МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

	BEPW	
Ди	pekrop	ишэ
	Own	Матвеев А.С.
«	>>	2022 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ПРИЕМ 2022 г. ФОРМА ОБУЧЕНИЯ <u>очная</u>

Режимы работы энергосистем 13.04.02 Электроэнергетика и электротехника Направление подготовки/ специальность Автоматика электрических станций и Образовательная программа (направленность (профиль)) электроэнергетических систем Специализация высшее образование - магистратура Уровень образования 1 Курс семестр Трудоемкость в кредитах (зачетных единицах) Виды учебной деятельности Временной ресурс Лекции 16 32 Практические занятия Контактная (аудиторная) Лабораторные занятия 32 работа, ч ВСЕГО 80 Самостоятельная работа, ч 136 Курсовой проект в т.ч. отдельные виды самостоятельной работы с выделенной промежуточной аттестацией ч,ОПОТИ 216

Вид промежуточной	Экзамен,	Обеспенивающее	еши еео
аттестации	диф.зач	/ / подразделение	
Руководитель ОЭЭ	nOf	w	Разживин И.А.
Руководитель ООП	Ale	being.	Андреев М.В.
Преподаватель		AG	Суворов А.А.

1. Цели освоения дисциплины

Целями освоения дисциплины является формирование у обучающихся определенного ООП (п. 5 Общей характеристики ООП) состава компетенций для подготовки к

профессиональной деятельности.

Код	Наименование	Индикат	оры достижения компетенций	Составляющие результатов освоения (дескрипторы компетенции)		
компете нции	компетенции	Код индикат ора	Наименование индикатора достижения	Код	Наименование	
ПК(У) -2.	Способен составить конкурентно-	И.ПК(У)-2.1.	Обосновывает выбор целесообразного решения задач	ПК(У)- 2.1В1	Владеет методами расчетов токов короткого замыкания (КЗ) при различных видах КЗ в энергосистемах	
	способные варианты технических решений при		проектирования систем релейной защиты и автоматики	ПК(У)- 2.1У1	Умеет рассчитывать параметры схем замещения электроустановок, составлять и преобразовывать схемы в зависимости от вида и места КЗ	
	проектировании			ПК(У)- 2.131	Знает технические средства для ограничения токов КЗ	
	объектов ПД			ПК(У)- 2.1В3	Имеет опыт математического моделирования переходных процессов в ЭЭС на базе специализированных программных комплексов	
				ПК(У)- 2.1У3	Умеет применять принципы идеализации электрических и механических систем в области электроэнергетики при их математическом описании	
				ПК(У)- 2.133	Знает общие принципы идеализации электрических и механических систем в области электроэнергетики	

2. Место дисциплины (модуля) в структуре ООП

Дисциплина относится к вариативной части вариативного междисциплинарного профессионального модуля учебного плана образовательной программы.

3. Планируемые результаты обучения по дисциплине

После успешного освоения дисциплины будут сформированы результаты обучения:

Планируемые результаты обучения по дисциплине						
Код	Код Наименование					
		компетенции				
РД 1	Применять знания общих законов электротехники для расчета электрических	И.ПК(У)-2.1.				
	параметров при переходных процессах в ЭЭС					
РД 2	Выполнять расчеты параметров электрических режимов при различных повреждениях	И.ПК(У)-2.1.				
	в электрической сети					
РД3	Анализировать процессы, происходящие в электрических машинах и электрической	И.ПК(У)-2.1.				
	сети при различных повреждениях в электрической сети					
РД4	Составлять схемы замещения электрических машин и электрической сети при	И.ПК(У)-2.1.				
	различных повреждениях в электрической сети					

Оценочные мероприятия текущего контроля и промежуточной аттестации представлены в календарном рейтинг-плане дисциплины.

4. Структура и содержание дисциплины

Основные виды учебной деятельности

Разделы дисциплины	Формируемый результат обучения по дисциплине	Виды учебной деятельности	Объем времени, ч.
Раздел 1. Общие вопросы	РД1, РД3	Лекции	2
управления и ведения режима		Самостоятельная работа	14
энергосистемы			
Раздел 2. Статическая	РД1, РД2,	Лекции	2
устойчивость	РД3, РД4	Практические занятия	2
электроэнергетических систем		Лабораторные занятия	4
		Самостоятельная работа	14
Раздел 3. Качественная	РД1, РД3,	Лекции	4
характеристика задач и	РД4	Практические занятия	2
критерии статической устойчивости		Самостоятельная работа	14
Раздел 4. Модели элементов	РД1, РД2,	Лекции	4
энергосистемы в расчетах	РД3	Практические занятия	2
установившихся режимов	170	Самостоятельная работа	14
устиновнымими режимов		Лабораторные занятия	4
Раздел 5. Расчет	РД1, РД2,	Лекции	4
установившегося режима и	РД3, РД4	Практические занятия	4
статической устойчивости	1,75,17.	Лабораторные занятия	8
erum reckon yeron masern		Самостоятельная работа	14
Раздел 6. Обеспечение	РД1, РД3,	Лекции	6
статической устойчивости	РД4	Практические занятия	4
энергосистем	, ,	Лабораторные занятия	8
		Самостоятельная работа	14
Раздел 7. Основные особенности	РД1, РД2,	Лекции	2
переходных процессов	РД3, РД4	Практические занятия	2
-		Лабораторные занятия	4
		Самостоятельная работа	13
Раздел 8. Асинхронные режимы	РД1, РД2,	Лекции	2
в энергосистеме	РД3, РД4	Самостоятельная работа	13
Раздел 9. Математические	РД1, РД2,	Лекции	4
модели основных элементов	РД3	Лабораторные занятия	4
энергосистемы в расчетах		Самостоятельная работа	13
переходных процессов			
Раздел 10. Расчёты допустимых	РД1, РД3	Лекции	2
перетоков мощности в энергосистемах		Самостоятельная работа	13

Раздел 1. Общие вопросы управления и ведения режима энергосистемы.

Характеристика и тенденции развития электроэнергетической отрасли. Основы государственной политики в области энергетики. Задачи и организация управления энергосистемами на различных уровнях. Управление энергосистемами в нормальном и аварийном режиме. Перегрузка и отключение линий электропередачи. Асинхронные режимы. Лавина частоты. Лавина напряжения. Восстановление ЭЭС после крупных аварий.

Темы лекций:

- 1. Общие вопросы управления и ведения режима энергосистемы.
- 2. Аварийные режиме энергосистем.

Раздел 2. Статическая устойчивость электроэнергетических систем.

Устойчивость как главное условие существование режима. Характеристика мощности простейшей системы. Физический смысл угла δ. Понятие о статической устойчивости ЭЭС.

Темы лекций:

- 3. Статическая устойчивость простейших энергосистем.
- 4. Основные параметры установившегося режима энергосистемы.

Темы практических занятий:

1. Составление схем замещения.

Названия лабораторной работы

1. Определение параметров установившегося режима и исходных режимов переходного процесса.

Раздел 3. Качественная характеристика задач и критерии статической устойчивости.

Основные понятия об апериодической и колебательной устойчивости. Самораскачивание и причины его возникновения. Характеристическое уравнение и его корни. Критерии статической устойчивости. Критерий статической апериодической устойчивости.

Темы лекций:

- 5. Качественная характеристика задач статической устойчивости.
- 6. Критерии статической апериодической и колебательной устойчивости.

Темы практических занятий:

1. Составление схем с обобщёнными параметрами.

Раздел 4. Модели элементов энергосистемы в расчетах установившихся режимов.

Пассивные элементы схемы. Генераторы и синхронные компенсаторы. Располагаемая реактивная мощность. Нагрузка. Зависимости нагрузки от параметров установившегося режима. Модели элементов энергосистемы при учете отклонений частоты.

Темы лекций:

7. Модели элементов энергосистемы в расчетах установившихся режимов.

Темы практических занятий:

- 1. Запись уравнений элементов электрических систем.
- 2. Расчёт характеристик синхронных машин.

Названия лабораторной работы:

1. Построение угловых характеристик мощности генераторов при различных типах автоматического регулирования возбуждения.

Раздел 5. Расчет установившегося режима и статической устойчивости.

Уравнения установившегося режима и методы их решения. Метод малых колебаний для оценки статической устойчивости ЭЭС. Расчет предельного режима без учета самораскачивания. Проверка колебательной устойчивости. Устойчивость сложных

энергосистем.

Темы лекций:

- 8. Расчет установившегося режима энергосистемы.
- 9. Оценка статической устойчивости энергосистемы.

Темы практических занятий:

- 1. Определение критериев устойчивости режимов энергосистем.
- 2. Решение характеристических уравнений и определение вида их корней без решения.

Названия лабораторных работ:

1. Построение угловых характеристик реактивной мощности синхронных генераторов.

Раздел 6. Обеспечение статической устойчивости энергосистем.

Области статической устойчивости. Запас устойчивости. Коэффициенты запаса по активной мощности. Расчетная оценка величины нерегулярных колебаний мощности. Запас по напряжению. О нормировании запаса статической устойчивости. Технические средства для обеспечения статической устойчивости.

Темы лекций:

- 10. Обеспечение статической устойчивости энергосистем по активной мощности.
- 11. Обеспечение статической устойчивости энергосистем по напряжению.

Темы практических занятий:

- 1. Оценка статической устойчивости
- 2. Вычисление пределов мощности и пределов устойчивости.

Названия лабораторных работ:

- 1. Исследование зависимости коэффициента запаса статической устойчивости от изменения параметров электроэнергетической системы.
- 2. Анализ влияния демпфирующей мощности на статическую устойчивость электроэнергетической системы.

Раздел 7. Основные особенности переходных процессов.

Понятие о динамической устойчивости. Динамическая устойчивость генераторов. Взаимное влияние генераторов и нагрузок при переходных процессах. Второй метод Ляпунова для оценки устойчивости ЭЭС. Оценка динамической устойчивости сложных энергосистем.

Темы лекций:

- 12. Основные особенности переходных процессов.
- 13. Способы оценки динамической устойчивости энергосистем.

Темы практических занятий:

1. Расчёты динамической устойчивости.

Названия лабораторных работ:

1. Определение максимально допустимых значений угла и времени отключения короткого замыкания для сохранения динамической устойчивости энергосистемы.

Раздел 8. Асинхронные режимы в энергосистеме.

Установившийся асинхронный двухчастотный режим. Изменения скольжения при двухчастотном асинхронном режиме. Ресинхронизация. Особенности асинхронных режимов в сложных энергосистемах.

Темы лекций:

14. Асинхронные режимы в энергосистеме.

Раздел 9. Математические модели основных элементов энергосистемы в расчетах переходных процессов.

Модели синхронных машин. Модели систем возбуждения и APB генераторов и синхронных компенсаторов. Модели турбин. Модели нагрузки. О методах численного интегрирования.

Темы лекций:

15. Математические модели основных элементов энергосистемы в расчетах переходных процессов.

Названия лабораторных работ:

- 1. Влияние аварийного управления мощностью турбин на динамическую устойчивость.
- 2. Оценка эффективности применения электрического торможения генераторов для повышения динамической устойчивости.
- 3. Использование отключения части генераторов электрической станции для сохранения динамической устойчивости.

Раздел 10. Расчёты допустимых перетоков мощности в энергосистемах.

Вероятностный характер возмущений в энергосистеме. Нормативные требования устойчивости ЭЭС. Поиск опасных сечений. Определение предельных и максимально допустимых перетоков. Определение аварийно допустимых перетоков. Освоение расчетов динамической устойчивости.

Темы лекций:

16. Расчёты допустимых перетоков мощности в энергосистемах.

Тематика курсовых работ (теоретический раздел)

Разработано 25 индивидуальных заданий, основанных на 25-ти различных фрагментах схем электроэнергетических систем.

- 1. Анализ устойчивости электроэнергетической системы (схема №1).
- 2. Анализ устойчивости электроэнергетической системы (схема №2).
- 3
- 25. Анализ устойчивости электроэнергетической системы (схема №25).

Вариант задания на курсовую работу выбирается по двум кодовым числам. Первое число выбирается по таблице и определяет номер индивидуального задания, для которого с тем же номером приведена расчетная схема энергосистемы.

Выбор номера задания и схемы

№ Задания и схемы	1	2	3	4	5	6	7	8	9	10	11	12	13
Первая буква фамилии	A	Б	В	Γ	Д	Е	Ж	3	И	К	Л	M	Н
№ Задания и схемы		14	15	16	17	18	19	20	21	22	23	24	25
Первая буква фамилии		О	П	P	C	T	У	Ф, Ч	X	Ш, Ц	Э, Щ	Ю	R

Второй кодовый номер — последняя цифра номера зачетной книжки (0-9) — определяет вариант параметров электрооборудования. При наличии в группе двух и более студентов, фамилии которых начинаются с одной и той же буквы, преподаватель назначает таким студентам не совпадающие варианты задания из числа свободных.

5. Организация самостоятельной работы студентов

Самостоятельная работа студентов при изучении дисциплины (модуля) предусмотрена в следующих видах и формах:

- Работа с лекционным материалом, поиск и обзор литературы и электронных источников информации;
- Изучение тем, вынесенных на самостоятельную проработку;
- Поиск, анализ, структурирование и презентация информации;
- Подготовка к лабораторным работам, к практическим и семинарским занятиям;
- Выполнение курсовой работы;
- Подготовка к оценивающим мероприятиям.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-метолическое обеспечение

Основная литература:

- 1. Вайнштейн Р. А. Автоматическое управление электроэнергетическими системами в нормальных и аварийных режимах: учебное пособие. В 2 частях. Часть 1 / Р. А. Вайнштейн, В. В. Шестакова, И. М. Кац; Национальный исследовательский Томский политехнический университет. Томск: Изд-во ТПУ, 2013. URL: http://www.lib.tpu.ru/fulltext2/m/2013/m317.pdf (дата обращения: 27.08.2019). Режим доступа: из корпоративной сети ТПУ. Текст: электронный.
- 2. Вайнштейн Р. А. Автоматическое управление электроэнергетическими системами в нормальных и аварийных режимах: учебное пособие. В 2 частях. Часть 2 / Р. А. Вайнштейн, В. В. Шестакова, И. М. Кац; Национальный исследовательский Томский политехнический университет. Томск: Изд-во ТПУ, 2013. URL: http://www.lib.tpu.ru/fulltext2/m/2013/m318.pdf (дата обращения: 27.08.2019). Режим доступа: из корпоративной сети ТПУ. Текст: электронный.
- 3. Овчаренко Н. И. Автоматика энергосистем: учебник для вузов / Н. И. Овчаренко. Москва: Издательский дом МЭИ, 2017. Текст: электронный // ЭБС "Консультант студента". URL: http://www.studentlibrary.ru/book/ISBN9785383011171.html (дата обращения: 28.08.2019). Режим доступа: для авториз. пользователей.

Дополнительная литература:

- 1. Калентионок Е.В. Устойчивость электроэнергетических систем: учебное пособие / Е.В. Калентионок. Минск: Техноперспектива, 2008. 375 с.
- 2. Дьяков А. Ф. Микропроцессорная автоматика и релейная защита электроэнергетических систем: учеб. пособие для вузов / А. Ф. Дьяков. Москва: Издательский дом МЭИ, 2017. Текст: электронный // ЭБС "Консультант студента". URL: http://www.studentlibrary.ru/book/ISBN9785383011614.html (дата обращения: 28.08.2019). Режим доступа: для авториз. пользователей.
- 3. Расчеты допустимых перетоков мощности в энергосистемах: учебное пособие / С. А. Ерошенко, А. О. Егоров, В. О. Самойленко, А. И. Хальясмаа. Екатеринбург: Изд-во Урал. ун-та, 2017. 86 с.

6.2. Информационное и программное обеспечение

- 1. Электронно-библиотечная система «Лань» https://e.lanbook.com/
- 2. Электронно-библиотечная система «ZNANIUM.COM» https://new.znanium.com/
- 3. Электронно-библиотечная система «Юрайт» https://urait.ru/
- 4. Электронно-библиотечная система «Консультант студента» http://www.studentlibrary.ru/

Лицензионное программное обеспечение (в соответствии с **Перечнем** лицензионного программного обеспечения ТПУ):

- 1. Microsoft Office Standard 16 Академическая лицензия.
- 2. ПК Mathcad Академическая лицензия.

7. Особые требования к материально-техническому обеспечению дисциплины

В учебном процессе используется следующее лабораторное оборудование для

практических и лабораторных занятий:

Nº	Наименование специальных помещений	Наименование оборудования
1.	Учебная аудитория для проведения лекционных занятий: 634050, Томская область, г. Томск, ул. Усова, 7, корп. 8, ауд. 312	Интерактивная доска 1 шт., компьютер 1 шт,
2.	Учебная аудитория для проведения лабораторных занятий: 634050, Томская область, г. Томск, ул. Усова, 7, корп. 8, ауд. 119 – 122, 126	компьютеры – 25 шт.
3.	Учебная аудитория для проведения практических занятий: 634050, Томская область, г. Томск, ул. Усова, 7, корп. 8, ауд. 119 – 122, 126	компьютеры— 25 шт.
4.	Аудитория для самостоятельной работы: 634050, Томская область, г. Томск, ул. Усова, 7, корп. 8, ауд. 119	компьютеры— 25 шт.

Рабочая программа составлена на основе Общей характеристики образовательной программы по всем направлениям подготовки (прием 2022 г., очная форма обучения).

Разработчик(и):

Должность	Подпуев	. ФИО
Доцент ОЭЭ	ARCH	Суворов А.А.

Программа одобрена на заседании Отделения Электроэнергетики и электротехники (протокол от <0.7 × 10 2022 г. №2).

И.о. заведующего кафедрой — руководителя отделения на правах кафедры, к.т.н.

И.А. Разживин