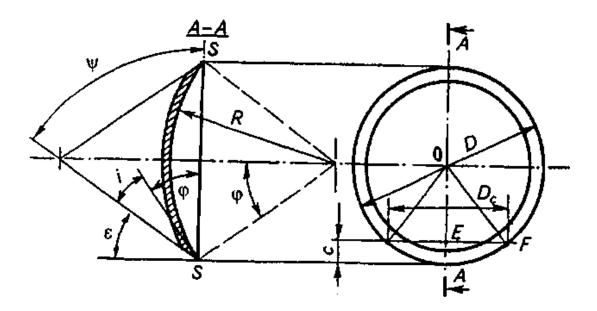


Рис. 12 Основные параметры диска:

R— радиус сферы; D — диаметр диска; SS — секущая плоскость; Ψ — угол конуса заточки; i — угол заострения; ϵ — задний угол; ϕ -половина центрального угла сферического сектора

_

Заточка режущей кромки определяется углом $||/| = \varphi + 1$, находящимся между образующей конуса заточки и секущей плоскостью SS (здесь φ — половина центрального угла сферического сектора). Диаметр диска и радиус сферы связаны соотношением

$$D = 2 \cdot R \cdot \sin \varphi \tag{32}$$

Для плугов угол ϕ принимают 31...37°, лущильников 26...32°, борон 22...26°.

Диаметр диска зависит от заданной максимальной глубины обработки почвы a. Практикой выработаны определенные соотношения между D и a:

$$K = D/a$$
, (33)

где K— коэффициент, равный 3...4 для плутов, 4...6 для борон и 6...8 для лущильников.

Большие значения коэффициента K принимают при обработке твердых почв при малых углах атаки и больших скоростях работы орудия.

Высота гребней на дне борозды, образованной диском, зависит от диаметра диска D угла атаки α и расстояния между дисками b . Из треугольника OEF (см. рис. 12)

$$D_{C} = 2 \cdot \sqrt{c \cdot (D - c)} \tag{34}$$

Учитывая, что

$$D_{C} = b \cdot ctg\alpha \tag{35}$$

теоретическая высота гребней

$$c_{\mathrm{T}} = 0.5 \cdot D - 0.5 \cdot \sqrt{D^2 - b^2 \cdot \mathrm{ctg}^2 \alpha}$$
 (36)

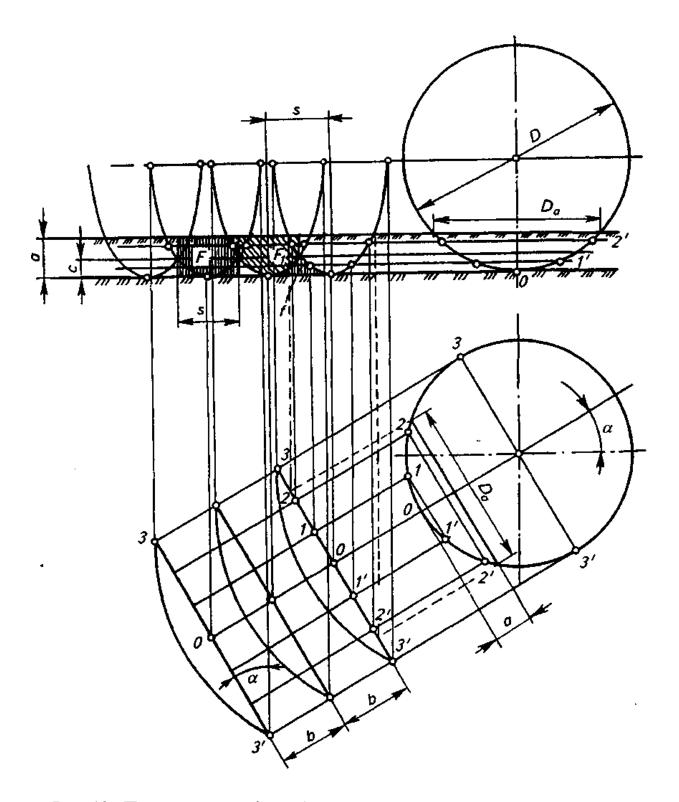


Рис. 13 Построение профиля борозды

По агротребованиям для дисковых плугов допускается c < 0,4a, для лущильников c < 0,5a , для борон c < a.

Расстояние между дисками из условия незаклинивания пласта должно быть b>1 ,5 a.

Качество работы дисковых орудий оценивают по равномерности обработки почвы по глубине

$$\eta_{\rm T} = \frac{2 \cdot a \cdot s - c_{\rm T} \cdot s}{2 \cdot a \cdot s} = 1 - \frac{c_{\rm T}}{2 \cdot a} \tag{37}$$

Расстояние между вершинами гребней (рис. 13) можно подсчитать по одной из формул

$$s = b \cdot \cos \alpha \tag{38}$$

$$s = 2 \cdot \sqrt{c_T \cdot (D - c_T)} \cdot \sin \alpha \tag{39}$$

При максимально возможной высоте гребней c, равной глубине обработки a, равномерность обработки по глубине равняется 0,5 и является предельной.

Практическая часть

Содержание работы: определить радиус сферы диска, глубину его входа в почву, теоретическую высоту гребней, расстояние между ними и равномерность обработки по глубине. Построить профиль дна борозды и по графику определить действительную равномерность обработки по глубине. По результатам расчетов в различных вариантах задания, выполняемых в учебной группе, построить графики зависимостей высоты гребней и равномерности обработки по глубине от угла атаки или диаметра диска, определить допустимые значения этих параметров в соответствии с агротребованиями на качество обработки почвы дисковыми орудиями.

Исходные данные. Параметры конструкции и скорости движения указаны в таблице 7.

Табл. 7 Исходные данные к анализу работы дисковых орудий

Номер	Диаметр	Расстояние	Угол атаки,	Рабочая				
варианта	диска, мм	между	град	скорость, км/ч				
		дисками, мм						
1	450	170	25	6				
2	450	170	27,5	6				
3	450	170	30	8				
4	450	170	32,5	6				
5	450	170	35	10				
6	450	170	30	6				
7	500	170	30	8				
8	550	170	30	8				
9	580	170	30	10				
10	610	170	30	10				
11	450	170	30	6				
12	500	170	30	8				
13	550	170	30	8				
14	580	170	30	10				
15	610	170	30	10				
	,	Борона	-	,				
16	500	169	10	6				
17	500	169	13	8				
18	500	169	16	10				
19	500	169	19	10				
20	500	169	22	8				
21	450	169	20	6				
22	500	169	20	8				
23	550	169	20	8				
24	600	169	20	10				
25	660	169	20	6				
26	450	169	20	6				
27	500	169	20	8				
28	550	169	20	8				
29	600	169	20	10				
30	660	169	20	6				

Порядок выполнения работы.

- 1. Рассчитать по формуле (32) радиус сферы диска.
- 2. Определить из соотношения (33) глубину обработки почвы.
- 3. Вычислить теоретическую высоту гребней $c_{\scriptscriptstyle T}$, расстояние между гребнями s и степень неравномерности глубины обработки почвы $\eta_{\scriptscriptstyle T}$. Данные расчетов занести в таблицу 8.

Табл. 8 Основные параметры работы дисковых орудий

Показатель	Расчетное значение параметра
Скорость движения агрегата, км/ч	
Угол атаки, град	
Диаметр диска, мм	
Глубина обработки почвы, мм	
Высота гребней, мм:	
теоретическая	
действительная	
Расстояние между гребнями, мм	
Равномерность обработки по глубине:	
теоретическая	
действительная	

4. Построить профиль дна борозды дискового орудия. На листе формата A1 или A2 в правом верхнем углу в масштабе 1 : 2 вычертить окружность диаметром D (см. рис. 13). Ниже вычертить еще одну окружность диаметром D . Из центра второй окружности под углом α

провести ось дисковой батареи. На этой оси построить горизонтальную проекцию дисковой батареи с расстояниями b между дисками и радиусом их кривизны R Диаметр одного из дисков на горизонтальной проекции разделить на n равных частей и обозначить их цифрами (от центра соответственно вверх и вниз) 0, 1,2,... и 0', 1', 2' и т. д. Через полученные точки провести линии, параллельные оси батареи, до пересечения с окружностью и построить хорды 1—1', 2—2' и т. д.

На верхней окружности вычертить хорды 1-1', 2-2',..., параллельные горизонтали (линии почвы). Пересечение продолжений хорд с одноименными вертикальными линиями, проведенными из точек 1, 1', 2, 2' и т. д. диаметра диска, образуют профиль борозды. Аналогично построить профиль борозды для других дисков.

Отметить на профиле борозды глубину обработки а, обозначить расстояние между гребнями s и замерить высоту гребней $c_{\rm д}$. Последнее значение занести в таблицу 8. Замерить диаметр диска на уровне поверхности поля D_a .

Найти площади F , F' и f рассчитать действительную равномерность обработки почвы по глубине дисковыми орудиями

$$\eta_{II} = F_1/F \tag{40}$$

- 5. Записать вывод, содержащий ответы на следующие вопросы.
- 5.1. От каких факторов зависит высота гребней дна борозды?
- 5.2. Как изменяется равномерность обработки почвы по глубине от конструктивных или режимных параметров?
- 5.3. Как можно улучшить равномерность обработки почвы по глубине?

5 АНАЛИЗ РАБОТЫ ПОЧВЕННОЙ ФРЕЗЫ

Цель работы. Определить технологические и энергетические показатели ее работы, обосновать оптимальный кинематический режим и выбрать скорость движения агрегата (частоту вращения вала барабана).

Теоретическая часть

Основные показатели качества работы фрезы — степень крошения почвы и равномерность обработки ее по глубине. Степень крошения почвы определяется подачей на нож и толщиной стружки.

Подача на нож — это перемещение машины за время поворота барабана на угол расстановки ножей:

$$x_Z = x_T/Z \tag{41}$$

где X_T — шаг фрезы, м;

z — число ножей на одной ступице.

Шаг фрезы — это перемещение машины за время одного оборота барабана:

$$\mathbf{x}_{\mathrm{T}} = \mathbf{v}_{\mathrm{M}} \cdot 2 \cdot \pi / \mathbf{\omega} \tag{42}$$

где V_M — скорость движения машины, м/с ; ω — угловая скорость барабана , C^{-1} .

Если фреза имеет вертикальную ось вращения, то траектория ножей расположена в горизонтальной плоскости. Стружка почвы срезается ножом

за время поворота его на угол 180°. Ее сечение сначала увеличивается от нуля до максимума, а затем вновь уменьшается до нуля.

Траектория ножей прореживателей представляет собой винтовую линию, шаг которой тем больше, чем меньше отношение окружной скорости к скорости движения машины.

Практикой установлено, что требуемое крошение почвы обеспечивается при подаче на нож $x_z = 30...60$ мм для задернелых земель и $x_z = 100...150$ мм для старопахотных.

На качественные показатели работы фрезы влияет и показатель кинематического режима

$$\lambda = \omega \cdot R / v_{M} \tag{43}$$

через который может быть выражена подача на нож:

$$\mathbf{x}_{\mathbf{Z}} = 2 \cdot \pi \cdot \mathbf{R} / (\lambda \cdot \mathbf{z}) \tag{44}$$

где R — радиус вращения ножей, м.

При обработке старопахотных земель рекомендуется $\lambda = 2...6$, а задернелых — $\lambda = 4...16$.

Толщина стружки определяется конкретными условиями. В процессе работы ножи каждой секции, вращающиеся в продольно-вертикальной плоскости, последовательно входят в почву и отрезают почвенную стружку

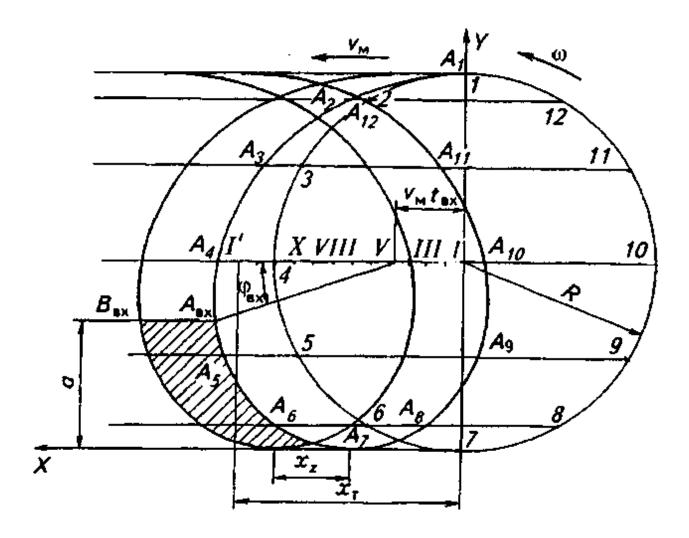


Рис. 14 Построение траектории абсолютного движения лезвия ножа фрезы

определенной (переменной) толщины (рис. 14). В процессе отрезания ее толщина непрерывно уменьшается от максимального значения до нуля. Наибольшую толщину δ max стружка имеет на уровне входа ножа в почву:

$$\delta_{\max} \cong \mathbf{X}_{\mathbf{Z}} \cdot \cos \phi_{\mathbf{BX}} \tag{45}$$

где $\phi_{\text{вх}}$ — угол входа ножа в почву.

Из построения на рисунке 14 глубина обработки почвы

$$a = R - R \cdot \sin \phi_{BX}$$

$$\sin \phi_{BX} = 1 - a/R$$
(46)

где

Обозначив a/R=m , имеем. $\sin\phi_{BX}=1-a/R$

$$\cos \phi_{BX} = \sqrt{2 \cdot m - m^2} \tag{47}$$

а равенство (46) приобретает вид

$$\delta_{\text{max}} = \mathbf{x}_{\mathbf{Z}} \cdot \sqrt{2 \cdot \mathbf{m} - \mathbf{m}^2} \tag{48}$$

Равномерность глубины обработки оценивают по высоте гребешков h_r , образуемых на дне борозды. По агротребованиям допустимая высота гребешков $[h_r] < 0,2a$. С учетом коэффициента скалывания почвенной стружки k теоретическая высота гребешков $h_r = [h_r]k$..

Профиль дна борозды и высоту гребешков определяют графически для каждого кинематического режима работы фрезы. Показатели x_z , d и h_r принимают в зависимости от поступательной скорости машины, частоты вращения барабана, числа ножей на одной ступице, типа и состояния почвы.

Построение траектории абсолютного движения ножей основано на сложении переносного движения со скоростью $V_{\scriptscriptstyle M}$ и относительного движения со скоростью $V_{\scriptscriptstyle I}=\omega R$. В результате лезвие ножа описывает циклоиду, форма которой зависит от показателя λ . При $\lambda>1$ получается удлиненная циклоида (трохоида).

В параметрической форме уравнения абсолютного движения лезвия ножа фрезы представляют следующий вид:

$$x = v_{m} \cdot t + R \cdot \cos(\omega \cdot t)$$

$$y = R \cdot (1 - \sin(\omega \cdot t))$$
(49)

где ωt — угол поворота барабана с началом отсчета от горизонтального диаметра.

Построить траекторию абсолютного движения лезвия ножа фрезы можно по текущим координатам x и y или используя графические приемы.

В первом случае, задаваясь значениями t в пределах времени одного оборота барабана, вычисляют на ЭВМ координаты x и y лезвия ножа и по полученным точкам строят траекторию.

Оптимальный кинематический режим работы фрезы должен обеспечивать агротехнически допустимую высоту гребешков. Поэтому необходимо установить теоретическую зависимость между показателями h_r и λ .

Координату $x_{\text{в}}$ вершины гребешка (рис. 15) вычисляют по одной из формул (46)

$$\mathbf{x}_{\mathbf{B}} = \mathbf{v}_{\mathbf{M}} \cdot \mathbf{t}_{\mathbf{B}} + \mathbf{R} \cdot \cos \mathbf{\varphi}_{\mathbf{B}} \tag{50}$$

Эту же координату можно определить как сумму двух других отрезков

$$\mathbf{x}_{\mathbf{B}} = \mathbf{x}_1 + 0.5 \cdot \mathbf{x} \cdot \mathbf{z} \tag{51}$$

:

где $x_1 = v_M \cdot \pi/(2 \cdot \omega)$ — поступательное перемещение вала фрезы от начального положения до момента, когда нож достигнет максимальной глубины (т. е. за одну четверть оборота).

Приравнивая правые части выражений (50) и (51) и учитывая равенства (43) и (44), имеем

$$\pi \cdot (0.5 + 1/z) = \phi_B + \lambda \cdot \cos \phi_B \tag{52}$$

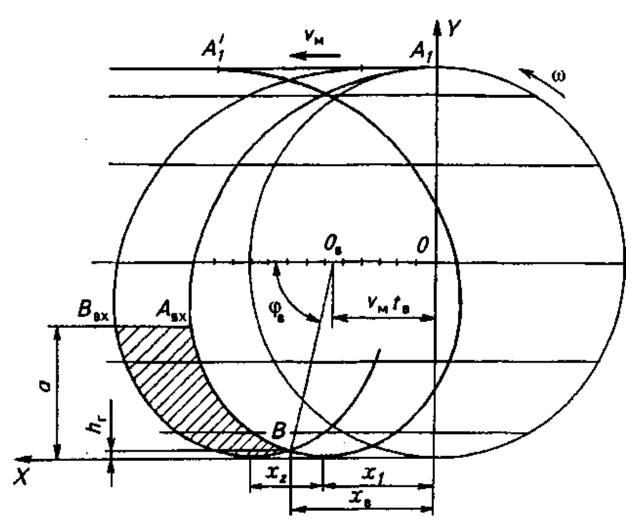


Рис. 15 Схема для определения высоты почвенных гребешков на дне борозды

Угол $\phi_{\text{в}}$ можно определить из выражения для расчета высоты гребешков:

$$h_r = R - R \cdot \sin \phi_R \tag{53}$$

откуда

$$\sin \phi_{\rm B} = 1 - h_{\rm r}/R$$

$$\cos \phi_{\rm B} = \frac{1}{R} \cdot \sqrt{2 \cdot R \cdot h_{\rm r} - h_{\rm r}^2}$$
(54)

Подставив значения $\phi_{\text{в}}$ и $\cos\phi_{\text{в}}$ в выражение (53), после преобразований получим

$$\lambda = \frac{R \cdot [(0.5 + 1/z) \cdot \pi - \arcsin(1 - h_r/R)]}{\sqrt{2 \cdot R \cdot h_r - h_r^2}}$$
 (55)

Мощность, необходимая для работы фрезы, кВт,

$$N = N_{\Pi} + N_{\phi} + N_{TP} - N_{\Pi O \square}$$
 (56)

где N_{π} — мощность на передвижение фрезы, кВт;

 N_{φ} — мощность на фрезерование, кВт;

 N_{TP} — мощность на трение в передачах, кВт;

Nпод -мощность на подталкивание барабана вперед, кВт

Составляющие мощности, кВт, по формулам

$$N_{\Pi} = f \cdot G \cdot v_{M} \tag{57}$$

$$N_{\Phi} = N_{p} + N_{o} = 10^{3} \cdot k_{\Pi} \cdot x_{z} \cdot b_{c} \cdot a \cdot z_{\Sigma} \cdot n / 60 + 0.5 \cdot k_{o} \cdot a \cdot B_{M} \cdot v_{M} \cdot v_{p}^{2} \cdot \rho$$
 (58)

$$N_{T} = N_{\Phi} \cdot (1 - \eta) \tag{59}$$

$$N_{\Pi O \Pi} = N_{\Phi} \cdot v_{M} / v_{O K} \tag{60}$$

где f=0,18...0,3 — коэффициент сопротивления перекатыванию;

G — сила тяжести, кH;

Np — мощность, затрачиваемая на резание почвы, кВт;

 N_0 — мощность, расходуемая на отбрасывание почвы, кВт;

b_c — ширина стружки, равная ширине захвата одного ножа, м;

 Z_{Σ} — общее число ножей;

n — частота вращения барабана фрезы, мин ⁻¹;

 k_0 — коэффициент отбрасывания (для болотных ножей $k_0 = 1$);

В_м — ширина захвата машины, м;

V_P — скорость резания почвы, м/с;

 ρ — плотность почвы, кг/м 3 ;

 η = 0,94...0,98 — КПД передачи;

 V_{OK} — окружная скорость фрезы, м/с.

Скорость резания почвы принимают равной разности окружной скорости фрезы и скорости машины:

$$v_{P} = v_{OK} - v_{M} = \pi \cdot D \cdot n / 60 - v_{M}$$
⁽⁶¹⁾

Практическая часть

Содержание работы: измерить конструктивные параметры фрезы, определить графически подачу на нож, толщину стружки и высоту гребешков для заданного кинематического режима, построить графики зависимости этих параметров от λ , обосновать по графикам оптимальное значение λ , и выбрать допустимую скорость движения агрегата, подсчитать затраты мощности на фрезерование.

Исходные данные. Диаметр барабана и число ножей различных фрез следующие: фреза пропашная $\Phi\Pi$ — D = 450 мм, z = 3; фреза пропашная ΦM — D = 250 мм, z = 2; фреза садовая ΦC — D = 600 мм, z = 4 и D = 370 мм, z = 2 (варианты 21...25); фреза полевая ΦH — D = 500 мм, z = 3. Ширина захвата фрезы (для всех вариантов) 3 м. Параметры работы фрез по вариантам задания указаны в таблице 9.

Табл. 9 Показатели работы различных фрез

Номер варианта	Глубина	Частота вращения,	Скорость
	обработки, см	мин ⁻¹	машины, м/с
1	2	3	4
	Фреза типа ФП		
1	12	298	1,66
2	12	170	1,66
3	12	213	1,66
4	12	234	1,66
5	12	255	1,66
	Фреза типа ФМ		
6	8	400	0,85
7	8	400	0,95
8	8	400	1,05
9	8	400	1,2

Продолжение табл. 9

1	2	3	4
10	8	400	1,4
	Фреза типа ФС		•
11	11	190	1,5
12	11	190	1,7
13	11	190	2,0
14	11	190	2,4
15	11	190	2,6
	Фреза типа ФН		
16	16	250	1,0
17	16	250	1,25
18	16	250	1,44
19	16	250	2,16
20	16	250	2,6
21	8	270	0,8
22	8	270	0,96
23	8	270	1,11
24	8	270	1,3
25	8	270	1,49
26	16	250	1,0
27	16	250	1,25
28	16	250	1,44
29	16	250	2,16
30	16	250	2,6

Порядок выполнения работы.

- 1. Выписать в рабочую тетрадь исходные данные, измерить неизвестные конструктивные параметры фрезы.
- 2. Построить траектории абсолютного движения двух ножей, следующих один за другим.
- 3. Определить графически подачу на нож x_z максимальную толщину стружки $\delta_{\text{ma x}}$ и высоту гребешков $h_{\text{г}}$.
- 4. Построить графики зависимостей этих параметров от показателя кинематического режима λ.
- 5. Учитывая агротехнические требования на высоту гребешков, обосновать оптимальное значение показателя λ.

- 6. Выбрать из исходных данных допустимую скорость движения агрегата (или частоту вращения вала барабана), соответствующую оптимальному кинематическому режиму.
 - 7. Определить мощность, необходимую для работы фрезы.
 - 8. Записать вывод, содержащий ответы на следующие вопросы.
- 8.1. Почему с увеличением показателя кинематического режима работы фрезы высота гребешков на дне борозды уменьшается?
- 8.2. Как влияют подача на нож и шаг фрезы на высоту почвенных гребешков?

6 ОБОСНОВАНИЕ ПРИНЦИПИАЛЬНЫХ СХЕМ И ПАРАМЕТРОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН

Определить рациональный состав агрегата, действующие силы на почвообрабатывающее орудие, реакции почвы на опорное колесо плуга.

Исходные данные представлены в табл. 10 и 11.

Табл. 10 Исходные данные

Номер	Трактор	Орудие	Ширина	Глубина	Удельное
варианта			захвата	обработки,	сопротивление
			корпуса, м	M	почвы, к H/m^2
1	2	3	4	5	6
1	ДТ-75М	Отвальный плуг	0,35	0,20	80
2	T-150	Безотвальный плуг	0,35	0,20	70
		со стойками			
		СибИМЭ			
3	Т-150К	Глубокорыхлитель	1,1	0,20	90
4	К-701	Отвальный плуг	0,40	0,20	80
5	T-150	Отвальный плуг	0,40	0,25	60
6	ДТ-75М	Безотвальный плуг	0,35	0,25	60
		со стойками			
		СибИМЭ			
7	К-701	Глубокорыхлитель	1,1	0,25	90
8	Т-150К	Отвальный плуг	0,35	0,25	80

Продолжение табл. 10

1	2	3	4	5	6
9	T-150	Отвальный плуг	0,40	0,30	50
10	К-701	Безотвальный плуг со стойками СибИМЭ	0,35	0,30	60
11	ДТ-75М	Глубокорыхлитель	1,1	0,30	70
12	Т-150К	Отвальный плуг	0,40	0,30	50
13	Т-150К	Отвальный плуг	0,30	0,25	90
14	К-701	Отвальный плуг	0,40	0,20	80
15	T-150	Безотвальный плуг со стойками СибИМЭ	0,35	0,25	50
16	Т-150К	Глубокорыхлитель	1,1	0,30	40
17	ДТ-75М	Отвальный плуг	0,40	0,30	40
18	ДТ-75М	Отвальный плуг	0,35	0,20	80
19	T-150	Безотвальный плуг со стойками СибИМЭ	0,35	0,20	70
20	Т-150К	Глубокорыхлитель	1,1	0,20	90
21	К-701	Отвальный плуг	0,40	0,20	80
22	T-150	Отвальный плуг	0,40	0,25	60
23	ДТ-75М	Безотвальный плуг со стойками СибИМЭ	0,35	0,25	60
24	К-701	Глубокорыхлитель	1,1	0,25	90
25	Т-150К	Отвальный плуг	0,35	0,25	80
26	T-150	Отвальный плуг	0,40	0,30	50
27	K-701	Безотвальный плуг со стойками СибИМЭ	0,35	0,30	60
28	ДТ-75М	Глубокорыхлитель	1,1	0,30	70
29	Т-150К	Отвальный плуг	0,40	0,30	50
30	K-701	Безотвальный плуг со стойками СибИМЭ	0,35	0,30	60

Порядок выполнения.

1. Выписать диапазон скоростей, на которых производится пахота согласно требованиям агротехники (для тракторов K-701, T-150K и T-150 диапазон скоростей на которых рекомендуется выполнять основную обработку 7-12 км/ч, а для трактора ДТ-75М в диапазоне 4-9 км/ч).

Пользуясь технической характеристикой тракторов (приложение), выбрать рабочие передачи согласно требованиям агротехники. По выбранным передачам выписать тяговые усилия $P_{\kappa p}$ и расчетные скорости V_{τ} ,.

2 Определяем максимальную ширину захвата на всех рассчитываемых передачах

$$\mathbf{B}_{\text{max}} = \frac{\mathbf{P}_{kp}}{\mathbf{K}_0 \cdot \mathbf{a}} \tag{62}$$

где Ко – удельное сопротивление почвы, $\kappa H/M^2$;

а - глубина обработки почвы, м;

 $P_{\kappa p}$ - тяговое усилие трактора на данной передачи, кH.

3 Определяем число корпусов в агрегате по передачи

$$n_{\kappa} = \frac{B_{\text{max}}}{b_{\kappa}}$$
 (63)

где b_{K} - ширина захвата корпуса, м.

Полученное значение округляем до меньшего целого числа.

4 Уточняем рабочую ширину захвата орудия на всех рассчитываемых передачах

$$B_p^i = b_{\kappa} \cdot n_{\kappa}^i \tag{64}$$

5 Определяем тяговое сопротивление пахотных агрегатов на данных передачах

$$R_{arp}^{i} = K_{o}^{i} \cdot a \cdot b \cdot n_{\kappa}^{i}$$
(65)

6 Находим коэффициент используя тяговое усилие трактора на данных передачах

$$\eta^{i} = \frac{R_{a\Gamma p}^{i}}{P_{\kappa p}^{i}} \tag{66}$$

Коэффициент использования тягового усилия трактора для агрегата должен лежать в пределах (0.78-0.94).

7 Находим производительность на рассчитываемых передачах и производим окончательный выбор рабочей передачи

Зная только коэффициенты использования тягового усилия трактора, нельзя сделать окончательный выбор рабочей и дополнительной передач. Рабочей передачей будет та, на которой часовая производительность будет больше, чем на остальных.

$$W^{i} = 0.1 \cdot B^{i}_{P} \cdot V_{P}^{i} \cdot t_{P}$$

$$(67)$$

где t_p =0.85- коэффициент использования рабочего времени.

8 Выводы и рекомендации

Необходимо дать заключение, какой состав агрегата и на какой передаче даст наибольшую производительность при максимальном использовании усилия на крюке.

9. Вычертить схему предложенного агрегата (рис. 16) с механизмом навески (формат A1 или A2) с указанием кинематической длины, ширины агрегата, глубины обработки, ширины захвата корпуса и перекрытие корпусов.

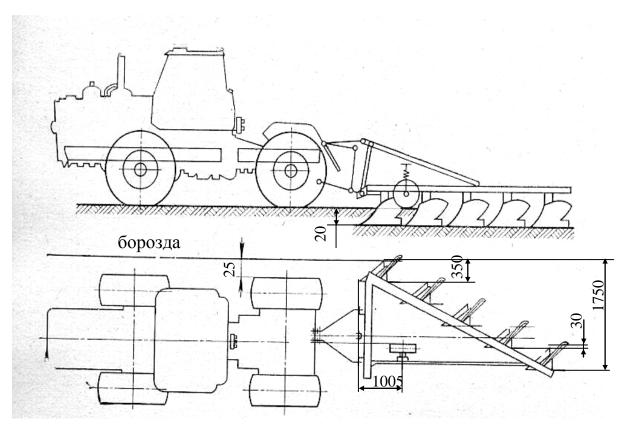


Рис. 16 Схема агрегатирования трактора Т-150К с плугом ПЛН-5-35

Движители трактора должны находиться от открытой борозды, образованной предыдущими заходами агрегата, на расстоянии 0.2 - 0.3 м.

Корпуса плугов размещают на раме последовательно один за другим со смещением на ширину захвата b в сторону непаханного поля с некоторым перекрытием Δb , равным 0.02-0.05 м. Перекрытие способствует полному подрезанию пласта при некоторых колебаниях плуга в горизонтальной плоскости.

Расстояние l между корпусами (по ходу плуга), от которого зависит металлоемкость и приспосабливаемость плуга к рельефу поля, принимают из условия незабиваемости почвой и растительными остатками и возможности установки предплужников перед каждым корпусом плуга. Опыт показал, что l=(2,0-2,2)b.

Опорным колесом регулируют глубину вспашки, его положение влияет на устойчивость хода и тяговое сопротивление плуга. Оптимальным

считается установка, при которой ось колеса в продольной плоскости удалена от носка лемеха преднего корпуса на 1/3 расстояния между носками лемехов переднего и заднего корпуса. Диаметр опорного колеса составляет 0.45-0.5 м.

10 Рассчитываем силы тяжести орудия

$$G = B \cdot q \tag{68}$$

где В- ширина захвата орудия;

q- удельная металлоемкость орудия (q= 8,5 кH/м).

- 11 Расчет сил действующие на орудия (рис.17).
- 11.1 Горизонтальная составляющая сил действующих на рабочие органы по оси X.

$$R_X = K_O \cdot a \cdot b \cdot n \tag{69}$$

11.2 Вертикальная составляющая сил действующих на рабочие органы по оси Z

$$R_Z = \delta \cdot R_X \tag{70}$$

где δ - коэффициент пропорциональности (для корпусов плугов δ = 0,1-0,2; для стойки СибИМЭ δ = 0 – 0,1; для глубокорыхлителей δ = 0 – 0,2).

11.3 Сила действующая в плоскости перпендикулярной движению агрегата

$$R_{Y} = \frac{1}{3} \cdot R_{X} \tag{71}$$

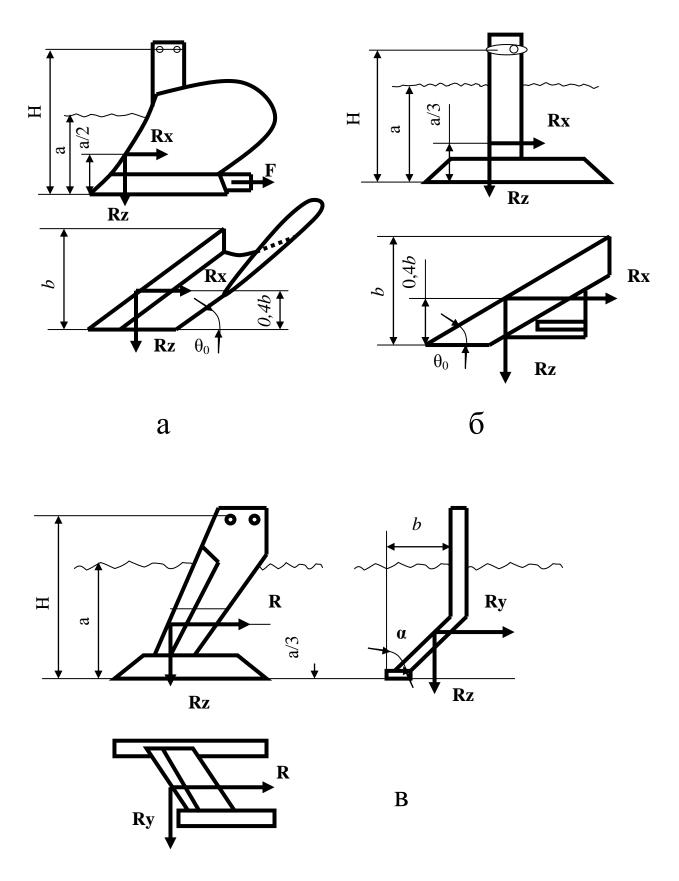


Рис. 17 схемы рабочих органов почвообрабатывающих машин: а – корпус плуга; б – стойка СибИМЭ; в – рабочий орган глубокорыхлителя

Табл.11 Значения параметров рабочих органов

Рабочий орган	Н, м	θ_0 , град	α_0 , град
Корпус плуга	0,7	38 - 42	-
Стойка СибИМЭ	0,7	38 - 42	-
Глубокорыхлитель	0,8	-	45

11.4 По мимо сил сопротивления почв на плуг действующие силы тяжести, приложенные к центру тяжести плуга, силы трения полевых досок о стенку борозды и реакции поверхности поля на обод опорного колеса. Считая что силу F можно привести к концу полевой доски среднего корпуса и определяют выражением

$$F = f \cdot R_Y \tag{72}$$

где f- коэффициент почвы о сталь (f= 0.5).

11.5 Реакция Q на обод колеса передается на ось колеса. Ее направление отклоняется от вертикали проведенной через ось колеса на угол ϕ_n (рис. 18) соответствующей коэффициенту перекатывания колеса по почве $\mu=0.15-0.2$

$$tq \varphi_n \approx \mu$$
 отсюда следует, что $arctq \mu = \varphi_n$

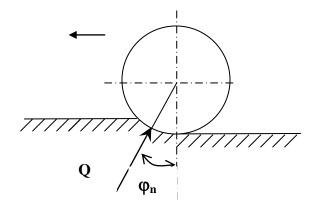


Рис. 18 Реакция Q на обод опорного колеса

12 Определение реакции на ободе опорного колеса

Вычерчивается агрегат (формат A2 или A3) с расстановкой направлении действующих сил на опорное колесо и на условный средний корпус (рис. 19) (условный средний корпус располагается посреди расстояния от первого до последнего корпуса, например: число корпусов нечетное 5, условным средним корпусом является 3 корпус, если число корпусов четное, то носок условного среднего корпуса будет располагаться по середине расстояния от носка первого до носка последнего корпуса).

Заднею навеску трактора строят в произвольной форме.

Линия действия силы тяжести орудия G будет проходить через носок условного среднего корпуса.

Отдельно от схемы плуга строим многоугольник сил. В выбранном масштабе проводим вектор силы G, из его конца — вектор силы R_{xz} . Соединив начало вектора G с концом вектора R_{xz} , получают значение и направление равнодействующих этих сил R1.

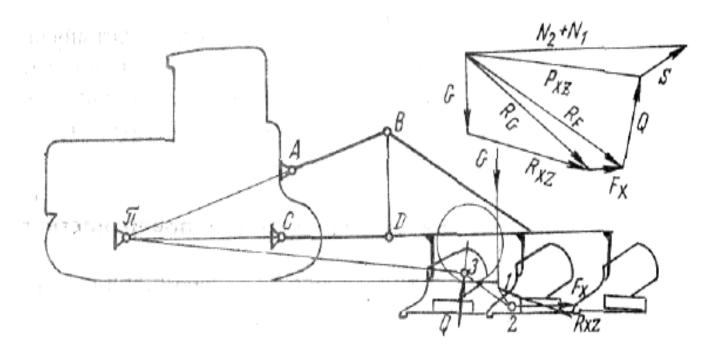


Рис. 19 Определение реакций на опорные поверхности навесного плуга.

На схеме плуга через точку I пересечений линий действий сил G и R_{XZ} проводят прямую параллельную R1 до пересечения ее с направлением силы F в точке I на многоугольнике сил из конца вектора I откладывают вектор силы I при сложении их получаем равнодействующую I на I при сложении их получаем равнодействующую I на I н

На схеме плуга через точку **2** проводят линию параллельную силе R2. До пересечения ее с линией действия силы Q в точке **3**, к которой приложена равнодействующая всех сил сопротивления плуга (G, R_{xz} , F и Q). Она уравновешивается силой тяги F_{xz} , которая проходит через точку **3** и мгновенный центр вращения плуга π . Соединив точки **3** и π прямой, получим линию действия силы F_{xz} .

Значения сил F_{xz} и Q определяют по многоугольнику сил. Для этого из конца вектора R2 проводят прямую, параллельную линии действия силы Q, а из начала вектора G — прямую, параллельную линии π — 3. точки их пересечения даст отрезки, которые в принятом масштабе определяет силы Q и F_{xz} .

7 ЗАДАЧИ

Для решения задач, используют справочную и учебную литературу:

- 1. Кленин Н.И., Сакун В.А. Сельскохозяйственные и мелиоративные машины М.: Колос, 1994. 751 с.
- 2. Карпенко А.Н., Халанский В.М. Сельскохозяйственные машины. 6-е изд., перераб. и доп. М.: Агропромиздат, 1989. 529 с.
- 3. Машиностроение. Сельскохозяйственные машины и оборудование. Т. IV-16/ И.П. Ксеневич и др.; Под. Ред. И.П. Ксеневича. 1998. 720 с.

ПРИЛОЖЕНИЕ

Табл. 12 Технические характеристики тракторов

Показатели	ДТ-75М	T-150	Т150К	К701
Показатели	Д1-73141	1-130	115010	101
1	2	3	4	5
Масса трактора,	6610	7030	7275	11000
КГ				
Габариты, мм				
длина	4575	4750	5985	7380
ширина	1740	1850	2220	2530
высота	2304	2462	2825	3175
Скорость				
движения,				
расчетная, км/ч:				
1	5,30	7,65	8,53	2,82
2	5,91	8,62	10,08	3,42
3	6,58	9,72	11,40	4,14
4	7,01	10,65	13,38	4,96
5	8,16	11,44	18,55	5,48
6	9,16	12,91	22,00	6,64
7	11,18	14,54	24,90	8,01
8	-	15,80	29,12	9,62
9	-	-	-	8,95
10	-	-	-	10,85
11	-	-	-	13,10
12	-	-	-	15,70
13	-	-	-	17,40
14	-	-	-	21,10
15	-	-	-	25,50
16	-	-	-	30,80
Тяговые усилия				
на передаче, кН				
1	35,40	42,50	35,00	60,00
2	31,20	37,00	33,25	60,00
3	27,50	32,20	28,45	60,00
4	24,30	29,10	23,65	60,00
5	20,70	26,60	19,05	60,00
6	18,20	23,10	15,90	60,00
7	13,80	20,00	13,60	48,50
8	-	17,80	10,25	38,40
9	-	_	_	42,20

1	2	3	4	5
10	-	-	-	32,70
11	-	-	-	25,00
12	-	-	-	25,00 18,80 15,80
13	-	-	-	15,80
14	-	-	-	11,00
15				7,00
16				2,50

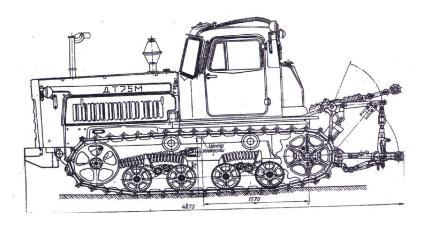


Рис. 20 общий вид трактора ДТ-75М

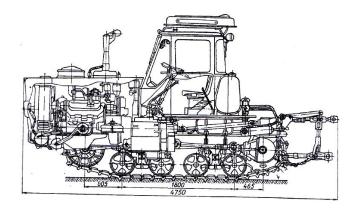


Рис. 21 общий вид трактора Т-150

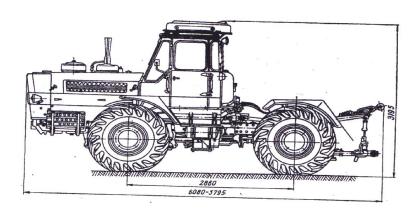


Рис. 22 общий вид трактора Т-150К

Учебное издание

ОСНОВЫ ТЕОРИИ И РАСЧЕТА УБОРОЧНЫХ МАШИН

Методические указания к выполнению практической работы №1 по курсу «Машины и оборудование в растениеводстве» для бакалавров, обучающихся по направлению 35.03.06 «Агроинженерия»

Составитель КАПУСТИН Алексей Николаевич

Печатается в редакции составителей

Отпечатано в Издательстве ЮТИ ТПУ в полном соответствии с качеством предоставленного оригинал-макета

Подписано к печати 26.09.2014 г. Формат 60х84/23 Бумага офсетная. Плоская печать. Усл. печ. л. . Уч-изд. л. Тираж 20 экз. Заказ 1681. Цена свободная. ИПЛ ЮТИ ТПУ. Ризограф ЮТИ ТПУ. 652050, г. Юрга, ул. Московская, 17.