
Лифтовое оборудование. Типы и принцип работы

История лифта уходит корнями в глубокую древность.

Первые упоминания о нем приписывают древнеримскому архитектору Витрувию, который описал модель подъемника, сконструированную Архимедом. Лифты имелись в монастыре Святой Екатерины (Египет, VI век), Виндзорском замке (Англия, XVII век), а также они получили название летающих стульев Велайера (Франция, XVIII век).

Первый полноценный лифт-подъемник был установлен в Нью-Йорке в 1857 году.

По назначению лифты делятся на: пассажирские, грузовые, грузопассажирские, больничные, промышленные.

Компоненты лифта:

Кабина - состоит из стен, пола, потолка, элементов управления - "приказная панель", приборов информации и освещения.

https://yandex.ru/video/preview/?filmId=18
53473732219322181&text=%D1%83%D1
%81%D1%82%D1%80%D0%BE%D0%B9
%D1%81%D1%82%D0%B2%D0%BE%20
%D0%BB%D0%B8%D1%84%D1%82%D0
%B0%20%D0%B8%20%D0%BB%D0%B8
%D1%84%D1%82%D0%BE%D0%BE%D0
%BE%D0%B9%20%D1%88%D0%B0%D1
%85%D1%82%D1%8B&noreask=1&path=
wizard&parent-reqid=1582517993822450621222209476162994900067-vla11029&redircnt=1582517999.1

Компоненты лифта:

Сверху кабины установлены устройства безопасности - "ловители плавного торможения", устройства подвески кабины, устройства и механизмы открытия дверей - "привод дверей". Механизмы положения кабины - "башмаки" и "контрбашмаки", располагаются снизу и сверху кабины.

Противовес - необходим для уравновешивания веса кабины. Состоит из рамы и грузов.

Тяговые канаты соединяют кабину и противовес,

Лебёдка необходима для придания вертикального движения тяговым канатам, которые лежат в "ручьях" канатоведущего шкива. Состоит из электродвигателя, редуктора, электромагнитного тормоза и подрамника.

http://www.optimalift.ru/poleznaya_informat siya/o razvitii liftov/poyavlenie sovremenn yh liftov/#!

Станция управления лифтом управляет механизмами и контролирует работу лифта (безопасность).

Порталы (двери шахты) - этажные двери в шахту лифта, оборудованы датчиками контроля и безопасности. Направляющие — рельсы, ограничивающие свободный ход кабины и противовеса в горизонтальной плоскости. Необходимы для ровного движения кабины и противовеса. На "направляющих" так же закреплены датчики и "шунты" положения кабины, они показывают "станции" где находится кабина лифта.

Ограничитель скорости при превышении скорости движения подаёт сигнал станции управления и лифт останавливается, если не срабатывает электронная защита, срабатывает механизм заклинивания кабины на "ловителях"- кабина повисает на "направляющих".

Схема управления лифтом включает основные узлы:

- ✓ контроля положения кабины в шахте;
- ✓ автоматического выбора направления движения;
- ✓ торможения;
- ✓ точной остановки;
- ✓ автоматического открывания и закрывания дверей; защиты.

Командные сигналы, задающие программу движения кабины: команды (приказы), поступающие из кабины и команды (вызовы), поступающие с этажных площадок.

В зависимости от реакции на команды и способа их отработки различаются схемы раздельного и собирательного управления. При раздельном принципе управления схема воспринимает и отрабатывает только одну команду и во время ее выполнения не реагирует на другие приказы и вызовы - наиболее проста в реализации, но ограничивает производительность лифта и поэтому применяется лишь для лифтов жилых домов высотой до девяти этажей.

Структурная схема лифтовой установки

Требования к ЭП лифтов:

- ✓ возможность реверсирования;
- ✓ обеспечение минимального уровня переходных процессов при строго ограниченных максимальных значениях ускорения и рывка;
- ✓ надежность в работе, обеспечение безопасности при пользовании лифтовой установкой;
- ✓ малошумность;
- ✓ ограничение ускорений кабины;
- ✓ обеспечение плавных переходных процессов пуска и торможения при широких пределах изменения момента сопротивления;
- ✓ обеспечение точности остановки кабины относительно уровня этажной площадки (10-20 мм для скоростных и больничных лифтов, 35-50 мм для остальных лифтов).

Категории лифтов по скорости

Категория лифтов	Скорость движения кабины, м/с		
Тихоходные	≤ 0.5		
Быстроходные	≤1.0		
Скоростные	≤ 2.5		
Высокоскоростные	> 2.5		

Согласно правила эксплуатации лифтов ЭП должны обеспечивать: верхний предел скорости движения кабин пассажирских лифтов - 5 м/с. Для грузовых лифтов жилых и административных зданий чаще всего скорость движения кабины составляет 0.1-0.5 м/с.

Ревизионная скорость ≤ 0,36 м/с (скорость, при которой осуществляется осмотр элементов лифта обслуживающим персоналом с крыши кабины).

При движении допускается относительный перепад скорости двигателя не более 5%.

ЭП лифтов:

- ✓ АД с КЗ ротором наиболее простой (по техническим показателям могут быть использованы только на тихоходных подъемных установках, т.к. они не удовлетворяют требованиям точности остановки и благоприятного протекания переходных процессов.
- ✓ Асинхронные двухскоростные двигатели.
- ✓ Асинхронные двигатели с фазным ротором применяются на тихоходных и в редких случаях быстроходных лифтах при ограниченной мощности сети, питающей двигатель подъемной установки (допускают большую частоту включений)

Самый распространенный ЭП для скоростных лифтов - система генератор - двигатель (дорогая и сложная в наладке и эксплуатации). Однако при ее использовании удается получить близкий к оптимальному закон изменения скорости во время пуска и торможения, а также обеспечивается точность остановки в пределах технических требований. Все более широкое применение получают на лифтах системы ТП - Д, который позволяют почти точно реализовать закон оптимального разгона и торможения.

Типовые системы электроприводов

Электропривод	Диапазон регулирования скорости	Тип лифта
АД с КЗ	1:1	Тихоходный
АД с ФР	1:1	Тихоходный
ЭП по системе Г-Д редук-	10 : 1 и выше	Скоростной,
торный или безредукторный	10.1 и выше	высокоскоростной
ЭП по системе ТП-Д редук-	10 : 1 и выше	Скоростной,
торный или безредукторный	то . ги выше	высокоскоростной

Выбор электродвигателя лифта

Вес противовеса

$$G_{\rm np} = G_0 + \alpha G_{\rm H}$$

 $G_{\rm H}$ - вес номинального поднимаемого груза, H;

 G_0 - вес кабины, H; α - коэффициент, учитывающий какая часть противовеса используется для уравновешивания груза (0,4-0,6).

Усилия в набегающей и сбегающей ветвях канатов при отсутствии трения кабины и противовеса о направляющие

$$F_1 = G_0 + G + g_K \cdot X$$
 $F_2 = G_{\Pi p} + g_K \cdot (H - X)$

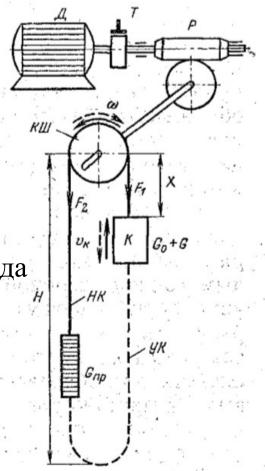
где g_{κ} – вес 1 м каната, Н/м.

Усилие на канатоведущем шкиве

$$F = F_1 - F_2 = G - \alpha G_H + g_K \cdot (2X - H)$$

Момент и мощность на валу двигателя

$$M_1 = \frac{F}{i \cdot \eta} \cdot \frac{D_{\text{KIII}}}{2}$$
 $P_1 = \frac{F \cdot V}{\eta} \cdot 10^{-3}$


$$M_2 = \frac{F}{i} \cdot \frac{D_{\text{KIII}} \eta}{2}$$
 $P_2 = F \cdot V \cdot \eta \cdot 10^{-3}$

где P_1 , M_1 — момент и мощность при работе привода в двигательном режиме, Нм и кВт;

 P_2 , M_2 — при работе в генераторном режиме; i — передаточное число редуктора лебедки; η — КПД редуктора; $D_{\text{кш}}$ — диаметр КШ, м; V — скорость движения, м/с.

Мощность двигателя

$$P_{\rm H} \ge \max P_{\rm I}$$

Результирующее усилие F - алгебраическая сумма активного усилия $F_{\rm rp}$ и реактивного, обусловленного трением усилия $F_{\rm rp}$. Они определяют активную $M_{\rm rp}$ и реактивную $M_{\rm rp}$ составляющую приведенного к валу двигателя статического момента

$$M_{\rm c} = M_{\rm Tp} + M_{\rm Tp} = \frac{\left(G + g_{\rm K} \cdot \left(2X - H\right) - \alpha G_{\rm H}\right) \cdot D_{\rm KIII}}{2i} + M_{\rm Tp}$$

Т.о., статический момент зависит от загрузки кабины и от коэффициента уравновешивания α . Кроме того, при большой высоте подъема H на него может оказывать существенное влияние вес ветвей каната.

Если высота каната невелика, $g_{\kappa}(2X-H)\approx 0$, тогда при подъеме номинального груза и пустой кабины

$$M_{c1} = M_{rp} + M_{rp} = \frac{(1-\alpha)G_{H} \cdot D_{KIII}}{2 \cdot i \cdot \eta}$$

$$M_{c2} = -M_{\Gamma p} + M_{Tp} = -\frac{\alpha \cdot G_{H} \cdot D_{KIII} \cdot \eta}{2 \cdot i}$$

где η - КПД подъемной установки с учетом потерь на трение.

Определение точности остановки кабины лифта на заданном уровне

С момента подачи команды на остановку лифт проходит путь

$$S = S_1 + S_2$$

где S_1 -путь, проходимый лифтом за время срабатывания аппаратуры, отключающей двигатель, м;

 S_2 -путь, проходимый лифтом после наложения тормозов, м.

$$S_1 = v_0 \cdot t_0$$

 v_0 - скорость движения лифта в период срабатывания отключающей аппаратуры; t_0 - время срабатывания отключающей аппаратуры:

$$S_2 = \frac{v_0}{2} \cdot t_{\rm T} = \frac{v_0^2}{2} \cdot \frac{m_0}{F_{\rm T} \pm F_{\rm C}}$$

где $t_{\rm T}$ - время торможения лифта с постоянной величиной замедления, с; m_0 — масса всех движущихся частей; $F_{\rm T}$ и $F_{\rm c}$ - расчетное тормозное и статическое усилия, приведенные к скорости движения кабины, Н ("плюс" - подъем, "минус" - спуск кабины лифта).

Если S выразить через ω

$$S = S_1 + S_2 = \left(\frac{D_{\text{III}}}{2}\right) \cdot \left[\omega_0 \cdot t_0 + \frac{J_{\Sigma} \cdot \omega_0^2}{2 \cdot M_{\text{T}\Sigma} \cdot i_{\text{p}}}\right]$$

$$M_{\text{T}\Sigma} = M_{\text{T}} \pm M_{\text{c}}$$

$$S_0 = \frac{S_{\text{max}} + S_{\text{min}}}{2}$$

Датчик точной остановки устанавливается на расстоянии S_0 от уровня пола этажа. Тогда максимальная неточность остановки кабины, характеризуется величиной

$$\Delta S_{\max} = \frac{S_{\max} - S_{\min}}{2}$$

$$\Delta S_{\max} \approx S_{01} \cdot \left(\frac{\Delta t_0}{t_0} + \frac{\Delta \omega_0}{\omega_0}\right) + S_{02} \cdot \left(2 \cdot \frac{\Delta \omega_0}{\omega_0} + \frac{\Delta M_{\text{T}\Sigma}}{M_{\text{T}\Sigma}} + \frac{\Delta J_{\Sigma}}{J_{\Sigma 0}}\right)$$

Обоснование выбора оптимального значения и определение величины веса противовеса

$$G_{\rm np} = G_0 + \alpha G_{\rm H}$$

Вес противовеса выбирают из условия минимальной величины требуемой мощности двигателя. Наиболее тяжелый режим - подъем груза и опускание пустой кабины:

$$P_{\Pi} = \frac{(\beta - \alpha)G_{H}V_{\Pi}}{1000\eta_{\Pi}} \qquad P_{C} = \frac{\alpha G_{H}V_{C}}{1000\eta_{C}}$$

β – коэффициент загрузки лифта.

Эквивалентная мощность двигателя за цикл

$$P_{\text{ЭКВ}} = \sqrt{\frac{P_{\Pi}^2 t_{\Pi} + P_{\text{c}}^2 t_{\text{c}}}{t_{\Pi} + t_{\text{c}}}}$$

Принимая
$$V_{\Pi}=V_{\mathbf{C}}=V_{\mathbf{H}}$$
 $\eta_{\Pi}=\eta_{\mathbf{C}}=\eta_{\mathbf{H}}$ $t_{\Pi}=t_{\mathbf{C}}$

$$P_{\text{ЭКВ}} = \frac{G_{\text{H}}V_{\text{H}}}{1000\eta_{\text{H}}} \sqrt{\frac{\left(\beta - \alpha\right)^2 + \alpha^2}{2}}$$

Из условия

$$\frac{dP_{\text{ЭKB}}}{d\alpha} = 0 \qquad \alpha_{\text{ОПТ}} = \frac{\beta}{2}$$

Тогда минимальная эквивалентная мощность двигателя

$$P_{\text{3KBmin}} = \frac{G_{\text{H}}V_{\text{H}}}{1000\eta_{\text{H}}} \frac{\beta}{2}$$

при этом
$$P_{\Pi} = P_{\mathbf{C}}$$

$$_{ecли}$$
 $\eta_{\Pi} \neq \eta_{c}$ $\alpha_{oпт} = \beta \frac{\eta_{c}}{\eta_{\Pi} + \eta_{c}}$

Все элементы ЭП лифта, за исключением редуктора, имеют одинаковые значения КПД при спуске и подъеме принимаем

$$\eta_\Pi = \eta_{p\Pi}, \quad \eta_c = \eta_{pc} -$$
 прямой и обратный КПД редуктора

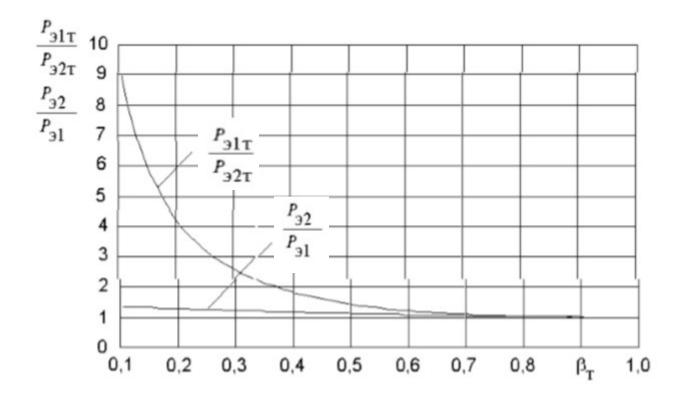
Грузо- Масса кабины, ность, кг кг	Macca	Ско-	Параметры редуктора			Диаметр
	рость $v_{\rm H}$, м/с	передаточное чпсло i_p		обратный кпд η рс	шкива $D_{\mathbf{m}}$, мм	
350	650	0,71	50	0,67	0,54	800
300	650	1,00	40	0,70	0,61	800
550	800	0,50	59	0,63	0,45	600
500	800	1,00	45	0,70	0,60	930
450	800	1,40	35	0,76	0,68	930
1100	1700	1,00	45	0,70	0,60	950
900	1700	1,40	35	0,76	0,68	950
1900	1450	0,50	70	0,76	0,68	700
3000	2000	0,50	70	0,76	0,68	700
5000	3300	0,25	140	0,76	0,68	700

Определение мощности и выбор ЭД

1 вариант. Выберем вес противовеса из оптимальных условий работы лифта с β=1

$$P_{31} = \frac{G_{\rm H} V_{\rm H}}{1000 \, \eta} \frac{\beta}{2}$$

При работе лифта с типовой загрузкой β = β т двигатель загружен по тепловому режиму:


$$P_{91T} = \frac{G_{\rm H}V_{\rm H}}{1000\eta} \sqrt{\frac{\left(\beta_{\rm T} - 0.5\right)^2 + 0.25}{2}} = P_{91} \sqrt{2\left[\left(\beta_{\rm T} - 0.5\right)^2 + 0.25\right]}$$

2 вариант. Выберем вес противовеса из оптимальных условий работы лифта с β= βт и найдем мощность в случае номинальной нагрузки

$$P_{32} = P_{31} \sqrt{2 \left[\left(1 - \beta_{\rm T} / 2 \right)^2 + \beta_{\rm T}^2 / 4 \right]}$$

$$P_{32T} = \frac{G_{\rm H}V_{\rm H}}{1000\eta_{\rm H}} \frac{\beta_{\rm T}}{2}$$

$$\frac{P_{32}}{P_{31}} = \sqrt{2(1-\beta_{\rm T}) + \beta_{\rm T}^2} \qquad \frac{P_{31\rm T}}{P_{32\rm T}} = \sqrt{2\left(1-\frac{1}{\beta_{\rm T}} + \frac{1}{2\beta_{\rm T}^2}\right)}$$

Выбор веса противовеса и расчет мощности двигателя лучше определять из оптимальных условий работы лифта с β= βт

$$P_{32} = P_{31} \sqrt{2 \left[\left(1 - \beta_{\rm T} / 2 \right)^2 + \beta_{\rm T}^2 / 4 \right]}$$