ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ЮРГИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

		«УТВЕРЖДАЮ»
3	ам.	директора ЮТИ ТПУ по УР
_		В.Л. Бибик
‹ ‹	>>	2010 г.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Методические указания по математике для студентов всех специальностей

Издательство Юргинского технологического института (филиала) Томского политехнического университета 2010 УДК 517(075) ББК 22.6я73 Г47

Г47 Дифференциальные уравнения: методические указания по математике для студентов всех специальностей / Сост. Л.Б. Гиль, А.В. Тищенкова. – Юрга: Изд-во Юргинского технологического института (филиала) Национального исследовательского Томского политехнического университета.-2010. – 80 с.

Рецензент доктор физико-математических наук М.Р. Черкасов

Методические указания рассмотрены и рекомендованы к изданию методическим семинаром кафедры ЕНО ЮТИ ТПУ 12 мая $2010 \, \Gamma$.

Зав. кафедрой ЕНО, к.пед.н.

Е. В. Полицинский

Оглавление

введение.	4
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ	7
1. ОПОРНЫЕ ЗАДАЧИ	8
1.1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА	8
1.2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ	31
1.3. ЗАДАЧИ НА СОСТАВЛЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕ	ний
41	
2. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ	51
3.ПРОВЕРЬТЕ СЕБЯ	54
4. РАСЧЁТНЫЕ ЗАДАНИЯ (ИДЗ)	56
5. КОНТРОЛЬНАЯ РАБОТА «Дифференциальные уравнения» (45 мин.)	74
ПРИЛОЖЕНИЕ 1	75
Основные типы дифференциальных уравнений I порядка и методы их	
интегрирования	75
ПРИЛОЖЕНИЕ 2	77
Типы дифференциальных уравнений II порядка и способы их решения	77
ПРИЛОЖЕНИЕ 3	79
Частное решение неоднородного ДУ 2-го порядка с правой частью	79
«специального» вида (метод неопределенных коэффициентов)	79
СПИСОК ЛИТЕРАТУРЫ	80

введение.

Термин «дифференциальное уравнение» был предложен Г.В. Лейбницем в 1676 г. Впервые исследования обыкновенных дифференциальных уравнений были проведены в конце 17 в. в связи с изучением проблем механики и некоторых геометрических задач.

Понятие дифференциального уравнения — ключевое для приложений математики к различным областям естествознания и, в особенности, к физике и механике. Дифференциальные уравнения описывают движение тел в силовых полях (например, заряда в электромагнитном поле), динамику жидкости и газов (например, атмосферы и океана, без чего невозможно предсказание погоды), распространение тепла и многое другое. Рассмотрим задачи, приводящие к соотношениям (связям) между неизвестной функцией (или функциями) и её производными, т. е. к дифференциальным уравнениям.

Пример I (поле скоростей). Пусть тело движется на плоскости и в каждой точке известна его скорость $v=(a(x;y),\ b(x;y))$. Как по этим данным восстановить траекторию тела? Пусть искомая траектория задаётся параметрическими уравнениями $x=x(t),\ y=y(t)$, где t — время. Поскольку скорость движения по кривой — это производные координат по параметру, мы приходим к системе дифференциальных уравнений: $\frac{dx}{dy}=a(x;y),\ \frac{dy}{dx}=b(x;y)$. Например, если $a=\frac{k^2}{x},\ b=-\frac{k^2}{y}$, то тело будет двигаться по эллипсам $\frac{x^2}{2k^2}+\frac{y^2}{2l^2}=const$, а в случае $a=\frac{k^2}{x},\ b=\frac{k^2}{y}$ траекториями будут гиперболы $\frac{x^2}{2k^2}-\frac{y^2}{2l^2}=const$.

Пример 2 (движение в поле сил). Пусть к каждой точке плоскости приложена сила F = (f(x; y), q(x; y)). Тогда движение материальной точки массы m под действием силы F подчиняется второму закону Ньютона F = ma, где a — ускорение материальной точки. Поскольку вектор ускорения есть вторая производная радиус-вектора точки (производная скорости по времени), уравнения движения запишутся в виде:

$$m\frac{d^2x}{dt^2} = f(x;y), \quad m\frac{d^2y}{dt^2} = f(x;y).$$
 (*)

Например, если материальное тело движется в гравитационном поле, источником которого является тело с массой M, значительно превышающей m, и находящееся в начале координат, по закону всемирного тяготения уравнения движения будут иметь вид:

$$\frac{d^2x}{dt^2} = -\gamma \frac{x}{x^2 + y^2}, \quad \frac{d^2y}{dt^2} = -\gamma \frac{y}{x^2 + y^2},$$

где γ – гравитационная постоянная. Если массы движущихся тел сравнимы по величине (как, например, в случае двойных звёзд), то уравнения движения станут более сложными и будут содержать четыре неизвестные функции.

Замечание. Не следует думать, что в уравнениях (*) величина *т* всегда постоянна. Например, если эти уравнения описывают полёт ракеты, то масса убывает из-за сгорания топлива.

Пример 3 (закон Гука). Этот закон гласит, что сила реакции пружины (сила упругости) пропорциональна длине её растяжения. Пусть вся масса пружины сосредоточена на одном из её концов и равна m. Если пружину «привязать» другим концом к началу координат и растя-

гивать вдоль оси x направо, то из второго закона Ньютона следует, что $m\frac{d^2x}{dt^2} = -kx, \quad k>0 \, .$

Любое решение данного уравнения имеет вид $x = A\cos\sqrt{\frac{k}{m}}\,t + B\sin\sqrt{\frac{k}{m}}\,t$, где A и B- произвольные постоянные. Эти постоянные можно найти, если знать, например начальное положение и начальную скорость правого конца.

Пример 4. Если тело брошено в воздух и сопротивлением воздуха можно пренебречь, то уравнениями движения являются $\frac{d^2x}{dt^2} = 0, \ \frac{d^2y}{dt^2} = -g \ , \ \text{где} \ g \ - \ \text{ускорение свободного падения.} \ \text{Решения}$ этого уравнения имеют вид $x = \alpha t + \beta, \ y = -\frac{1}{2}gt^2 + \gamma t + \delta$.

Греческими буквами обозначены произвольные постоянные. Эти постоянные можно найти, если известны координаты точки, из которой производилось бросание, и начальная скорость. Траекторией тела всегда (кроме случая, когда тело бросали в вертикальном направлении) является парабола.

Пример 5. Пусть плоская кривая задана уравнением y = f(x). Какова должна быть функция f, чтобы отрезок касательной, заключённый между осями, делился точкой касания в заданном отношении k:l?

Поскольку значение производной в каждой точке совпадает с тангенсом угла наклона касательной к оси x, сформулированное условие можно записать в виде $\frac{lf'}{t} + \frac{k}{l} = 0$. Произвольное решение имеет вид

 $y'x^k = const$. Постоянную в правой части можно найти, если указать через какую точку проходит искомая кривая.

Прежде чем приступить к решению дифференциальных уравнений, ответьте на следующие вопросы.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

- 1. Основные понятия теории дифференциальных уравнений. Задача Коши для дифференциального уравнения первого порядка. Формулировка теоремы существования и единственности решения задачи Коши.
- 2. Дифференциальные уравнения первого порядка: с разделяющимися переменными, однородные и приводящиеся к однородным.
- 3. Линейные уравнения первого порядка, уравнение Бернулли.
- 4. Уравнения в полных дифференциалах.
- 5. Приближенное интегрирование дифференциальных уравнений первого порядка методом изоклин.
- 6. Дифференциальные уравнения высших порядков. Задача Коши. Формулировка теоремы существования и единственности решения задачи Коши. Общее и частное решения. Общий и частный интегралы.
- 7. Дифференциальные уравнения, допускающие понижение порядка.
- 8. Линейный дифференциальный оператор, его свойства. Линейное однородное дифференциальное уравнение, свойства его решений.
- 9. Линейно-зависимые и линейно-независимые системы функций. Необходимое условие линейной зависимости системы функций.
- 10. Условие линейной независимости решений линейного однородного дифференциального уравнения.
- 11. Линейное однородное дифференциальное уравнение. Фундаментальная система решений. Структура общего решения.

- 12. Линейное неоднородное дифференциальное уравнение. Структура общего решения.
- 13. Метод Лагранжа вариации произвольных постоянных.
- 14. Линейные однородные дифференциальные уравнения с постоянными коэффициентами (случай простых корней характеристического уравнения).
- 15. Линейные однородные дифференциальные уравнения с постоянными коэффициентами (случай кратных корней характеристического уравнения).
- 16. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Метод подбора.

1. ОПОРНЫЕ ЗАДАЧИ

1.1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Уравнениями с разделёнными переменными

1.1.1. Найти частное решение уравнения и проверить его решение dy = dx, если x = 2, y = 4.

Pешение. Интегрируем обе части уравнения $\int dy = \int dx$, y = x + C — общее решение уравнения.

Проверим общее решения: взяв дифференциалы от обеих частей равенства, получим исходное уравнение dy = dx.

Найдём частное решение. В частном решении произвольное постоянное C имеет определенное числовое значение. Чтобы найти частное решение, подставим в общее решение значения x=2 и y=4:

4 = 2 + C, откуда C = 2. Подставив значение C = 2 в уравнение y = x + C, получим частное решение y = x + 2.

Проверим частное решение: взяв дифференциал от обеих частей уравнения y = x + 2, получим уравнение dy = dx.

1.1.2. Найти частное решение уравнения и проверить его решение $3y^2dy = x^2dx$, если x = 3, y = 1.

Решение. Интегрируем обе части уравнения $3\int y^2 dy = \int x^2 dx$, $y^3 = \frac{x^3}{3} + C$. Проверим общее решение: взяв дифференциалы от обеих частей уравнения $y^3 = \frac{x^3}{3} + C$, получим исходное уравнение $3y^2 dy = x^2 dx$.

Найдём частное решение. Подставив в уравнение $y^3 = \frac{x^3}{3} + C$ значения x=3 и y=1, получим: $1^3 = \frac{3^3}{3} + C$, откуда C=-8. Подставив значение C=-8 в уравнение $y^3 = \frac{x^3}{3} + C$, получим $y^3 = \frac{x^3}{3} - 8$.

Проверка частного решения производится также, как и проверка общего решения: $3y^2dy = x^2dx$. Получили тождество.

Уравнениями с разделяющимися переменными

1.1.3. Найти частное решение уравнения и проверить его решение xdy = ydx, если x = 2, y = 6.

Решение. Произведём разделение переменных, для этого обе час-

ти уравнения разделим на произведение $xy: \frac{xdy}{xy} = \frac{ydx}{xy}, \quad \frac{dy}{y} = \frac{dx}{x}$. Проинтегрируем обе части полученного уравнения

$$\int \frac{xdy}{xy} = \int \frac{ydx}{xy}, \quad \ln y = \ln x + \ln C.$$

Произвольное постоянное C может принимать любые числовые значения, поэтому для удобства потенцирования вместо C пишут $\ln C$. Пропотенцировав равенство $\ln y = \ln x + \ln C$, получим y = Cx.

Проверим общее решение: взяв дифференциалы от обеих частей уравнения y = Cx, получим dy = Cdx.

Подставим значение dy = Cdx и y = Cx в исходное уравнение, получим тождество xCdx = Cxdx.

Найдём частное решение. Подставим значения x=2 и y=6 в уравнение y=Cx. Получим $6=C\cdot 2$, откуда C=3. Подставив найденное значение C в уравнение y=Cx, получим y=3x.

Проверим частное решение: из решения имеем dy = 3dx. Подставив значения dy и y в исходное уравнение, получим тождество $x \cdot 3dx = 3xdx$.

1.1.4. Найти частное решение уравнения и проверить его решение $\frac{dy}{\sqrt{x}} = \frac{3dx}{\sqrt{y}}, \text{ если } x = 1, y = 9.$

Решение. Произведём разделение переменных, для этого обе части уравнения умножим на произведение $\sqrt{x}\sqrt{y}$: $\sqrt{y}dy = 3\sqrt{x}dx$ или $y^{\frac{1}{2}}dy = 3x^{\frac{1}{2}}dx$. Проинтегрируем обе части уравнения:

$$\int y^{\frac{1}{2}} dy = 3 \int x^{\frac{1}{2}} dx; \quad \frac{2}{3} y^{\frac{3}{2}} = 3 \cdot \frac{2}{3} x^{\frac{3}{2}} + C.$$

Умножив обе части уравнения на $\frac{3}{2}$ и положив $\frac{3}{2}C=C_{1,}$ получим $y^{\frac{3}{2}}=3x^{\frac{3}{2}}+C_{1}.$

Проверим общее решение: взяв дифференциалы от обеих частей уравнения, получим $\frac{3}{2}y^{\frac{1}{2}}dy=3\cdot\frac{3}{2}x^{\frac{1}{2}}dx$ или $\sqrt{y}dy=3\sqrt{x}dx$,

или $\frac{dy}{\sqrt{x}} = \frac{3dx}{\sqrt{x}}$. Получим исходное уравнение.

Найдём частное решение. Подставим значения x=1 и y=9 в уравнение $y^{\frac{3}{2}}=3x^{\frac{3}{2}}+C_1$: $9^{\frac{3}{2}}=3\cdot 1^{\frac{3}{2}}+C_1$, откуда $C_1=24$. Подставив значение C_1 в уравнение $y^{\frac{3}{2}}=3x^{\frac{3}{2}}+C_1$, получим $y^{\frac{3}{2}}=3x^{\frac{3}{2}}+24$.

Проверим частное решение: дифференцируя уравнение $y^{\frac{3}{2}} = 3x^{\frac{3}{2}} + 24$, получим исходное уравнение.

1.1.5. Найти частное решение уравнения и проверить его решение (x-1)dy = (y+1)dx, если x = 2, y = 3.

Решение. Производим разделение переменных, разделив обе части уравнения на произведение (x-1)(y+1): $\frac{(x-1)dy}{(x-1)(y+1)} = \frac{(y+1)dx}{(x-1)(y+1)}$ или

 $\frac{dy}{y+1} = \frac{dx}{x-1}$. Проинтегрируем обе части полученного уравнения:

$$\int \frac{dy}{y+1} = \int \frac{dx}{x-1}; \ln(y+1) = \ln(x-1) + \ln C \text{ или } \ln(y+1) = \ln[C(x-1)],$$

Откуда y+1=C(x-1) или y=C(x-1)-1.

Проверка общего решения. Взяв дифференциалы от обеих частей уравнения y = C(x-1)-1, получим dy = Cdx.

Подставив в исходное уравнение значения dy и y, получим тождество (x-1)Cdx = [C(x-1)-1+1]dx, (x-1)Cdx = (x-1)Cdx.

Найдём частное решение. Подставим значение x=2 и y=3 в уравнение y=C(x-1)-1: 3=C(2-1)-1, откуда C=4. Подставив значение C=4 в уравнение y=C(x-1)-1, получим y=4(x-1)-1 или y=(4x-5).

Проверка частного решения. Взяв дифференциалы от обеих частей уравнения, получим тождество.

1.1.6. Найти частное решение уравнения и проверить его решение $s \ tg \ t \ dt + ds = 0$, если $t = \frac{\pi}{3}$, s = 4.

Peшeнue. Разделим переменные: $tgtdt + \frac{ds}{s} = 0$. Проинтегрируем обе части уравнения: $\int tgtdt + \int \frac{ds}{s} = \ln C$;

 $-\ln \cos t + \ln s = \ln C$ или $\ln s = \ln C + \ln \cos t$, $s = C \cos t$.

Проверка общего решения. Из уравнения $s = C \cos t$ имеем $ds = -C \sin t dt$. Подставим в исходное уравнение значения $s = C \cos t$ и $ds = -C \sin t dt$:

 $C\cos t \ tgtdt - C\sin tdt = 0$ или $C\cos t \frac{\sin t}{\cos t} dt - C\sin tdt = 0$ или

 $C\sin tdt - C\sin tdt = 0$. Найдём частное решение. Подставим значения $t = \frac{\pi}{3}$ и s = 4 в уравнение $s = C\cos t$: $4 = C\cos\frac{\pi}{3}$, откуда C = 8. Подста-

вим значение C = 8 в уравнение $s = C\cos t$: $s = 8\cos t$.

Проверка частного решения. Из равенства $s = 8\cos t$, имеем

 $ds = -8\sin t dt$. Подставив значения s и ds в исходное уравнение получим тождество.

1.1.7. Найти общее решение уравнения $(x^2 - yx^2)dy = (y^2 + xy^2)dx = 0$. *Решение*. Разделим переменные:

$$x^{2}(1-y)dy + y^{2}(1+x)dx = 0,$$

$$\frac{x^{2}(1-y)dy}{x^{2}y^{2}} + \frac{y^{2}(1+x)dx}{x^{2}y^{2}} = 0,$$

$$\frac{(1-y)dy}{y^{2}} + \frac{(1+x)dx}{x^{2}}.$$

Проинтегрируем:

$$\begin{split} &\int \frac{(1-y)dy}{y^2} + \int \frac{(1+x)dx}{x^2} = C, \quad \int \frac{dy}{y^2} - \int \frac{dy}{y} + \int \frac{dx}{x^2} + \int \frac{dx}{x} = C, \\ &\int y^{-2}dy - \int \frac{dy}{y} + \int x^{-2}dx + \int \frac{dx}{x} = C, \quad -\frac{1}{y} - \ln y - \frac{1}{x} + \ln x = C, \\ &\frac{1}{x} + \frac{1}{y} + \ln y - \ln x = C \quad \text{или} \quad \frac{x+y}{xy} + \ln \frac{y}{x} = C. \end{split}$$

1.1.8. Найти общее решение уравнения $y^2 dx + (x-2)dy = 0$.

Решение. Разделим переменные: $\frac{y^2 dx}{y^2(x-2)} + \frac{(x-2)dy}{y^2(x-2)} = 0$,

$$\frac{dx}{x-2} + \frac{dy}{y^2} = 0$$
. Проинтегрируем: $\int \frac{dx}{x-2} + \int \frac{dy}{y^2} = C$, $\int \frac{dx}{x-2} + \int y^{-2} dy = C$,

$$\ln(x-2) - \frac{1}{y} = C$$
, $\ln(x-2) = \frac{1}{y} + C$.

$$e^{\frac{1}{y}+C} = x-2, \ e^{\frac{1}{y}}e^{C} = x-2, \ e^{\frac{1}{y}}C_{1} = x-2, \ x = C_{1}e^{\frac{1}{y}}+2.$$

1.1.9. Найти общее решение уравнения $\sqrt{1-x^2} dy - \sqrt{1-y^2} dx = 0$.

Решение. Разделим переменные:

$$\frac{\sqrt{1-x^2}\,dy}{\sqrt{1-x^2}\,\sqrt{1-y^2}} - \frac{\sqrt{1-y^2}\,dx}{\sqrt{1-x^2}\,\sqrt{1-y^2}} = 0, \quad \frac{dy}{\sqrt{1-y^2}} - \frac{dx}{\sqrt{1-x^2}} = 0.$$

Проинтегрируем: $\int \frac{dy}{\sqrt{1-y^2}} - \int \frac{dx}{\sqrt{1-x^2}} = C$, $\arcsin y - \arcsin x = C$.

Выполним следующие преобразования:

$$\sin(\arcsin y - \arcsin x) = \sin C = C_1,$$

$$\sin(\arcsin y)\cos(\arcsin x) - \cos(\arcsin y)\sin(\arcsin x) = C_1$$

Вычислим каждый из членов: $\sin(\arcsin y) = y$; Пусть $\arcsin x = z$, тогда $\sin z = x$, а $\cos z = \sqrt{1-x^2}$, следовательно, $\cos(\arcsin x) = \sqrt{1-x^2}$.

Аналогично, $\cos(\arcsin y) = \sqrt{1-y^2}$; $\sin(\arcsin x) = x$, тогда $\sin(\arcsin y - \arccos x) = y\sqrt{1-x^2} - x\sqrt{1-y^2} = C_1$.

Общее решение:
$$y\sqrt{1-x^2} - x\sqrt{1-y^2} = C$$
.

1.1.10. Проинтегрировать дифференциальное уравнение $y' = -\frac{x}{y}$.

Решение. Перепишем уравнение в виде $\frac{dy}{dx} = -\frac{x}{y}$. Разделим переменные, умножив обе части ДУ на множитель ydx, тогда ydy = -xdx. Переменные разделены, можно интегрировать:

$$\int y dy = -\int x dx \Rightarrow \frac{y^2}{2} = -\frac{x^2}{2} + c_1 \Rightarrow y^2 + x^2 = 2c_1$$
. Для удобства записи и построения интегральных кривых можно положить $c = 2c_1$.

1.1.11. Проинтегрировать дифференциальное уравнение $2(1+e^x)yy'=e^x$.

Решение. Перепишем уравнение в виде $2(1+e^x)y\frac{dy}{dx} = e^x$.

Разделяем переменные, умножив обе части уравнения на $\frac{dx}{1+e^x}$. Заметим сразу, что множитель $(1+e^x)$ в нуль нигде не обращается, значит особых решений нет. Переменные разделены, можно интегрировать:

$$2\int y dy = \int \frac{e^x dx}{1 + e^x} = \int \frac{d(e^x + 1)}{e^x + 1} \Rightarrow y^2 = \ln(1 + e^x) + C.$$

Убедиться в правильности общего интеграла можно подстановкой его в исходное ДУ. Продифференцируем найденное выражение:

$$2yy' = \frac{e^x}{1+e^x} \Rightarrow (1+e^x)2yy' = e^x$$
. Получим исходное уравнение.

1.1.12. Показать, что функция y, определяемая уравнением $x^2 - y^2 = 4$, является интегралом дифференциального уравнения $y' = \frac{x}{y}$.

Peшение. Продифференцировав обе части равенства по переменной x , получим: 2x-2yy'=0 , откуда $y'=\frac{x}{y}$.

1.1.13. Найти общий интеграл уравнения

$$\cos^2 y \ ctg \ x \ dx + \sin^2 x \ tg \ y \ dy = 0.$$

Решение. Разделим переменные в данном уравнении, поделив обе его части на выражение $\cos^2 y \cdot \sin^2 x$:

$$\frac{ctgx}{\sin^2 x}dx + \frac{tgy}{\cos^2 x}dy = 0.$$

Интегрируя обе части данного уравнения, получим:

$$\int \frac{ctgx}{\sin^2 x} dx + \int \frac{tgy}{\cos^2 x} dy = C,$$

откуда
$$\frac{-ctg^2 x}{2} + \frac{tg^2 y}{2} = C.$$

Воспользуемся тем, что C – произвольная постоянная и заменим C на $\frac{C}{2}$. Тогда $tg^2y-ctg^2x=C$. Это и есть общий интеграл данного уравнения.

1.1.14. Проинтегрировать дифференциальное уравнение

$$dy = 3(x - 2\ln x)\sqrt[3]{y^2 dx}.$$

Решение. Разделяем переменные, предполагая $y \neq 0$, и интегрируем: $\frac{1}{3} \cdot \frac{dy}{y^{2/3}} = (x - 2\ln x) dx$, $\frac{1}{3} \int y^{-2/3} dy = \int x dx - 2 \int \ln x dx$. Последнее слагаемое интегрируем "по частям". В результате имеем

$$\sqrt[3]{y} = \frac{x^2}{2} - 2x(\ln x - 1) + C$$
. Это общий интеграл уравнения.

Уравнения, приводящиеся к уравнениям с разделяющимися переменными

1.1.15. Решить уравнение $y' = \sin(y + x)$.

Решение. Введём новую переменную z=x+y, где z=z(x) — искомая функция. Тогда y=z-x, y'=z'-1 и уравнение примет вид $z'-1=\sin z$. Это уравнение с разделяющимися переменными. Найдём общее решение. Так как $z'=\frac{dz}{dx}$, то $\frac{dz}{dx}=\sin z+1$. Разделяем переменные, интегрируем: $\frac{dz}{\sin z+1}=dx$, $\int \frac{dz}{\sin z+1}=x+C$. Интеграл в левой части равенства найдём с помощью универсальной тригонометрической подстановки $tg\frac{z}{2}=t$, $dz=\frac{2dt}{1+t^2}$, $\sin z=\frac{2t}{1+t^2}$:

$$\int \frac{dz}{\sin z + 1} = \int \frac{2dt}{\left(1 + t^2\right)\left(\frac{2t}{1 + t^2} + 1\right)} = 2\int \frac{dt}{\left(1 + t\right)^2} = 2\int \left(1 + t\right)^{-2} d\left(1 + t\right) = -\frac{2}{1 + t}.$$

Итак,
$$x + C = -\frac{2}{t+1} \Rightarrow -\frac{2}{tg\frac{z}{2}+1} = x + C$$
.

Подставляя
$$z = x + y$$
, получим общий интеграл ДУ $\frac{-2}{tg\frac{x+y}{2} + 1} = x + C$.

Чтобы найти особое решение, рассмотрим случай, когда $\sin z + 1 = 0$ или $\sin z = -1$: $z = \frac{3\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$, т.е. $y + x = \frac{3\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$. Окончательно, $y = \frac{3\pi}{2} + 2\pi k - x$. Это особые решения, т.к. они удовлетворяют уравнению и в тоже время не могут быть получены из общего ни при каком значении \mathbb{C} .

Итак,
$$x+c=\frac{-2}{tg\frac{x+y}{2}+1}$$
 – общий интеграл,

$$y + x = \frac{3\pi}{2} + 2\pi k$$
, $k \in \mathbb{Z}$ – особые решения ДУ.

Однородные дифференциальные уравнения

1.1.16. Решить уравнение (x + y)dx - xdy = 0.

Решение. Уравнение (x + y)dx - xdy = 0 однородное первой степени относительно переменных x и y. Пусть y = tx, где t — новая функция от x. Найдём дифференциалы произведения: dy = xdt + tdx.

Подставим значение y и dy из равенства в исходное уравнение: (x+tx)dx - x(xdt + tdx) = 0.

Произведём упрощения: $xdx + txdx - x^2dt - xtdx = 0$, $xdx - x^2dt = 0$. Сократим на x: dx - xdt = 0. Получили уравнение с разделяющимися переменными. Разделим переменные: $dt = \frac{dx}{x}$. Проинтегрируем обе час-

ти уравнения: $t = \ln x + \ln C$ или $t = \ln(Cx)$. Подставим выражение $t = \ln(Cx)$ в подстановку y = tx: $y = x \ln(Cx)$.

Получили общее решение дифференциального уравнения.

Проверка. Найдём дифференциал общего решения $y = x \ln(Cx)$:

$$dy = x \frac{1}{Cx} C dx + dx \ln(Cx) = dx + dx \ln(Cx)$$
. Подставим в исходное уравне-

ние общее решение и его дифференциал:

$$[x + x \ln(Cx)]dx - x[dx + dx \ln(Cx)] = 0,$$

 $xdx + x \ln(Cx)dx - xdx - x \ln(Cx)dx = 0$. Получили тождество.

1.1.17. Решить уравнение (x + y)dx + (y - x)dy = 0.

Peшение. Уравнение (x+y)dx + (y-x)dy = 0 однородное первой степени. Положим y = tx. Найдём дифференциал равенства: dy = tdx + xdt. Подставим значения y и dy в исходное уравнение:

$$(x+tx)dx + (tx-x)(tdx + xdt) = 0$$
. Упростим:

$$xdx + txdx + t^2xdx + x^2tdt - txdx - x^2dt = 0;$$

 $xdx + t^2xdx + x^2tdt - x^2dt = 0;$ $x(1+t^2)dx + x^2(t-1)dt = 0.$ Получили уравнение с разделяющимися переменными. Разделим переменные, для чего разделим все члены уравнения на произведение $x^2(1+t^2)$:

$$\frac{dx}{x} + \frac{v-1}{1+t^2}dt = 0$$
. Представим второй член уравнения в виде разности:

$$\frac{dx}{x} + \frac{tdt}{1+t^2} - \frac{dt}{1+t^2} = 0$$
. Проинтегрируем обе части уравнения:

$$\int \frac{dx}{x} + \int \frac{tdt}{1+t^2} - \int \frac{dt}{1+t^2} = C_1; \ln x + \frac{1}{2} \ln(1+t^2) - arctgt = C_1;$$

$$2\ln x + \ln(1+t^2) - 2arctgt = 2C_1.$$

Из подстановки $t = \frac{y}{x}$; подставим это значение t в полученное

уравнение и положим $2C_1 = C$: $2 \ln x + \ln(1 + \frac{y^2}{x^2}) - 2 \operatorname{arctg} \frac{y}{x} = C$;

$$\ln x^2 + \ln \frac{x^2 + y^2}{x^2} - 2 \operatorname{arctg} \frac{y}{x} = C$$
 или $\ln(x^2 + y^2) - 2 \operatorname{arctg} \frac{y}{x} = C$.

1.1.18. Решить уравнение $(2\sqrt{xy} - x)dy + ydx = 0$.

Решение. Уравнение $(2\sqrt{xy} - x)dy + ydx = 0$ однородное первой степени. Подстановка y = tx. Найдем дифференциал функции: dy = tdx + xdt. Подставим значения y и dy в уравнение:

 $(2\sqrt{xtx}-x)(tdx+xdt)+txdx=0$. Произведём в уравнении упрощения:

$$2x\sqrt{t}tdx + 2x^2\sqrt{t}dt - txdx - x^2dt + txdx = 0;$$

 $t(2\sqrt{t}-1)xdx + x^2(2\sqrt{t}-1)dt = 0$. Разделим переменные в уравнении:

$$\frac{xdx}{x^2} + \frac{(2\sqrt{t}-1)dt}{t(2\sqrt{t}-1)} = 0, \frac{dx}{x} + \frac{dt}{t} = 0.$$
 Интегрируем уравнение:

$$\int \frac{dx}{x} + \int \frac{dt}{t} = \ln C, \ln x + \ln t = \ln C \text{ или } xy = C, \text{ или } y = \frac{C}{x}.$$

1.1.19. Решить уравнение $x\cos\frac{y}{x}(ydx+xdy)-y\sin\frac{y}{x}(xdy-ydx)=0$.

Решение. Подстановка y = tx. Найдём дифференциал функции: dy = tdx + xdt. Подставим значения y и dy в данное уравнение:

$$x\cos\frac{tx}{x}\Big[txdx + x(tdx + xdt)\Big] - tx\sin\frac{tx}{x}\Big[x(tdx + xdt) - txdx\Big] = 0.$$
 Упростим

уравнение: $x\cos t(2txdx + x^2dt) - tx\sin t(x^2dt) = 0$;

$$2tx^{2}\cos t dx + x^{3}\cos t dt - tx^{3}\sin t dt = 0; \ 2t\cos tx^{2} dx + x^{3}(\cos t - t\sin t)dt = 0.$$

Получили уравнение с разделяющимися переменными. Разделим переменные в уравнении: $\frac{2x^2dx}{x^3} + \frac{(\cos t - \upsilon \sin t)dt}{t \cos t} = 0;$

$$2\frac{dx}{x} + \frac{dt}{t} - tgtdt = 0$$
. Интегрируем уравнение: $2\int \frac{dx}{x} + \int \frac{dt}{t} - \int tgtdt = \ln C$, $2\ln x + \ln t + \ln \cos t = \ln C$. Пропотенцируем уравнение: $x^2t\cos t = C$ или $x^2\frac{y}{x}\cos\frac{y}{x} = C$, или $xy\cos\frac{y}{x} = C$.

1.1.20. Найти частное решение уравнения $\frac{dy}{dx} = \frac{xy + y^2}{x^2}$, если x = 1, y = -1.

Peшeнue. $\frac{dy}{dx} = \frac{xy + y^2}{x^2}$ или $x^2 dy = (xy + y^2) dx$. Подстановка y = tx, dy = tdx + xdt. Подставим значения y и dy в уравнение:

 $x^2 \left(t dx + x dt \right) = \left(x t x + t^2 x^2 \right) dx; \ x^2 \left(t dx + x dt \right) = x^2 \left(t + t^2 \right) dx.$ Сократим на x^2 и произведём упрощения: $t dx + x dt = t dx + t^2 dx$ или $x dt = t^2 dx$. Получили уравнение с разделяющимися переменными. Разделим переменные в уравнении (5): $\frac{dt}{t^2} = \frac{dx}{x}$. Проинтегрируем уравнение: $\int \frac{dt}{t^2} = \int \frac{dx}{x}$, $-\frac{1}{t} = \ln x + C$, но так как $t = \frac{y}{x}$, то $-\frac{x}{v} = \ln x + C$.

Найдём по начальным данным: x = 1 и y = -1, постоянное C:

 $-\frac{1}{-1} = \ln 1 + C$, откуда C = 1, тогда частным решением будет:

$$-\frac{x}{y} = \ln x + 1$$
, $\ln x = -\frac{x}{y} - 1 = -\frac{x+y}{y}$, $x = e^{\frac{-x+y}{y}}$.

1.1.21. Решить уравнение $xy' - y = xtg\frac{y}{x}$.

Решение. Выделив явно производную, разделив обе части уравнения на x, убеждаемся, что уравнение является однородным: $y' = \frac{y}{x} + tg\frac{y}{x}$. Функция в правой части является однородной, нулевого измерения вида $f\left(\frac{y}{x}\right)$. Делаем постановку $t = \frac{y}{x}$, y' = t'x + t, t'x + t = t + tgt, $\frac{dt}{dx}x = tgt$. Получили уравнение с разделяющими пере-

 $\frac{dt}{tgt} = \frac{dx}{x}$, $\int \frac{\cos t dt}{\sin t} = \int \frac{dx}{x}$, $\int \frac{d\sin t}{\sin t} = \ln|x| + \ln|C|$, (здесь удобно произволь-

менными. Разделяем переменные, положив $tgt \neq 0$, и интегрируем:

ную константу представить в виде $\ln C$), $\ln \left| \sin t \right| = \ln \left| x \right| + \ln \left| c \right|$, $\sin \frac{y}{x} = Cx$.

Проверим, не произошла ли потеря решения при разделении переменных. Исследуем уравнение tgt=0, $tg\frac{y}{x}=0$. Его решение $\frac{y}{x}=\pi n$, $y=x\pi n$. Но это решение можно получить из общего, положив C=0, т.е. особое решение отсутствует. Итак, общий интеграл: $\sin\frac{y}{x}=Cx$.

1.1.22. Найти общий интеграл уравнения $(x^2 + y^2)dx - xy \cdot dy = 0$.

Pешение. Разрешим уравнение относительно производной $\frac{dy}{dx}$: $x^2 + y^2 = -$

 $y' = \frac{x^2 + y^2}{xy}$. Поделив числитель и знаменатель правой части уравнения

на x^2 , получим $y' = \frac{1 + \left(\frac{y}{x}\right)^2}{\frac{y}{x}}$ (*), т.е. y' есть функция отношения $\frac{y}{x}$.

Это означает, что данное уравнение – однородное. Для решения этого

уравнения введем новую функцию $t = \frac{y}{x}$. Тогда y = tx и $y' = \frac{dt}{dx}x + t$.

Уравнение (*) преобразуется в уравнение с разделяющимися перемен-

ными
$$x\frac{dt}{dx}+t=\frac{1+t^2}{t}$$
, или $x\frac{dt}{dx}=\frac{1}{t}$, откуда $\frac{dx}{x}=t\,dt$. Интегрируя это

уравнение, получим:
$$\ln |x| = \frac{t^2}{2} + \ln C$$
, откуда $\ln \frac{x}{C} = \frac{t^2}{2}$, т.е. $x = Ce^{\frac{t^2}{2}}$. За-

меняя в последнем равенстве t отношением $\frac{y}{x}$, окончательно получим:

$$x = Ce^{\frac{y^2}{2x^2}}.$$

1.1.23. Решить уравнение
$$\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$$
.

Решение. Делая подстановку y = xt, приводим уравнение к виду:

$$x\frac{dt}{dx}+t=\frac{1+t^2}{2t}$$
, отсюда $x\frac{dt}{dx}=\frac{1+t^2}{2t}-t=\frac{1-t^2}{2t}$, и потому $\frac{dx}{x}=\frac{2tdt}{1-t^2}$; $\ln|x|=-\ln|1-t^2|+\ln|C|$; $x=\frac{C}{1-t^2}$; $1=\frac{Cx}{x^2-y^2}$; $x^2-y^2=Cx$; $y^2=x^2-Cx$; $y=\pm\sqrt{x^2-Cx}$.

Уравнения, приводящиеся к однородным

1.1.24. Найти общий интеграл (2x-2y-1)dx+(x-y+1)dy=0.

Решение. Составим определитель из коэффициентов уравнения: 2

 $\begin{vmatrix} -2 & 2 \\ 1 & -1 \end{vmatrix} = 0$, следовательно, данное ДУ должно свестись к уравнению с

разделяющимися переменными подстановкой x-y=z, dy=dx-dz.

Выполняем замену в уравнении, получаем

22

(2z-1)dx + (z+1)(dx-dz) = 0. Действительно, переменные разделяются: 3zdx = (z+1)dz, $\frac{z+1}{z}dz = 3dx$. Интегрируем: $\int \left(1+\frac{1}{z}\right)dz = 3\int dx$, $z+\ln|z|+3x+C$. Заменяя z=x-y, получаем общий интеграл

Особые решения отсутствуют.

 $\ln|x-y| = 2x + y + c.$

1.1.25. Решить уравнение $y' = -\frac{x-2y+5}{2x-y+4}$.

Решение. Проверяем определитель: $\begin{vmatrix} 1 & -2 \\ 2 & -1 \end{vmatrix} = 3 \neq 0$, значит данное ДУ можно свести к однородному.

Ищем точку пересечения прямых:
$$\begin{cases} x-2y+5=0, & x_0=-1; \\ 2x-y+4=0, & y_0=2; \end{cases}$$

Делаем замену x = u - 1, y = v + 2, dx = du, dy = dv, тогда исходное уравнение имеет вид $y' = \frac{dy}{dx} = \frac{dv}{du} = \frac{(u - 1) - 2(v + 2) + 5}{2(u - 1) - v - 2 + 4} = \frac{u - 2v}{2u - v}$.

Убеждаемся, что получили однородное уравнение: $\frac{dv}{du} = \frac{u - 2v}{2u - v}$.

Выполнив замену $t = \frac{v}{u}$, $v = u \cdot t$, $\frac{dv}{du} = t + u \frac{dt}{du}$, получаем дифференци-

альное уравнение с разделяющимися переменными: $t + u \frac{dt}{du} = \frac{1 - 2t}{2 - t}$,

$$u\frac{dt}{du} = \frac{1-2t}{2-t} - t$$
, $u\frac{dt}{du} = \frac{t^2 - 4t + 1}{2-t}$,

Разделяем переменные и интегрируем: $\frac{du}{du} = \frac{2-t}{(t^2-4t+1)}dt,$

23

$$\ln u = -\frac{1}{2} \ln \left[(t-2)^2 - 3 \right] + \ln C,$$

$$u \cdot \sqrt{(t-2)^2 - 3} = C$$
, где $t = \frac{v}{u}$, $u = x+1$, $v = y-2$

Подставляя, получаем ответ $(x+1) \cdot \sqrt{(\frac{y+2}{x+1}-2)^2-3} = C$ или

$$(x+1)\cdot\sqrt{\left(\frac{y-2x}{x+1}\right)^2-3}=C.$$

Линейные дифференциальные уравнения и уравнение Бернулли

1.1.26. Найти общее решение уравнения $\frac{dy}{dx} - 2y - 3 = 0$.

Решение. $\frac{dy}{dx} - 2y - 3 = 0$. Пусть y = uv, $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$, где u и v новые функции от x. Необходимо найти эти функции, чтобы получить искомую функцию y. Подставим значения y и $\frac{dy}{dx}$ в исходное уравнение: $u\frac{dv}{dx} + v\frac{du}{dx} - 2uv - 3 = 0$. Чтобы найти первой функцию v, сгруппируем члены содержащие функцию u, и вынесем эту функцию за скобку: $u\left(\frac{dv}{dx} - 2v\right) + v\frac{du}{dx} - 3 = 0$. Если будем первой находить функцию u то сгруппируем члены, содержащие функцию v, и вынесем эту функцию за скобку: $u\frac{dz}{dx} + v\left(\frac{du}{dx} - 2u\right) - 3 = 0$. Какую из этих функций находить первой, значения не имеет.

находить первой функцию u, тогда в равенстве $u\frac{dv}{dx} + v\left(\frac{du}{dx} - 2u\right) - 3 = 0$ приравняем нулю выражение в скобках: $\frac{du}{dx} - 2u = 0$. Разделим переменные в уравнении: $\frac{du}{u} - 2dx = 0$. Проинтегрируем обе части уравнения: $\int \frac{du}{u} = 2 \int dx$. Найдём одно из частных решений уравнения, поэтому при интегрировании обеих частей уравнения произвольное постоянное C примем равным нулю, т. е. $\ln u = 2x$, откуда $u = e^{2x}$. При условии $\frac{du}{dx} - 2u = 0$ уравнение $u\frac{dv}{dx} + v\left(\frac{du}{dx} - 2u\right) - 3 = 0$ имеет вид $u\frac{dv}{dx} - 3 = 0$. Подставив в уравнение значение $u = e^{2x}$, получим $e^{2x}\frac{dv}{dx}-3=0$. Разделим переменные в уравнении: $dv=\frac{3dx}{e^{2x}}$. Проинтегрируем равенство: $\int dv = 3 \int \frac{dx}{e^{2x}} = 3 \int e^{-2x} dx$; $v = -\frac{3}{2}e^{-2x} + C$. Подставим значения u и v: $y = e^{2x} \left(-\frac{3}{2}e^{-2x} + C \right) = -\frac{3}{2}e^0 + Ce^{2x} = Ce^{2x} - \frac{3}{2}$. T.e. $y = Ce^{2x} - \frac{3}{2}$.

Выполним проверку. Найдем $\frac{dy}{dx}$ из равенства $y = Ce^{2x} - \frac{3}{2}$: $\frac{dy}{dx} = 2Ce^{2x}$. Подставим значения $\frac{dy}{dx}$ из равенства и y в исходное уравнение: $2Ce^{2x} - 2\left(Ce^{2x} - \frac{3}{2}\right) - 3 = 0$; $2Ce^{2x} - 2Ce^{2x} + 3 - 3 = 0$. Получили

тождество, следовательно, уравнение $y = Ce^{2x} - \frac{3}{2}$ является решением исходного уравнения.

1.1.27. Решить уравнение $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^3$.

Решение. Пусть y = uv, тогда $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$. Подставим значения y и $\frac{dy}{dx}$ в уравнение: $u\frac{dv}{dx} + v\frac{du}{dx} - \frac{2uv}{x+1} = (x+1)^3$ или $u\frac{dv}{dx} + v\left(\frac{du}{dx} - \frac{2u}{x+1}\right) = (x+1)^3$. Пусть $\frac{du}{dx} - \frac{2u}{x+1} = 0$. Разделим переменные в уравнении: $\frac{du}{u} - \frac{2dx}{x+1} = 0$ или $\frac{du}{u} = \frac{2dx}{x+1}$. Проинтегрируем обе

части уравнения: $\int \frac{du}{u} = 2 \int \frac{dx}{x}$, $\ln u = 2 \ln(x+1)$. Произвольное постоян-

ное C принимаем равным нулю, т. е. находим одно из частных реше-

ний:
$$u = (x+1)^2$$
. При условии $\frac{du}{dx} - \frac{2u}{x+1} = 0$ уравнение

$$u\frac{dv}{dx} + v\left(\frac{du}{dx} - \frac{2u}{x+1}\right) = (x+1)^3$$
 имеет вид: $u\frac{dv}{dx} = (x+1)^3$. Подставим в

уравнение значение $u = (x+1)^2$: $(x+1)^2 \frac{dv}{dx} = (x+1)^3$ или $\frac{dv}{dx} = x+1$. Раз-

делим переменные в уравнении: dv = (x+1)dx. Проинтегрируем обе

части уравнения: $\int dv = \int (x+1)dx$, $v = \frac{(x+1)^2}{2} + C$. Подставим значения

$$u$$
 и v в равенство $y = uv$: $y = (x+1)^2 \left[\frac{(x+1)^2}{2} + C \right] = \frac{(x+1)^4}{2} + C(x+1)^2$

T.e.
$$y = \frac{(x+1)^4}{2} + C(x+1)^2$$
.

Проверка. Найдём $\frac{dy}{dx}$ из равенства $y = \frac{(x+1)^4}{2} + C(x+1)^2$:

 $\frac{dy}{dx} = 2(x+1)^3 + 2C(x+1)$. Подставим значения $\frac{dy}{dx}$ и y в исходное урав-

нение: $2(x+1)^3 + 2C(x+1) - \frac{2}{x+1} \left[\frac{(x+1)^4}{2} + C(x+1)^2 \right] = (x+1)^3$;

 $2(x+1)^3 + 2C(x+1) - (x+1)^3 - 2C(x+1) = (x+1)^3$; $(x+1)^3 = (x+1)^3$. Получили тождество.

1.1.28. Найти частное решение уравнения $\cos x dy + y \sin x dx = dx$, если x = 0, y = 1.

Peшeнue. Все члены уравнения $\cos x dy + y \sin x dx = dx$ разделим на

 $\cos x dx$: $\frac{dy}{dx} + ytgx = \frac{1}{\cos x}$. Пусть y = uz, тогда $\frac{dy}{dx} = u\frac{dz}{dx} + z\frac{du}{dx}$. Подста-

вим значения y и $\frac{dy}{dx}$ в уравнение: $u\frac{dz}{dx} + z\frac{du}{dx} + uztgx = \frac{1}{\cos x}$ или

 $u\frac{dz}{dx} + z\left(\frac{du}{dx} + utgx\right) = \frac{1}{\cos x}$. Пусть $\frac{du}{dx} + utg(x) = 0$. Разделим переменные

в уравнении: $\frac{du}{u} + tgxdx = 0$, $\frac{du}{u} = -tgxdx$. Проинтегрируем равенство:

 $\int \frac{du}{u} = -\int tgx dx$, $\ln u = \cos x$, $u = \cos x$. При условии $\frac{du}{dx} + utg(x) = 0$ урав-

нение $u\frac{dz}{dx} + z\left(\frac{du}{dx} + utgx\right) = \frac{1}{\cos x}$ примет вид $u\frac{dz}{dx} = \frac{1}{\cos x}$. Поставим в

уравнение значение u: $\cos x \frac{dz}{dx} = \frac{1}{\cos x}$. Разделим переменные в уравне-

нии: $dz = \frac{dx}{\cos^2 x}$. Проинтегрируем равенство: $\int dz = \int \frac{dx}{\cos^2 x}$; z = tgx + C.

Подставим значения u и z: $y = \cos x(tgx + C) = \sin x + C\cos x$.

Проверка. Найдём $\frac{dy}{dx}$ из равенства $y = \sin x + C \cos x$:

 $\frac{dy}{dx} = \cos x - C \sin x$. Подставим значения $\frac{dy}{dx}$ и y в уравнение:

$$\cos x - C\sin x + (\sin x + C\cos x) tgx = \frac{1}{\cos x};$$

$$\cos x - C\sin x + \frac{\sin^2 x}{\cos x} + C\sin x = \frac{1}{\cos x};$$

$$\frac{\cos^2 x + \sin^2 x}{\cos x} = \frac{1}{\cos x}.$$
 Получили тождество.

Подставим начальные условия x = 0 и y = 1 в общее решение $y = \sin x + C \cos x$: $1 = \sin 0 + C \cos 0$, откуда C = 1. Следовательно, частное решение будет: $y = \sin x + \cos x$.

1.1.29. Найти частное решение дифференциального уравнения $y'x \ln x - y = 3x^3 \ln^2 x$, если y(e) = 0.

Решение. Разделим обе части уравнения на функцию $x \ln x$ и преобразуем его к виду $y' - \frac{y}{x \ln x} = 3x^2 \ln x$. Это уравнение линейное. Применим подстановку Бернулли $y = u \cdot v$, $y' = u' \cdot v + u \cdot v'$, получим: $u' \cdot v + u \cdot v' - \frac{u \cdot v}{x \ln x} = 3x^2 \ln x$, сгруппируем второе и третье слагаемые в левой части полученного уравнения, вынесем множитель u за скобку: $u' \cdot v + u \cdot \left(v' - \frac{v}{x \ln x}\right) = 3x^2 \ln x$. Составим систему уравнений

$$\begin{cases} v' - \frac{v}{x \ln x} = 0, \\ u' \cdot v = 3x^2 \ln x. \end{cases}$$

Из первого уравнения системы найдём функцию v(x): $v' - \frac{v}{x \ln x} = 0$, $\frac{dv}{dx} = \frac{v}{x \ln x}$, $\int \frac{dv}{v} = \int \frac{dx}{x \ln x}$, $\int \frac{dv}{v} = \int \frac{d(\ln x)}{\ln x}$, $\ln |v| = \ln |\ln x|$, $v(x) = \ln x$. Подставим v(x) во второе уравнение системы и найдём функцию u(x): $u' \cdot \ln x = 3x^2 \ln x$, $u' = 3x^2$, $u = \int 3x^2 dx = x^3 + C$. Запишем общее решение уравнения $y = (x^3 + C) \ln x$.

Чтобы найти частное решение, удовлетворяющее начальному условию y(e)=0, подставим в общее решение x=e, e=0: $0=(e^3+C)\cdot \ln e$, отсюда $C=-e^3$ и $y=(x^3-e^3)\ln x$.

1.1.30. Найти общее решение уравнения $y' - y tg x = \sin x$.

Решение. Положим y = uv, тогда y' = u'v + uv' и данное уравнение принимает вид $u'v + uv' - uv \, tg \, x = \sin x$ или $u'v + u(v' - u \, tg \, x) = \sin x$ (*) Решая уравнение $v' - v \, tg \, x = 0$, получим простейшее частное решение:

$$\frac{dv}{dx} = v tg x;$$
 $\frac{dv}{v} = tg x dx;$ $\ln|v| = -\ln|\cos x|$, откуда $v = \frac{1}{\cos x}$.

Подставляя v в уравнение (*), получим уравнение: $u' \cdot \frac{1}{\cos x} = \sin x$, из

которого находим u: $\frac{du}{dx} \cdot \frac{1}{\cos x} = \sin x$; $du = \sin x \cos x \, dx$, откуда

$$u = \frac{\sin^2 x}{2} + C.$$

Итак, искомое общее решение: $y = uv = \left(\frac{\sin^2 x}{2} + C\right) \frac{1}{\cos x}$.

1.1.31. Решить дифференциальное уравнение $y' + y \cdot tg \ x = \cos^2 x$.

Решение. Полагая y = uv, приводим это уравнение к виду:

$$v[u' + u tg x] + uv' = \cos^2 x.$$

Приравняем квадратную скобку к нулю: u' + u tg x = 0, мы получим, что $\frac{du}{u} = -tg x dx$; $\ln u = \ln \cos x$, $u = \cos x$. Подставляя полученное значение u в уравнение, получаем следующее уравнение для v: $\cos x \cdot v^2 = \cos^2 x$, отсюда находим: $v' = \cos x$, $v = \sin x + C$. Таким образом, $v = uv = \cos x \sin x + C$.

1.1.32. Найти уравнение интегральной кривой, проходящей через точку (0;1), если $y' + y = xy^2$.

Решение. Данное ДУ является уравнением Бернулли. Разделив его на y^2 и, положив $t=y^{-1}$, $t'=-y^{-2}\cdot y'$, имеем $y'\cdot y^{-2}+y^{-1}=x$, или -t'+t=x. Полученное уравнение является линейным. Будем искать решение методом Лагранжа: $-t'+t=0 \Rightarrow -\frac{dt}{dx}=-t$,

 $\int \frac{dt}{t} = \int dx \Rightarrow \ln|t| = x + \ln C$, C > 0. Используя тождество $x = \ln e^x$, записываем общее решение однородного уравнения: $t = ce^x$. Ищем общее решение неоднородного уравнения -t' + t = x, полагая $t = c(x)e^x$, где c(x) — неизвестная функция. Найдём её, подставив t и t' в уравнение:

$$t' = c'(x)e^x + c(x)e^x$$
, $-c'(x)e^x - c(x)e^x + c(x)e^x = x$,

$$-\frac{dc}{dx} = xe^{x} \Rightarrow \int dc = -\int xe^{-x}dx.$$
 Интегрируем по частям: $u = x$, $du = dx$; $dv = e^{-x}dx$, $v = -e^{-x}$, $c(x) = -\left(-xe^{-x} + \int e^{-x}dx\right) = xe^{-x} + e^{-x} + c_{1}$. Функция

c(x) найдена, записываем общее решение уравнения Бернулли, возвращаясь к старой переменной: $t = y^{-1}$,

$$t = c(x) \cdot e^x \left(x e^{-x} + e^{-x} + c_1 \right) = x + 1 + c_z e^x, \quad y = \frac{1}{x + 1 + c_1 e^x} - \text{общее решение}$$
 ДУ.

Чтобы найти частное решение, определим значение C_1 , подставим координаты точки $x=0,\ y=1$ в общее решение $1=\frac{1}{1+c_1} \Rightarrow c_1=0.$

Итак, частное решение $y = \frac{1}{x+1}$ представляет геометрически уравнение гиперболы. Это и есть искомая интегральная кривая.

1.1.33. Решить уравнение Бернулли относительно x = x(y): $\frac{dx}{dy} = \frac{x}{2y} - \frac{1}{2x}$.

Решение. Положим x = uv и приведем уравнение к виду:

$$v\left(\frac{du}{dy} - \frac{u}{2y}\right) + \left(\frac{dv}{dy}u + \frac{1}{2uv}\right) = 0.$$

Рассмотрев уравнение $\frac{du}{dy} - \frac{u}{2y} = 0$, возьмём его частное реше-

ние $u_1 = \sqrt{y}$. Тогда мы придём к уравнению $\frac{dv}{dy}\sqrt{y} + \frac{1}{2v\sqrt{y}} = 0$, общее

решение которого $v^2 = \ln \frac{C}{y}$.

1.2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ

Дифференциальные уравнения высших порядков, допускающие понижения порядка

1.2.1. Найти общее решение уравнения $y^m = x + 2$.

Решение. Понижаем порядок производной:

$$y''' = \left(y''\right)' = \frac{d}{dx}\left(y''\right) \Rightarrow y'' = \int (x+2)dx = \frac{x^2}{2} + 2x + c_1,$$

$$y''' = \frac{d}{dx}(y') \Rightarrow y' = \int \left(\frac{x^2}{2} + 2x + c_1\right)dx = \frac{x^3}{6} + x^2 + c_1x + c_2,$$

$$y' = \frac{dy}{dx} \Rightarrow y = \int \left(\frac{x^3}{6} + x^2 + c_1x + c_2\right)dx = \frac{x^4}{24} + \frac{x^3}{3} + c_1\frac{x^2}{2} + c_2x + c_3.$$

1.2.2. Найти частное решение уравнения $y'' = \sin x - 1$, удовлетворяющее заданным начальным условиям y = (0) = -1, y'(0) = 1.

Решение. Имеем $\frac{dy}{dx}=z$, откуда $\frac{dz}{dx}=\sin x-1$, $dz=(\sin x-1)dx$, $z=-\cos x-x+C_1$, следовательно, $y'=-\cos x-x+C_1$. Используя начальные условия y'(0)=1, получаем: $1=-\cos 0+C_1$, откуда $C_1=2$. Таким образом $\frac{dy}{dx}=-\cos x-x+2$ или $dy=(-\cos x-x+2)dx$. Интегрируем это уравнение: $y=-\sin x-\frac{x^2}{2}+2x+C_2$.

Используя теперь начальные условия y=(0)=-1, находим $C_2=-1$. Итак, искомое частное решение имеет вид $y=-\sin x-\frac{x^2}{2}+2x-1$.

1.2.3. Решить уравнение $\frac{d^2y}{dx^2} = 0$, если x = 0, y = 2 и если x = 1, y = 3.

Решение. По определению второй производной имеем:

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = 0 \text{ или } d \left(\frac{dy}{dx} \right) = 0 \cdot dx.$$

Интегрируем равенство: $\int d\left(\frac{dy}{dx}\right) = \int 0 \cdot dx$; $\frac{dy}{dx} = C_1$, откуда $dy = C_1 dx$.

Интегрируем равенство: $\int dy = C_1 \int dx$, $y = C_1 x + C_2$. Получили общее решение исходного уравнения.

Найдём частное решение по данным начальным условиям, подставив их в общее решение. Имеем систему уравнений первой степени

$$\begin{cases} 2=C_10+C_2,\\ 3=C_11+C_2 \end{cases}$$
 или
$$\begin{cases} 2=C_2,\\ 3=C_1+C_2. \end{cases}$$
 Откуда $C_1=1$ и $C_2=2.$ Частное решение имеет вид $y=x+2.$

1.2.4. Найти частное решение уравнения $\frac{d^2y}{dx^2} = 4$, при x = 0, y = 0 и при x = 1, y = 1.

Решение.
$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = 4$$
 или $4\left(\frac{dy}{dx}\right) = 4dx$;

$$\int d\left(\frac{dy}{dx}\right) = 4\int dx, \ \frac{dy}{dx} = 4x + C_1, \text{ откуда } dy = 4xdx + C_1dx;$$

$$\int dy = 4 \int x dx + C_1 \int dx, \ \ y = 2x^2 + C_1 x + C_2.$$

Получили общее решение.

Найдём частное решение, подставив в уравнение $\left(y = 2x^2 + C_1 x + C_2 \right)$ начальные данные:

$$\begin{cases} 0=2\cdot 0^2+C_1\cdot 0+C_2,\\ 1=2\cdot 1^2+C_1\cdot 1+C_2, \end{cases}$$
откуда $C_1=-1$ и $C_2=0.$

Частное решение имеет вид $y = 2x^2 - x$.

1.2.5. Найти частное решение уравнения $\frac{d^2s}{dt^2} = 6t$, если t = 0, s = 0 и

$$\frac{ds}{dt} = 10.$$

Решение. По условию f(t) = 6t, так как $\frac{d^2s}{dt} = 6t$. $\frac{d}{dt} \left(\frac{ds}{dt}\right) = 6t$ или

$$d\left(\frac{ds}{dt}\right) = 6tdt;$$

$$\int d\left(\frac{ds}{dt}\right) = 6\int tdt$$
, откуда $\frac{ds}{dt} = 3t^2 + C_1$; $ds = 3t^2dt + C_1dt$;

$$\int ds = 3 \int t^2 dt + C_1 \int dt, \ s = t^3 + C_1 t + C_2.$$

Найдём частное решение, подставив в уравнения $s=t^3+C_1t+C_2$ и $ds=3t^2dt+C_1dt$ начальные данные:

$$\begin{cases} 0 = 0^3 + C_1 0 + C_2, \\ 10 = 3 \cdot 0^2 + C_1, \end{cases}$$
откуда $C_1 = 10$ и $C_2 = 0$.

Частное решение имеет вид $s = t^3 + 10t$.

1.2.6. Найти частное решение уравнения $\frac{d^2s}{dt^2} = 18t + 2$, при t = 0, s = 4 и

$$\frac{ds}{dt} = 5.$$

Решение.
$$\frac{d^2s}{dt^2} = 18t + 2$$
.

$$\frac{d}{dt}\left(\frac{ds}{dt}\right) = 18t + 2, \ d\left(\frac{ds}{dt}\right) = 18tdt + 2dt; \ \int d\left(\frac{ds}{dt}\right) = 18\int tdt + 2\int dt;$$

$$\frac{ds}{dt} = 9t^2 + 2t + C_1$$
, откуда $ds = 9t^2dt + 2tdt + C_1dt$;

 $\int ds = 9 \int t^2 dt + 2 \int t dt + C_1 dt, \quad s = 3t^3 + t^2 + C_1 t + C_2.$ Получили общее решение.

Найдём частное решение, подставив в уравнения $s = 3t^3 + t^2 + C_1t + C_2$ и $ds = 9t^2dt + 2tdt + C_1dt$ начальные данные:

$$\begin{cases} 4 = 3 \cdot 0^3 + 0^2 + C_1 \cdot 0 + C_2, \\ 5 = 9 \cdot 0^2 + 2 \cdot 0 + C_1, \end{cases}$$
откуда $C_1 = 5$ и $C_2 = 4$.

Имеем частное решение $s = 3t^2 + t^2 + 5t + 4$.

1.2.7. Найти частное решение уравнения $\frac{d^2y}{dx^2} = 2\frac{dy}{dx}$, если x = 0, $y = \frac{3}{2}$ и $\frac{dy}{dx} = 1$.

Решение. Положим $\frac{dy}{dx} = z$, тогда $\frac{d^2y}{dx^2} = \frac{dz}{dx}$. Подставим значения $\frac{dy}{dx}$ и $\frac{d^2y}{dx^2}$ в данное уравнение: $\frac{dz}{dx} = 2z$. Получили уравнение первого порядка с разделяющимися переменными. Произведём разделение переменных $\frac{dz}{z} = 2dx$. Интегрируем равенство $\int \frac{dz}{z} = 2\int dx$, $\ln z = 2x + C_1$, откуда $z = e^{2x+C_1}$.

Произведём обратную замену $\frac{dy}{dx} = e^{2x+C_1}$, откуда $dy = e^{2x+C_1}dx$. Интегрируем равенство $\int dy = \int e^{2x+C_1}dx$, $y = \frac{1}{2}e^{2x+C_1} + C_2$. Получили общее решение.

Найдём частное решение, подставив начальные данные:

$$\begin{cases} \frac{3}{2} = \frac{1}{2}e^{2\cdot 0 + C_1} + C_2, \\ 1 = e^{2\cdot 0 + C_1}. \end{cases}$$
или
$$\begin{cases} \frac{3}{2} = \frac{1}{2}e^{C_1} + C_2, \\ 1 = e^{C_1}, \end{cases}$$
 откуда $C_1 = 0$ и $C_2 = 1$.

Имеем честное решение $y = \frac{1}{2}e^{2x} + 1$.

1.2.8. Найти частное решение уравнения $\frac{d^2y}{dx^2} = \frac{1}{x+2} \frac{dy}{dx}$, если x = 2,

$$y = 2$$
 и $\frac{dy}{dx} = 8$.

Peшeнue. Положим $\frac{dy}{dx} = z$, тогда $\frac{d^2y}{dx^2} = \frac{dz}{dx}$. Подставив значения

 $\frac{d^2y}{dx^2}$ и $\frac{dz}{dx}$ в данное уравнение, получим $\frac{dz}{dx} = \frac{1}{x+2}z$. Разделив в уравне-

нии переменные $\frac{dz}{z} = \frac{dx}{x+2}$, интегрируем уравнение $\int \frac{dz}{z} = \int \frac{dx}{x+2}$,

 $\ln z = \ln(x+2) + \ln C_1$, откуда $z = C_1(x+2)$. Произведём обратную замену

 $\frac{dy}{dx} = C_1(x+2)$. Разделим переменные $dy = C_1(x+2)dx$. Проинтегрируем

равенство $y = C_1 \frac{x^2}{2} + 2C_1 x + C_2$. Найдём частное решение, подставив на-

чальные данные

$$\begin{cases} 8 = C_1 \left(2+2\right), \\ 2 = C_1 \cdot \frac{2^2}{2} + 2C_1 \cdot 2 + C_2, \end{cases}$$
откуда $C_1 = 2$ и $C_2 = -10.$

Имеем частное решение $y = x^2 + 4x - 10$.

Однородное линейного ДУ с постоянными коэффициентами

1.2.9. Найти общее решение уравнения y'' - 5y' - 6y = 0.

Решение. Запишем характеристическое уравнение: для этого заменим функцию y и ее производные y' и y'' соответствующими степенями, получим $k^2-5k-6=0$, откуда $k_1=-1$, $k_2=6$. Так как корни характеристического уравнения действительные и различные, то общее решение данного дифференциального уравнения имеет вид $y=C_1e^{-x}+C_2e^{6x}$.

1.2.10. Найти общее решение ДУ $y^n - 6y' + 9y = 0$.

Решение. Характеристическое уравнение примет вид $k^2 - 6k + 9 = 0 \Rightarrow (k - 3)^2 = 0$, т.е. уравнение имеет один действительный корень k = 3 кратности 2. Значит, частными решениями дифференциального уравнения в этом случае будут $y_1 = e^{3x}$, $y_2 = xe^{3x}$. Им соответствует общее решение $y = e^{3x} (c_1 + c_2 x)$.

1.2.11. Найти общее решение уравнения y'' + 9y = 0.

Решение. Этому уравнению соответствует характеристическое уравнение $r^2 + 9 = 0$, имеющее два мнимых сопряженных корня $r_{1,2} = \pm 3i$. т.е. получаем общее решение

$$y = C_1 \cos 3x + C_2 \sin 3x.$$

1.2.12. Найти общее решение ДУ $y^{IV} - y' = 0$.

Решение. Характеристическое уравнение получим в виде $k^4-k=0 \Rightarrow k\left(k^3-1\right)=0, \quad k\left(k-1\right)\left(k^2+k+1\right)=0. \quad \text{Имеем} \quad \text{два} \quad \text{действительных корня} \quad k_1=0, \quad k_2=1 \quad \text{и два комплексных } k_{3,4}=\frac{-1\pm i\sqrt{3}}{2}. \quad \text{Им соответствуют} \quad \text{частные решения:} \quad y_1=e^{0\cdot x}=1, \quad y_2=e^x, \quad y_3=e^{-\frac{x}{2}}\cos\frac{\sqrt{3}}{2}x, \\ y_4=e^{-\frac{x}{2}}\sin\frac{\sqrt{3}}{2}x.$

Общее решение уравнения

$$y = c_1 + c_2 e^x + e^{-\frac{x}{2}} \left(c_3 \cos \frac{\sqrt{3}}{2} x + c_4 \sin \frac{\sqrt{3}}{2} x \right).$$

1.2.13. Найти частное решение уравнения y'' - 3y' + 2y = 0, удовлетворяющее заданным начальным условиям y(0) = 1, y'(0) = -1.

Решение. Запишем характеристическое уравнение

$$k^2 - 3k + 2 = 0$$
,

его корни $k_1 = 1, \ k_2 = 2$. Следовательно, общее решение имеет вид

$$y = C_1 e^{\mathcal{X}} + C_2 e^{2x}.$$

Далее, используя начальные условия, определяем значения постоянных C_1 и C_2 . Для этого подставим в общее решение заданные значения x=0, y=1, в результате получим одно из уравнений, связывающее C_1 и C_2 : $1=C_1+C_2$.

Второе уравнение относительно C_1 и C_2 получим следующим образом. Продифференцируем общее решение

$$y' = C_1 e^x + 2C_2 e^{2x}$$

и подставим в найденное выражение заданные значения x = 0, y' = -1

$$-1 = C_1 + 2C_2$$
.

Из системы

$$\begin{cases} C_1 + C_2 = 1, \\ C_1 + 2C_2 = -1 \end{cases}$$

находим $C_1=3,\ C_2=-2$. Следовательно, искомое частное решение имеет вид $y=3e^x-2e^{2x}$.

Неоднородное линейного ДУ с постоянными коэффициентами

1.2.14. Найти частное решение уравнения $y'' + 2y' - 8y = (12x + 20)e^{2x}$, удовлетворяющее начальным условиям y(0) = 0, y'(0) = 1.

Решение. 1. Характеристическое уравнение $k^2 + 2k - 8 = 0$ имеет корни $k_1 = -4$, $k_2 = 2$. Следовательно

$$\bar{y} = C_1 e^{-4x} + C_2 e^{2x}.$$

2. Правая часть данного уравнения имеет вид: $n=1,\ P_1(x)=12x+20,\ k=2$. Так как k=2 является однократным корнем характеристического уравнения, то частное решение y^* ищем в форме

$$y^* = x(Ax + B)e^{2x} = (Ax^2 + Bx)e^{2x}$$
.

Отсюда

$$y^{*'} = (2Ax^{2} + 2Bx)e^{2x} + (2Ax + B)e^{2x} = (2Ax^{2} + 2Ax + 2Bx + B)e^{2x}$$
$$y^{*''} = (4Ax^{2} + 4Ax + 4Bx + 2B)e^{2x} + (4Ax + 2A + 2B)e^{2x} =$$
$$= (4Ax^{2} + 8Ax + 4Bx + 2A + 4B)e^{2x}$$

Подставляя y^* , $y^{*'}$ и $y^{*''}$ в данное уравнение, сокращая обе его части на e^{2x} и приводя подобные члены, окончательно получим

$$12Ax + (2A + 6B) = 12x + 20$$
.

Решая систему

$$\begin{cases} 12A &= 12, \\ 2A + 6B = 20, \end{cases}$$

находим A = 1, B = 3. Отсюда

$$y^* = (x^2 + 3x)e^{2x}$$
.

Итак, найдено общее решение данного уравнения

$$y = \overline{y} + y^* = C_1 e^{-4x} + C_2 e^{2x} + (x^2 + 3x)e^{2x}$$
.

3. Для нахождения искомого частного решения воспользуемся заданными начальными условиями. Найдем производную общего решения

$$y' = -4C_1e^{-4x} + 2C_2e^{2x} + (2x^2 + 8x + 3)e^{2x}$$

подставив в выражения для общего решения и его производной значения $x=0,\ y=0,\ y'=1,$ получим систему уравнений для нахождения C_1 и C_2

$$\begin{cases}
0 = C_1 + C_2, \\
1 = -4C_1 + 2C_2 + 3.
\end{cases}$$

Отсюда $C_1 = \frac{1}{3}$, $C_2 = -\frac{1}{3}$. Таким образом, искомое частное решение име-

ет вид
$$y = \frac{1}{3}e^{-4x} - \frac{1}{3}e^{2x} + (x^2 + 3x)e^{2x}$$
.

1.2.15. Найти общее решение уравнения $y'' - 4y' + 5y = 2\cos x + 6\sin x$

Peшeнue: 1. Найдём \overline{y} . Характеристическое уравнение $k^2-4k+5=0$ имеет корни $k_{1,2}=2\pm i$. Следовательно

$$\overline{y} = e^{2x} (C_1 \cos x + C_2 \sin x).$$

2. Будем теперь искать y^* . Здесь числа $2 \pm i$ не являются корнями характеристического уравнения, поэтому частное решение y^* следует искать в форме $y^* = A\cos x + B\sin x$, где A и B — неопределенные коэффициенты. Найдём производные $y^{*'}$ и $y^{*''}$:

$$y^{*'} = -A\sin x + B\cos x,$$

$$y^{*''} = -A\cos x - B\sin x,$$

подставляя теперь выражения для y^* , $y^{*'}$ и $y^{*''}$ в данное уравнение и группируя члены при $\cos x$ и $\sin x$, в результате получим

$$(4A-4B)\cos x + (4A+4B)\sin x = 2\cos x + 6\sin x$$
.

Следовательно, для нахождения A и B имеем систему

$$\begin{cases} 4A - 4B = 2 \\ 4A + 4B = 6 \end{cases}$$

откуда A = 1, $B = \frac{1}{2}$. Таким образом $y^* = \cos x + \frac{1}{2}\sin x$.

Итак, общее решение данного уравнения имеет вид

$$y = \overline{y} + y^* = e^{2x} (C_1 \cos x + C_2 \sin x) + \cos x + \frac{1}{2} \sin x.$$

1.2.16. Найти общее решение уравнения $y'' + 4y = 12\cos 2x$.

$$\overline{y} = C_1 \cos 2x + C_2 \sin 2x$$
.

2. Переходим к нахождению y^* . Так как числа $\pm 2i$ являются корнями характеристического уравнения, то частное решение следует искать в форме: $y^* = x(A\cos 2x + B\sin 2x)$, где A и B — неопределенные коэффициенты. Имеем $y^{*'} = A\cos 2x + B\sin 2x + x(-2A\sin 2x + 2B\cos 2x)$, $y^{*''} = -2A\sin 2x + 2B\cos 2x + (-2A\sin 2x + 2B\cos 2x) + x(-4A\cos 2x - 4B\sin 2x)$. Подставив $y^{*'}$ и $y^{*''}$ в данное уравнение и приведя подобные члены, получим $-4B\cos 2x - 4A\sin 2x = 12\cos 2x$, откуда

$$\begin{cases} 4B = 12, \\ -4x = 0, \end{cases}$$

т.е. A = 0, B = 3. Поэтому $y^* = 3x \sin 2x$.

Итак, общее решение

$$y = \overline{y} + y^* = C_1 \cos 2x + C_2 \sin 2x + 3x \sin 2x.$$

1.3. ЗАДАЧИ НА СОСТАВЛЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

1.3.1. Составить уравнение движения тела по оси Ox, если тело начало двигаться из точки M(4;0) со скоростью $\upsilon = 2t + 3t^2$.

Решение. При прямолинейном движении скорость есть производная от пути по времени. Обозначив путь через x, имеем: $\upsilon=\frac{dx}{dt}$, тогда $\frac{dx}{dt}=2t+3t^2 \qquad \text{или} \qquad dx=2dt=3t^2dt. \qquad \text{Проинтегрировав,} \qquad \text{получим:} \\ x=t^2+t^3+C. \qquad \text{Из начальных условий найдём } C. \qquad \text{В условии задачи дано, что при } t=0 \qquad x=4. \qquad \text{Подставив эти значения в общее решение, получим:} \\ quad <math>C=4.$

Уравнение прямолинейного движения тела по оси Ox имеет вид $x = t^2 + t^3 + 4$.

1.3.2. Составить уравнение кривой, проходящей через точку M(2;-3) и имеющей касательную с угловым коэффициентом k=4x-3.

Решение. В условии задачи дано: $\frac{dy}{dx} = k = 4x - 3$ или dy = 4xdx - 3dx. Проинтегрировав, получим $y = 2x^2 - 3x + C$. При x = 2 и y = -3 C = -5, тогда $y = 2x^2 - 3x - 5$.

1.3.3. Вода в открытом резервуаре вначале имела температуру $70^{\circ}C$, через 10 *мин*. температура воды стала $65^{\circ}C$, температура окружающей среды $15^{\circ}C$. Найти: 1) температуру воды в резервуаре через 30 *мин*. от начального момента; 2) в какой момент времени температура воды в резервуаре будет $20^{\circ}C$.

Решение. Составим функцию закона охлаждения воды, как функцию времени t, обозначив переменную температуру воды через T. Скорость охлаждения воды есть скорость изменения функции, связываю-

щей t и T, т.е. это будет производная $\frac{dT}{dt}$. Скорость $\frac{dT}{dt}$ пропорциональна разности температур воды в резервуаре и окружающей среды, т.е. $k(T-15^{o}C)$, где k — коэффициент пропорциональности. Тогда $\frac{dT}{dt} = k(T-15^{o}C)$. Разделив переменные, имеем $\frac{dT}{T-15} = kdt$. Проинтегрируем уравнение: $\int \frac{dT}{T-15} = \int kdt$, $\ln(T-15^{o}) = kt + C$, $T-15 = e^{kt+C} = e^{kt}e^{C} = e^{kt}C_{1}$, откуда $T = C_{1}e^{kt} + 15$.

Получили закон охлаждения, где t — время и T — температура воды — конечные переменные. Найдём постоянную величину C_1 при начальных данных: при t=0, $T=70^{o}C$. Имеем: $70^{o}=C_1e^{k\cdot 0}+15^{o}$ или $55^{o}=C_1e^{0}=C_1\cdot 1=C_1$, $C_1=55^{o}$. Подставив значение C_1 получим: $T=55^{o}e^{kt}+15^{o}$. Найдём постоянную величину k. В условии задачи дано, что через t=10 мин. $T=65^{o}C$. Подставив эти значения в уравнение $T=55^{o}e^{kt}+15^{o}$, получим: $65^{o}=55^{o}e^{k\cdot 10}+15^{o}$ или $50^{o}=55^{o}e^{10k}$, или 10=10. Прологарифмировав равенство, получим: 10=100 деги 10=1010 деги 10=101

Откуда $k = \frac{1 - \lg 11}{10\lg e} = \frac{1 - 1,0414}{10 \cdot 0,4343} = -\frac{0,0414}{4,343} = -0,009532$. Подставив значение k в уравнение $T = 55^{\circ}e^{kt} + 15^{\circ}$, получим закон охлаждения, связывающий переменные t и $T: T = 55^{\circ}e^{-0,009532t} + 15^{\circ}$. Найдём температуру воды через 30 мин. от начального момента. В уравнение $T = 55^{\circ}e^{-0,009532t} + 15^{\circ}$ подставим значение t = 30 мин. $t = 55^{\circ}e^{0,009532t} + 15^{\circ}$, откуда $t = 55^{\circ}e^{-0,286} + 15^{\circ}$.

Произведём вычисления $x = 55 \cdot e^{-0.286}$,

 $\lg x = \lg 55 - 0.286 \lg e = 1.7404 - 0.286 \cdot 0.4343 = 1.7404 - 0.1242 = 1.6162,$ $x = 41.32 \approx 41.$

Тогда
$$T = 41^{\circ} + 15^{\circ} = 56^{\circ}$$
.

Найдём, через сколько времени температура воды в резервуаре будет иметь $20^{o}\,C$. В уравнение подставим значение $T=20^{o}\,$.

$$20^o=55^oe^{-0.009532t}+15^o$$
 или $5^o=55^oe^{-0.009532t}$, откуда $e^{-0.009532t}=\frac{1}{11}\approx 0.0909$ или $-0.009532t\lg e=\lg 0.0909=2.9586,$ $t=-\frac{2.9586}{0.009532\cdot 0.4343}=\frac{1.041}{0.009532\cdot 0.4343}=251$ мин.

1.3.4. Опытом установлено, что скорость распада радия в каждый данный момент времени пропорциональна начальному количеству радия. В начальный момент времени (t=0) имелось R_0 грамм радия. Составить формулу для вычисления количества радия в любой момент времени t.

Решение. Составим функцию закона распада радия. Пусть коэффициент k известен (k>0). Количество не распавшегося радия в момент времени t обозначим через R. Требуется найти R как функцию от t. Скорость распада радия есть скорость изменения функции, связывающей t и R, а это есть производная $\frac{dR}{dt}$. В условии задачи дано, что $\frac{dR}{dt} = -kR$. Знак минус показывает, что функция R — убывающая, следовательно, $\frac{dR}{dt} < 0$, а kR > 0, так как k > 0 и R > 0. $\frac{dR}{R} = -kdt$. Интегрируем обе части уравнения $\int \frac{dR}{R} = -\int kdt$, откуда $\ln R = -kt + \ln C$ или

 $\ln R - \ln C = -kt$, откуда $\ln \frac{R}{C} = -kt$. Пропотенцировав равенство (4), получим: $\frac{R}{C} = e^{-kt}$ или $R = Ce^{-kt}$. Получили общий закон распада радия, где t — время и R — количество не распавшегося радия в этот момент времени.

Найдём постоянную величину C при начальных данных: при $t=0,\ R=R_o$. Подставив эти значения в уравнение $R=Ce^{-kt}$, получим: $R_o=Ce^{-k\cdot 0},\ C=R_0$. Тогда искомая функция будет $R=R_0e^{-kt}$.

1.3.5. Вращающийся в жидкости диск замедляет свою угловую скорость за счет трения. Установлено, что трение пропорционально угловой скорости. Найти: 1) с какой скоростью будет вращаться диск в момент t = 120 с если при t = 0 он вращался со скоростью 12 рад/с, а при t = 10 с его скорость была 8 рад/с; 2) в какой момент времени он будет вращаться со скоростью 1рад/с?

Решение. Составим функцию закона вращения диска как функцию времени t. Пусть ω — угловая скорость вращения диска, тогда замедление вращения диска под воздействием сил трения будет $\frac{d\omega}{dt}$. По условию задачи имеем $\frac{d\omega}{dt} = k\omega$, где k — коэффициент пропорциональности. Разделив переменные, получим: $\frac{d\omega}{\omega} = kdt$. Интегрируем обе части уравнения $\int \frac{d\omega}{\omega} = k \int dt$, $\ln \omega = kt + C$, откуда $\omega = e^{kt+C}$, $\omega = e^{kt}e^{C}$, $\omega = e^{kt}C_1$ или $\omega = C_1e^{kt}$.

Найдём постоянную величину C_1 при начальных условиях: t=0 и

 $\omega=12$ рад/с. Подставив эти значения в уравнение $\omega=C_1e^{kt}$, найдём C_1 : $12=C_1e^{k\cdot 0}$, $12=C_1$. Подставив значение C_1 в уравнение $\omega=C_1e^{kt}$, получим: $\omega=12e^{kt}$. Найдём числовое значение k по начальным данным: $t=10\,\mathrm{c}$ и $\omega=8$ рад/с. Подставим эти значения в уравнение $\omega=12e^{kt}$: $8=12e^{k\cdot 10}$, откуда $e^{10k}=\frac{2}{3}$, $10k\lg e=\lg 2-\lg 3$,

$$k = \frac{\lg 2 - \lg 3}{10 \lg e} = -\frac{\lg 3 - \lg 2}{10 \lg e} = -\frac{0,4771 - 0,3010}{10 \cdot 0,4343} = -0,0407.$$

Подставив значение k в уравнение $\omega=12e^{kt}$, получим: $\omega=12e^{-0.0407t}$. Найдём скорость вращения диска в момент времени $t=120\,\mathrm{c}$ $\omega=12e^{-0.0407\cdot120}=12e^{-4.9}=0.009$ рад/с. Найти момент времени, когда диск будет вращаться со скорость 1 рад/с. Подставим значение $\omega=1$ и найдём $t=12e^{-0.407t}$, откуда $e^{-0407t}=\frac{1}{12}$, $-0.0407t\lg e=\lg 1-12$, $t=\frac{\lg 12}{0.0407\lg e}=61\,\mathrm{c}$.

1.3.6. Гибкая однородная нить подвешена за два конца в точках A и B (так подвешиваются провода, канаты, цепи). Составить уравнение кривой, по которой расположена нить, под действием соответствующего веса.

Решение. Пусть точка C(0;b) самая низкая точка нити, M — её произвольная точка. Рассмотрим равновесие правой части нити CM. Эта часть нити находится в равновесии под действием трёх сил: 1) натяжение T, действующего по касательной в точке M; T составляет с осью Ox угол α ; 2) натяжение H в точке C, действующего горизонтально; 3) веса нити $l\delta$, направленного вертикально вниз, где l — длина

дуги CM, δ – линейная плотность нити.

Разложим натяжение T на две составляющие – горизонтальную и вертикальную: $T\cos\alpha$ и $T\sin\alpha$. Получили уравнение равновесия

$$T\sin\alpha = -l\delta$$
, и $T\cos\alpha = -H$.

Разделив первое уравнение на второе, получим: $tg\alpha = \frac{\delta}{H}l$, но $tg\alpha = \frac{dy}{dx}$.

Обозначив
$$\frac{H}{\delta} = a$$
, получим: $\frac{dy}{dx} = \frac{1}{a}l$.

Продифференцируем обе части равенства по $x \frac{d^2y}{dx^2} = \frac{1}{a} \frac{dl}{dx}$,

HO
$$\frac{dl}{dx} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
.

Подставив значение $\frac{dl}{dx}$, получим дифференциальное уравнение

$$\frac{d^2y}{dx^2} = \frac{1}{a}\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
. Заменим $\frac{dy}{dx} = z$, тогда $\frac{d^2y}{dx^2} = \frac{dz}{dx}$. Уравнение примет

вид $\frac{dz}{dx} = \frac{1}{a}\sqrt{1+z^2}$. Получим уравнение с разделяющимися переменны-

ми $\frac{dz}{\sqrt{1+z^2}} = \frac{1}{a}dx$. Проинтегрировав уравнение, получим

$$\int \frac{dz}{\sqrt{1+z^2}} = \frac{1}{a} \int dx; \ln(z + \sqrt{1+z^2}) = \frac{1}{a} x + C_1.$$

Найдём частное решение, зная, что при x=0 $z=\frac{dy}{dx}=0$ (производная в точке C). Подставим эти значения в уравнение $\ln\left(z+\sqrt{1+z^2}\right)=\frac{1}{a}x+C_1\colon\ln\left(0+\sqrt{1+0^2}\right)=\frac{1}{a}\cdot 0+C_1, \text{откуда } C_1=\ln 1=0.$

Частное решение будет $\ln \left(z + \sqrt{1 + z^2}\right) = \frac{1}{a}x$ или $e^{\frac{x}{a}} = z + \sqrt{1 + z^2}$ или

 $e^{\frac{x}{a}}-z=\sqrt{1+z^2}$. Возведя равенство в квадрат, получим: $e^{\frac{2x}{a}}-2e^{\frac{x}{a}}z+z^2=1+z^2$ или $e^{\frac{2x}{a}}-2e^{\frac{x}{a}}z=1$ или $2e^{\frac{x}{a}}x=e^{\frac{2x}{a}}-1$. Разделив равенство на $e^{\frac{x}{a}}$, получим:

$$2z = e^{\frac{x}{a}} - \frac{1}{e^{\frac{x}{a}}} = e^{\frac{x}{a}} - e^{-\frac{x}{a}}$$
 или $z = \frac{1}{2} \left(e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right)$. Произведём обратную заме-

ну. Т.к. $z = \frac{dy}{dx}$, то $\frac{dy}{dx} = \frac{1}{2} \left(e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right)$. Разделим переменные в уравнении

$$dy = \frac{1}{2} \left(e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right) dx$$
. Проинтегрируем уравнение $y = \frac{1}{2} \left(ae^{\frac{x}{a}} + ae^{-\frac{x}{a}} \right) + C$

или
$$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right) + C_2.$$

Найдём частное решение, зная, что при x = 0 y = b:

$$b = \frac{a}{2}(e^0 + e^0) + C_2$$
 или $b = a + C_2$, откуда $C_2 = b - a$. Тогда уравнение

примет вид
$$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right) + b - a.$$

Если b = a, то уравнение цепной линии принимает наиболее про-

стой вид
$$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right)$$
.

1.3.7. Материальная точка движется по прямой линии в сопротивляющейся среде под действием периодически меняющейся силы

 $F_1 = A \sin \omega t$. Сопротивление среды пропорционально скорости движения. Вывести закон изменения скорости тела, если его начальная скорость равнялась нулю.

Решение. По условию на тело действуют две силы: сила сопротивления среды $F_2 = -kv$ и периодическая сила $F_1 = A \sin \omega t$. Общая сила равна $F = -kv + A \sin \omega t$. Но по второму закону Ньютона имеем F = ma, а ускорение — это производная скорости по времени:

$$a = \frac{dv}{dt}$$
. Отсюда приходим к уравнению $\frac{dv}{dt} = -\frac{k}{m}v + \frac{A}{m}\sin\omega t$.

Это линейное уравнение первого порядка. Полагая v = uw, находим, что

$$uw' + w\left(u' + \frac{k}{m}u\right) = \frac{A}{m}\sin\omega t;$$

$$u = e^{-\frac{k}{m}t}; \ w' = \frac{A}{m}e^{\frac{k}{m}t}\sin\omega t;$$

$$w = \frac{Ae^{\frac{k}{m}t}}{k^2 + m^2\omega^2} \left[\frac{k}{m}\sin\omega t - \omega\cos\omega t\right] + C.$$

$$v = uw = \frac{A}{k^2 + m^2\omega^2} \left[\frac{k}{m}\sin\omega t - \omega\cos\omega t\right] + Ce^{-\frac{k}{m}t}.$$

Полагая t = 0, v = 0, находим:

$$0 = C - \frac{A\omega}{k^2 + m^2\omega^2}, \ C = \frac{A\omega}{k^2 + m^2\omega^2};$$

имеем

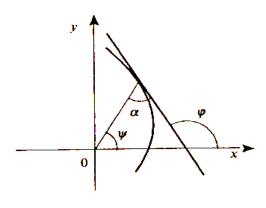
$$v = \frac{A}{k^2 + m^2 \omega^2} \left[\frac{k}{m} \sin \omega t - \omega \cos \omega t + \omega e^{-\frac{k}{m}t} \right].$$

1.3.7. В теории резания возникает следующая задача: найти кривую, касательная к которой в каждой точке образует постоянный угол, а с радиус-вектором этой точки (рис. 1).

Решение. По условию задачи имеем $\varphi = \alpha + \psi$ потому

$$tg\varphi = tg(\alpha + \psi) = \frac{tg\alpha + tg\psi}{1 - tg\alpha tg\psi}.$$

Но из рис. 1 видно, что $tg\psi=\frac{y}{x}$, а, как известно, $tg\phi=y'$. Поэтому равенство можно записать так: $y'=\frac{k+y/x}{1-k\;v/x}$,



Puc. 1

где для краткости положено $k = tg\alpha$. Это — однородное уравнение. Сделаем подстановку y = xu. После простых преобразований получаем, что

$$x\frac{du}{dx} = \frac{k(1+u^2)}{1-ku},$$

откуда находим

$$\frac{1}{k} arc \ tgu - \frac{1}{2} \ln(1 + u^2) + \ln C = \ln x.$$

Подставляя вместо и значение получаем равенство

$$\frac{1}{k} \operatorname{arctg} \frac{y}{x} = \ln \frac{\sqrt{x^2 + y^2}}{C}.$$

Это равенство проще записать в полярных координатах, положив $x^2+y^2=r^2$, $\frac{y}{x}=tg\varphi$. Мы получим, что $r=Ce^{\frac{\varphi}{k}}$. Эта кривая называется логарифмической спиралью.

2. ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Уравнения с разделёнными переменными

- **1.** Решить уравнение ydy = xdx, если x = -2, y = 4;
- **2.** $3y^2dy = xdx$, если x = 0, y = 1;
- **3.** Решить уравнение $3y^2 dy = x^2 dx$, если x = 3, y = 1.

Уравнения с разделяющимися переменными

- **4.** Решить уравнение $\frac{dy}{x^2} = \frac{dx}{y^2}$, если x = 0, y = 2.
- **5.** Решить уравнение $\frac{dy}{x-1} = \frac{dx}{y-2}$, если x = 0, y = 4.
- **6.** Решить уравнение (1 + y)dx (1 x)dy, если x = -2, y = 3.
- 7. Решить уравнение (1+x)ydx + (1-y)xdy = 0, если x = 1, y = 1.
- **8.** Решить уравнение $\frac{dx}{\cos^2 x \cos y} = -ctgx \sin y dy$, если $x = \frac{\pi}{3}$, $y = \pi$.
- **9.** Решить уравнение $xydx = (1 + x^2)dy$.

10.Решить уравнение $x^2 dy - (2xy + 3y)dx = 0$.

11.Решить уравнение $(1 + y^2)dx - \sqrt{x}dy = 0$.

Однородные дифференциальные уравнения

12.Решить уравнение (x + y)dx + xdy = 0.

13.Решить уравнение (x - y)dx + (x + y)dy = 0.

14.Решить уравнение (x - y)dx + xdy = 0.

15.Решить уравнение $x \cos \frac{y}{x} dy - y \cos \frac{y}{x} dx + x dx = 0$.

16.Решить уравнение $xy^2 dy = (x^3 + y^3) dx$, если x = 1, y = 3.

17.Решить уравнение (x-2y+5)dx+(2x-y+4)dy=0.

Линейные дифференциальные уравнения

18.Решить уравнение $\frac{dy}{dx} - y - 1 = 0$.

19.Решить уравнение $x \frac{dy}{dx} - x^2 + 2y = 0$.

20. Решить уравнение $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^2$.

21.Решить уравнение $\frac{dy}{dx} - \frac{xy}{1+x^2} - \frac{2}{1+x^2} = 0$, если x = 0, y = 3.

22.Решить уравнение $\frac{dy}{dx} - \frac{3y}{x} = e^x x^3$, если x = 1, y = e.

23.Решить уравнение $\frac{dy}{dx} + \frac{2y}{x} = \frac{1}{x^2}$, если x = 2, y = 1.

24.Решить уравнение $\frac{dy}{dx} + y = \frac{1}{e^x}$, при x = 0, y = 5.

Дифференциальные уравнения второго порядка

- **25.**Решить уравнение $\frac{d^2y}{dx^2} = 0$, при x = 0, y = 0 и при x = 1, y = 1.
- **26.**Решить уравнение $\frac{d^2y}{dx^2} = 1$, если x = 0, y = 0 и при x = 2, y = 3.
- **27.**Решить уравнение $\frac{d^2s}{dt^2} = 12t$, если t = 0, s = 2 и $\frac{ds}{dt} = 20$.
- **28.**Решить уравнение $\frac{d^2y}{dx^2} = \sin x$, если x = 0, y = 0 и $\frac{dy}{dx} = 2$.
- **29.**Решить уравнение $\frac{d^2s}{dt^2} = t + 1$, если t = 0, s = 0 и $\frac{ds}{dt} = -\frac{2}{3}$.
- **30.**Решить уравнение $\frac{d^2y}{dx^2} = \frac{dy}{dx}$.
- **31.**Решить уравнение $\frac{d^2y}{dx^2} = \frac{1}{x}\frac{dy}{dx}$, если x = 2, y = 6 и $\frac{dy}{dx} = 1$.

Задачи на составление дифференциальных уравнений

- **32.**Составить уравнение движения тела по оси Oy, если тело начало двигаться из точки M(0;6) со скоростью $\upsilon = 4t 6t^2$.
- **33.**Составить уравнение кривой, проходящей через точку M(2;-1) и имеющей касательную с угловым коэффициентом $k=\frac{1}{2\nu}$.
- **34.**Температура воздуха $20^{\circ}C$. Тело охлаждается за 40 мин от $80^{\circ}C$ до $30^{\circ}C$. Какую температуру будет иметь тело через 30 мин после первоначального измерения?
- **35.**Радий распадается со скоростью пропорциональной начальному его количеству. Через какое количество лет произойдет распад половины наличного его количества в настоящий момент. Установлено, что для

- радия коэффициент пропорциональности k = 0,00044 (единица измерения времени год).
- **36.**Замедляющее действие трения на диск, вращающийся в жидкости, пропорциональна угловой скорости. Найти момент времени, когда диск будет вращаться со скоростью 2 рад/с, если при t = 0 он вращается со скоростью 20 рад/с, а при $t = 8 \, \text{c} 16$ рад/с.

3.ПРОВЕРЬТЕ СЕБЯ

Задание: проинтегрировать дифференциальные уравнения.

1.
$$(y-1)^2 dx + (1-x)^3 dy = 0$$
. (Other: $\frac{1}{y-1} + \frac{1}{2(x-1)^2} = C$).

2.
$$x\sqrt{9-x^2}dx - y(4+x^2)dy = 0$$
. (Other: $\ln(4+x^2) + \sqrt{9-y^2} = C$).

3.
$$(1+e^{2x})y^2y'=e^x$$
. (Other: $y=\sqrt[3]{C+3\arctan tge^x}$).

4.
$$(xy + y)dx + (xy + x)dy = 0$$
. (Other: $xye^{x+y} = C$).

5.
$$xy' = y^2 + 1$$
. (Other: $arctgy = \ln |Cx|$).

6.
$$y'-2=\frac{y}{x}$$
. (Other: $y=2x(C+\ln|x|)$).

7.
$$xy' = 5y + x$$
. (Otbet: $x^5 = C(4y + x)$).

8.
$$(x + y)dx + 2xdy = 0$$
. (Other: $x(x + 3y)^2 = C$).

9.
$$y^2 dx + (x^2 - xy) dy = 0$$
. (Otbet: $y = Ce^{-y/x}$).

10. Проинтегрировать дифференциальное уравнение $2x^2y' = x^2 + y^2$ и найти его частное решение, удовлетворяющее начальному условию

$$y(1) = 0$$
. (Otbet: $y = x - \frac{x}{\ln(C\sqrt{|x|})}, y = x - \frac{x}{\ln\sqrt{|x|}}$).

11.
$$y' - \frac{y}{x} = 3x$$
. (Other: $y = x(C + 3x)$).

12.
$$y' + 4\frac{y}{x} + x = 0$$
. (Other: $y = \frac{C}{x^4} - \frac{x^2}{6}$).

13.
$$xy' \ln x = 5x - y$$
. (Other: $y = \frac{C + 5x}{\ln x}$).

14.
$$y^2 dx + (5xy - 4)dy = 0$$
. (Other: $y = \frac{C + y^4}{y^5}$).

15.
$$y' + ytgx = \frac{1}{\cos x}$$
. (Other: $y = (tgx + C) \cdot \cos x$).

16.
$$y' - yctgx = \frac{1}{\sin x}$$
. (Other: $y = -\cos x + C\sin x$).

17.
$$y' + 4xy = 2xe^{-x^2}\sqrt{y}$$
. (Otbet: $y = \pm 2e^{-x^2}(C + x^2/2)$).

18.
$$(2xy-3)dx + (x^2+1)dy = 0$$
. (Other: $x^2y - 3x + y = C$).

19.
$$(2xy^3 + 4y)dx + (3x^2y^2 + 4x)dy = 0$$
. (Other: $x^2y^3 + 4xy = C$).

$$20.(x - \cos y)dx + (x\sin y + \cos y)dy = 0. \text{ (Othet: } 0.5x^2 - x\cos y + \sin y = C\text{)}.$$

21.
$$(y^2 - e^x \cos y)dx + (2xy + e^x \sin y)dy = 0$$
. (Other: $xy^2 - e^x \cos y = C$).

22.
$$(x^2 + y - ye^x)dx + (x + 2y - e^x)dy = 0$$
. (Other: $\frac{1}{3}x^3 - e^xy + xy + y^2 = C$).

23.
$$y''' = e^{-x/4}$$
. (Otbet: $y = -64e^{-x/4} + C_1x^2 + C_2x + C_3$).

24.
$$\frac{d^3s}{dt^3} = 0$$
. (Other: $s = C_1t^2 + C_2t + C_3$).

25.
$$xy'' - y' = 0$$
. (Otbet: $y = C_1x^2 + C_2$).

26.
$$2xy'y'' = y' + x\sin\frac{y'}{x}$$
. (Other: $y = \frac{2}{3C_1}\sqrt{(C_1x - 1)^3} + C_2$).

27.
$$yy'' + y'^2 = 1.$$
(Otbet: $x = \frac{1}{2}\sqrt{y^2 + C_1} + C_2$).

28.
$$y'' - y' - 12y = 0$$
. (Otbet: $y = C_1 e^{-3x} + C_2 e^{4x}$).

29.
$$y'' + 4y' + 4y = 0$$
. (Other: $y = (C_1 + C_2)e^{-2x}$).

30.
$$y'' - 4y' + 13y = 0$$
. (Other: $y = e^{2x}(C_1 \cos 3x + C_2 \sin 3x)$).

31.
$$y''' + 64y' = 0$$
. (Otbet: $y = C_1 + C_2 \cos 8x + C_3 \sin 8x$).

32.
$$y'' + 3y' - 10y = 10x^2 + 4x - 5$$
. (Other: $y = C_1e^{2x} + C_2e^{-5x} - x^2 - x$).

33.
$$y'' - 4y' - 5y = (27x - 39)e^{-4x}$$
. (Other: $y = C_1e^{-x} + C_2e^{5x} + (x-1)e^{-4x}$).

34.
$$y'' + 16y = (34x + 13)e^{-x}$$
. (Other: $y = C_1 \cos 4x + C_2 \sin 4x + (2x + 1)e^{-x}$).

35.
$$y'' - 4y' + 5y = 2\cos x + 6\sin x$$
. (OTBET:

$$y = e^{2x}(C_1\cos x + C_2\sin x) + \cos x + \frac{1}{2}\sin x).$$

4. РАСЧЁТНЫЕ ЗАДАНИЯ (ИДЗ)

Задача 1. Найти общий интеграл дифференциального уравнения.

(Ответ представить в виде $\psi(x,y) = C$.)

1.1.
$$4xdx - 3ydy = 3x^2ydy - 2xy^2dx$$
.

1.2.
$$x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$$
.

1.3.
$$\sqrt{4 + y^2} dx - y dy = x^2 y dy$$
.

1.4.
$$\sqrt{3 + y^2} dx - y dy = x^2 y dy$$
.

1.5.
$$6xdx - 6ydy = 2x^2ydy - 3xy^2dx$$
.

1.6.
$$x\sqrt{3+y^2}dx + y\sqrt{2+x^2}dy = 0$$
.

1.7.
$$(e^{2x} + 5)dy + ye^{2x} dx = 0$$
.

1.8.
$$y'y\sqrt{\frac{1-x^2}{1-y^2}} + 1 = 0.$$

1.9.
$$6xdx - 6ydy = 3x^2ydy - 2xy^2dx$$
.

1.10.
$$x\sqrt{5+y^2}dx + y\sqrt{4+x^2}dy = 0$$
.

1.11.
$$y(4+e^x)dy - e^x dx = 0$$
.

1.12.
$$\sqrt{4-x^2}y' + xy^2 + x = 0$$
.

1.13.
$$2xdx - 2ydy = x^2ydy - 2xy^2dx$$
.

1.14.
$$x\sqrt{4+y^2}dx + y\sqrt{1+x^2}dy = 0$$
.

1.15.
$$(e^x + 8)dy - ye^x dx = 0$$
.

1.16.
$$\sqrt{5 + y^2} + y'y\sqrt{1 - x^2} = 0$$
.

1.17. $6xdx - ydy = yx^2dy - 3xy^2dx$.

1.18. $y \ln y + xy' = 0$.

1.19. $(1 + e^{x})y' = ye^{x}$.

1.20. $\sqrt{1-x^2}y' + xy^2 + x = 0$.

1.21. $6xdx - 2ydy = 2yx^2dy - 3xy^2dx$.

1.22. $y(1 + \ln y) + xy' = 0$.

1.23. $(3 + e^x)yy' = e^x$.

1.24. $\sqrt{3+y^2} + \sqrt{1-x^2}yy' = 0$.

Задача 2. Найти общий интеграл дифференциального уравнения.

2.1.
$$y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$$
.

2.2.
$$xy' = \frac{3y^3 + 2yx^2}{2y^2 + x^2}$$
.

2.3.
$$y' = \frac{x+y}{x-y}$$
.

$$2.4. \ xy' = \sqrt{x^2 + y^2} + y.$$

2.5.
$$2y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 3$$
.

2.6.
$$xy' = \frac{3y^3 + 4yx^2}{2y^2 + 2x^2}$$
.

$$2.7. \ y' = \frac{x + 2y}{2x - y}.$$

2.8.
$$xy' = 2\sqrt{x^2 + y^2} + y$$
.

2.9.
$$3y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 4$$
.

2.10.
$$xy' = \frac{3y^3 + 6yx^2}{2y^2 + 3x^2}$$
.

2.11.
$$y' = \frac{x^2 + xy - y^2}{x^2 - 2xy}$$
.

$$2.12. \ xy' = \sqrt{2x^2 + y^2} + y.$$

2.13.
$$y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 6$$
.

2.14.
$$xy' = \frac{3y^3 + 8yx^2}{2y^2 + 4x^2}$$
.

2.15.
$$y' = \frac{x^2 + 2xy - y^2}{2x^2 - 2xy}$$
.

2.17.
$$2y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 8$$
.

2.19.
$$y' = \frac{x^2 + 3xy - y^2}{3x^2 - 2xy}$$
.

2.21.
$$y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 12$$
.

2.23.
$$y' = \frac{x^2 + xy - 3y^2}{x^2 - 4xy}$$
.

$$2.16. \ xy' = 3\sqrt{x^2 + y^2} + y.$$

2.18.
$$xy' = \frac{3y^3 + 10yx^2}{2y^2 + 5x^2}$$
.

$$2.20. \ xy' = 3\sqrt{2x^2 + y^2} + y.$$

2.22.
$$xy' = \frac{3y^3 + 12yx^2}{2y^2 + 6x^2}$$
.

$$2.24. \ xy' = 2\sqrt{3x^2 + y^2} + y.$$

Задача 3. Найти общий интеграл дифференциального уравнения.

3.1.
$$y' = \frac{x+2y-3}{2x-2}$$
.

3.3.
$$y' = \frac{3y - x - 4}{3x + 3}$$
.

3.5.
$$y' = \frac{x+y-2}{3x-y-2}$$
.

3.7.
$$y' = \frac{x+y-8}{3x-y-8}$$
.

3.9.
$$y' = \frac{3y+3}{2x+y-1}$$
.

3.11.
$$y' = \frac{x - 2y + 3}{-2x - 2}$$
.

3.13.
$$y' = \frac{2x+3y-5}{5x-5}$$
.

3.2.
$$y' = \frac{x+y-2}{2x-2}$$
.

3.4.
$$y' = \frac{2y-2}{x+y-2}$$
.

3.6.
$$y' = \frac{2x + y - 3}{x - 1}$$
.

3.8.
$$y' = \frac{x+3y+4}{3x-6}$$
.

3.10.
$$y' = \frac{x + 2y - 3}{4x - y - 3}$$
.

3.12.
$$y' = \frac{x + 8y - 9}{10x - y - 9}$$

3.14.
$$y' = \frac{4y-8}{3x+2y-7}$$
.

3.15.
$$y' = \frac{x+3y-4}{5x-y-4}$$
.

3.17.
$$y' = \frac{x + 2y - 3}{x - 1}$$
.

3.19.
$$y' = \frac{5y+5}{4x+3y-1}$$
.

3.21.
$$y' = \frac{x+y+2}{x+1}$$
.

3.23.
$$y' = \frac{2x + y - 3}{2x - 2}$$
.

3.16.
$$y' = \frac{y - 2x + 3}{x - 1}$$
.

3.18.
$$y' = \frac{3x + 2y - 1}{x + 1}$$
.

3.20.
$$y' = \frac{x+4y-5}{6x-y-5}$$
.

3.22.
$$y' = \frac{2x + y - 3}{4x - 4}$$
.

$$3.24. \ y' = \frac{y}{2x + 2y - 2}.$$

Задача 4. Найти решение задачи Коши.

4.1.
$$y' - y/x = x^2$$
, $y(1) = 0$.

4.2.
$$y' - y \operatorname{ctg} x = 2x \sin x$$
, $y(\pi/2) = 0$.

4.3.
$$y' + y \cos x = \frac{1}{2} \sin 2x$$
, $y(0) = 0$.

4.4.
$$y' + y \operatorname{tg} x = \cos^2 x$$
, $y(\pi/4) = 1/2$.

4.5.
$$y' - \frac{y}{x+2} = x^2 + 2x$$
, $y(-1) = 3/2$.

4.6.
$$y' - \frac{1}{x+1}y = e^x(x+1), y(0) = 1.$$

4.7.
$$y' - \frac{y}{x} = x \sin x$$
, $y\left(\frac{\pi}{2}\right) = 1$.

4.8.
$$y' + \frac{y}{x} = \sin x$$
, $y(\pi) = \frac{1}{\pi}$.

4.9.
$$y' + \frac{y}{2x} = x^2$$
, $y(1) = 1$.

4.10.
$$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}, \quad y(0) = \frac{2}{3}.$$

4.11.
$$y' - \frac{2x-5}{x^2}y = 5$$
, $y(2) = 4$.

4.12.
$$y' + \frac{y}{x} = \frac{x+1}{x}e^x$$
, $y(1) = e$.

4.13.
$$y' - \frac{y}{x} = -2\frac{\ln x}{x}$$
, $y(1) = 1$.

4.14.
$$y' - \frac{y}{x} = -\frac{12}{x^3}$$
, $y(1) = 4$.

4.15.
$$y' + \frac{2}{x}y = x^3$$
, $y(1) = -5/6$.

4.16.
$$y' + \frac{y}{x} = 3x$$
, $y(1) = 1$.

4.17.
$$y' - \frac{2xy}{1+x^2} = 1 + x^2$$
, $y(1) = 3$.

4.18.
$$y' + \frac{1-2x}{x^2}y = 1$$
, $y(1) = 1$.

4.19.
$$y' + \frac{3y}{x} = \frac{2}{x^3}$$
, $y(1) = 1$.

4.20.
$$y' + 2xy = -2x^3$$
, $y(1) = e^{-1}$.

4.21.
$$y' + \frac{xy}{2(1-x^2)} = \frac{x}{2}$$
, $y(0) = \frac{2}{3}$.

4.22.
$$y' + xy = -x^3$$
, $y(0) = 3$.

4.23.
$$y' - \frac{2}{x+1}y = e^x(x+1)^2$$
, $y(0) = 1$.

4.24. $y' + 2xy = xe^{-x^2}\sin x$, y(0) = 1.

Задача 5. Решить задачу Коши.

5.1.
$$y^2 dx + (x + e^{2/y}) dy = 0$$
, $y|_{x=e} = 2$.

5.2.
$$(y^4 e^y + 2x)y' = y$$
, $y|_{x=0} = 1$.

5.3.
$$y^2 dx + (xy - 1) dy = 0$$
, $y|_{x=1} = e$.

5.4.
$$2(4y^2 + 4y - x)y' = 1$$
, $y|_{x=0} = 0$.

5.5.
$$(\cos 2y \cos^2 y - x)y' = \sin y \cos y$$
, $y|_{x=1/4} = \pi/3$.

5.6.
$$\left(x\cos^2 y - y^2\right)y' = y\cos^2 y$$
, $y|_{x=\pi} = \pi/4$.

5.7.
$$e^{y^2} (dx - 2xydy) = ydy$$
, $y|_{x=0} = 0$.

5.8.
$$(104y^3 - x)y' = 4y$$
, $y|_{x=8} = 1$.

5.9.
$$dx + (2x + \sin 2y - 2\cos^2 y)dy = 0$$
, $y|_{x=-1} = 0$.

5.10.
$$(3y\cos 2y - 2y^2\sin 2y - 2x)y' = y$$
, $y|_{x=16} = \pi/4$.

5.11.
$$8(4y^3 + xy - y)y' = 1$$
, $y|_{x=0} = 0$.

5.12.
$$(2 \ln y - \ln^2 y) dy = y dx - x dy$$
, $y|_{x=4} = e^2$.

5.13.
$$2(x+y^4)y'=y$$
, $y|_{x=-2}=-1$.

5.14.
$$y^3(y-1)dx + 3xy^2(y-1)dy = (y+2)dy$$
, $y|_{x=1/4} = 2$.

5.15.
$$2y^2 dx + (x + e^{1/y}) dy = 0$$
, $y|_{x=e} = 1$.

5.16.
$$\left(xy + \sqrt{y}\right)dy + y^2dx = 0$$
, $y\big|_{x=-1/2} = 4$.

5.17.
$$\sin 2y dx = \left(\sin^2 2y - 2\sin^2 y + 2x\right) dy$$
, $y\big|_{x=-1/2} = \pi/4$.

5.18.
$$(y^2 + 2y - x)y' = 1$$
, $y|_{x=2} = 0$.

5.19.
$$2y\sqrt{y}dx - (6x\sqrt{y} + 7)dy = 0$$
, $y|_{x=-4} = 1$.

5.20.
$$dx = (\sin y + 3\cos y + 3x)dy$$
, $y|_{x=e^{\pi/2}} = \pi/2$.

5.21.
$$2(\cos^2 y \cdot \cos 2y - x)y' = \sin 2y$$
, $y|_{x=3/2} = 5\pi/4$.

5.22. ch
$$ydx = (1 + x \operatorname{sh} x) dy$$
, $y|_{x=1} = \ln 2$.

5.23.
$$(13y^3 - x)y' = 4y$$
, $y|_{x=5} = 1$.

5.24.
$$y^2(y^2+4)dx + 2xy(y^2+4)dy = 2dy$$
, $y|_{x=\pi/8} = 2$.

Задача 6. Найти решение задачи Коши.

6.1.
$$y' + xy = (1+x)e^{-x}y^2$$
, $y(0) = 1$.

6.2.
$$xy' + y = 2y^2 \ln x$$
, $y(1) = 1/2$.

6.3.
$$2(xy' + y) = xy^2$$
, $y(1) = 2$.

6.4.
$$y' + 4x^3y = 4(x^3 + 1)e^{-4x}y^2$$
, $y(0) = 1$.

6.5.
$$xy' - y = -y^2 (\ln x + 2) \ln x$$
, $y(1) = 1$.

6.6.
$$2(y' + xy) = (1 + x)e^{-x}y^2$$
, $y(0) = 2$.

6.7.
$$3(xy' + y) = y^2 \ln x$$
, $y(1) = 3$.

6.8.
$$2y' + y \cos x = y^{-1} \cos x (1 + \sin x), \quad y(0) = 1.$$

6.9.
$$y' + 4x^3y = 4y^2 e^{4x} (1-x^3), y(0) = -1.$$

6.10.
$$3y' + 2xy = 2xy^{-2} e^{-2x^2}, \quad y(0) = -1.$$

6.11.
$$2xy' - 3y = -(5x^2 + 3)y^3$$
, $y(1) = 1/\sqrt{2}$.

6.12.
$$3xy' + 5y = (4x - 5)y^4$$
, $y(1) = 1$.

6.13.
$$2y' + 3y \cos x = e^{2x} (2 + 3\cos x) y^{-1}, \quad y(0) = 1.$$

6.14.
$$3(xy' + y) = xy^2$$
, $y(1) = 3$.

6.15.
$$y' - y = 2xy^2$$
, $y(0) = 1/2$.

6.16.
$$2xy' - 3y = -(20x^2 + 12)y^3$$
, $y(1) = 1/2\sqrt{2}$.

6.17.
$$y' + 2xy = 2x^3y^3$$
, $y(0) = \sqrt{2}$.

6.18.
$$xy' + y = y^2 \ln x$$
, $y(1) = 1$.

6.19.
$$2y' + 3y \cos x = (8 + 12 \cos x)e^{2x} y^{-1}, y(0) = 2.$$

6.20.
$$4y' + x^3y = (x^3 + 8)e^{-2x}y^2$$
, $y(0) = 1$.

6.21.
$$8xy' - 12y = -(5x^2 + 3)y^3$$
, $y(1) = \sqrt{2}$.

6.22.
$$2(y'+y)=xy^2$$
, $y(0)=2$.

6.23.
$$y' + xy = (x-1)e^x y^2$$
, $y(0) = 1$.

6.24.
$$2y' + 3y\cos x = -e^{-2x}(2 + 3\cos x)y^{-1}, \quad y(0) = 1.$$

Задача 7. Найти общий интеграл дифференциального уравнения.

7.1.
$$3x^2 e^y dx + (x^3 e^y - 1) dy = 0$$
.

7.2.
$$\left(3x^2 + \frac{2}{y}\cos\frac{2x}{y}\right)dx - \frac{2x}{y^2}\cos\frac{2x}{y}dy = 0.$$

7.3.
$$(3x^2 + 4y^2)dx + (8xy + e^y)dy = 0$$
.

7.4.
$$\left(2x - 1 - \frac{y}{x^2}\right) dx - \left(2y - \frac{1}{x}\right) dy = 0.$$

7.5.
$$(y^2 + y \sec^2 x) dx + (2xy + tg x) dy = 0$$
.

7.6.
$$(3x^2y + 2y + 3)dx + (x^3 + 2x + 3y^2)dy = 0$$
.

7.7.
$$\left(\frac{x}{\sqrt{x^2 + y^2}} + \frac{1}{x} + \frac{1}{y}\right) dx + \left(\frac{y}{\sqrt{x^2 + y^2}} + \frac{1}{x} - \frac{x}{y^2}\right) dy = 0.$$

7.8.
$$\left[\sin 2x - 2\cos(x+y) \right] dx - 2\cos(x+y) dy = 0.$$

7.9.
$$(xy^2 + x/y^2)dx + (x^2y - x^2/y^3)dy = 0.$$

7.10.
$$\left(\frac{1}{x^2} + \frac{3y^2}{x^4} \right) dx - \frac{2y}{x^2} dy = 0.$$

7.11.
$$\frac{y}{x^2} \cos \frac{y}{x} dx - \left(\frac{1}{x} \cos \frac{y}{x} + 2y\right) dy = 0.$$

7.12.
$$\left(\frac{x}{\sqrt{x^2 + y^2}} + y\right) dx + \left(x + \frac{y}{\sqrt{x^2 + y^2}}\right) dy = 0.$$

7.13.
$$\frac{1+xy}{x^2y}dx + \frac{1-xy}{xy^2}dy = 0.$$

7.14.
$$\frac{dx}{y} - \frac{x + y^2}{y^2} dy = 0.$$

7.15.
$$\frac{y}{x^2}dx - \frac{xy+1}{x}dy = 0.$$

7.16.
$$\left(xe^{x} + \frac{y}{x^{2}}\right)dx - \frac{1}{x}dy = 0.$$

7.17.
$$\left(10xy - \frac{1}{\sin y} \right) dx + \left(5x^2 + \frac{x \cos y}{\sin^2 y} - y^2 \sin y^3 \right) dy = 0.$$

7.18.
$$\left(\frac{y}{x^2 + y^2} + e^x\right) dx - \frac{xdy}{x^2 + y^2} = 0.$$

7.19.
$$e^{y} dx + (\cos y + x e^{y}) dy = 0$$
.

7.20.
$$(y^3 + \cos x)dx + (3xy^2 + e^y)dy = 0.$$

7.21.
$$x e^{y^2} dx + \left(x^2 y e^{y^2} + tg^2 y\right) dy = 0.$$

7.22.
$$(5xy^2 - x^3)dx + (5x^2y - y)dy = 0.$$

7.23.
$$\left[\cos(x+y^2) + \sin x\right] dx + 2y\cos(x+y^2) dy = 0.$$

7.24.
$$(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0.$$

Задача 8. Найти линию, проходящую через точку M_0 и обладающую тем свойством, что в любой ее точке M нормальный вектор \overrightarrow{MN} с концом на оси Oy имеет длину, равную a, и образует острый угол с положительным направлением оси Oy.

8.1.
$$M_0(15, 1), a = 25.$$

8.2.
$$M_0(12, 2), a = 20.$$

8.3.
$$M_0(9, 3)$$
, $a = 15$.

8.4.
$$M_0(6, 4)$$
, $a = 10$.

8.5.
$$M_0(3, 5)$$
, $a = 5$.

Найти линию, проходящую через точку M_0 , если отрезок любой её касательной между точкой касания и осью Oy делится в точке пересечения с осью абсцисс в отношении a:b (считая от оси Oy).

8.6.
$$M_0(1, 1)$$
, $a:b=1:2$.

8.7.
$$M_0(-2, 3)$$
, $a:b=1:3$.

8.8.
$$M_0(0, 1)$$
, $a:b=2:3$. 8.9. $M_0(1, 0)$, $a:b=3:2$.

8.9.
$$M_0(1, 0), a:b=3:2$$

8.10.
$$M_0(2, -1)$$
, $a:b=3:1$.

Найти линию, проходящую через точку $M_{\scriptscriptstyle 0}$, если отрезок любой её касательной между точкой касания и осью O_y делится в точке пересечения с осью абсцисс в отношении a:b (считая от оси Oy).

8.11.
$$M_0(2, -1)$$
, $a:b=1:1$. 8.12. $M_0(1, 2)$, $a:b=2:1$.

8.12.
$$M_0(1, 2)$$
, $a:b=2:1$

8.13.
$$M_0(-1, 1)$$
, $a:b=3:1$. 8.14. $M_0(2, 1)$, $a:b=1:2$.

8.14.
$$M_0(2, 1), a:b=1:2.$$

8.15.
$$M_0(1, -1), a:b=1:3.$$

Найти линию, проходящую через точку ${\it M}_{\scriptscriptstyle 0}$, если отрезок любой её касательной, заключенный между осями координат, делится в точке касания в отношении a:b (считая от оси Oy).

8.16.
$$M_0(1, 2)$$
, $a:b=1:1$. 8.17. $M_0(2, 1)$, $a:b=1:2$.

8.17.
$$M_0(2, 1), a:b=1:2.$$

8.18.
$$M_0(1, 3), a:b=2:1$$

8.18.
$$M_0(1, 3)$$
, $a:b=2:1$. 8.19. $M_0(2, -3)$, $a:b=3:1$.

8.20.
$$M_0(3, -1)$$
, $a:b=3:2$.

Найти линию, проходящую через точку \boldsymbol{M}_0 и обладающую тем свойством, что в любой её точке M касательный вектор \overrightarrow{MN} с концом на оси Ox имеет проекцию на ось Ox, обратно пропорциональную абсциссе точки M . Коэффициент пропорциональности равен a .

8.21.
$$M_0(1, e)$$
, $a = -1/2$.

8.22.
$$M_0(2, e)$$
, $a = -2$.

8.23.
$$M_0\left(-1, \sqrt{e}\right), a = -1.$$

8.24.
$$M_0(2, 1/e), a = 2.$$

Задача 9. Найти общее решение дифференциального уравнения.

9.1.
$$y'''x \ln x = y''$$
.

9.2.
$$xy''' + y'' = 1$$
.

9.3.
$$2xy''' = y''$$
.

9.4.
$$xy''' + y'' = x + 1$$
.

9.5.
$$\lg x \cdot y'' - y' + \frac{1}{\sin x} = 0$$
.

10.6.
$$x^2y'' + xy' = 1$$
.

9.7.
$$y''' \operatorname{ctg} 2x + 2y'' = 0$$
.

9.8.
$$x^3y''' + x^2y'' = 1$$
.

9.9.
$$tg x \cdot y''' = 2y''$$
.

9.10.
$$y''' \operatorname{cth} 2x = 2y''$$
.

9.11.
$$x^4y'' + x^3y' = 1$$
.

9.12.
$$xy''' + 2y'' = 0$$
.

9.13.
$$(1+x^2)y'' + 2xy' = x^3$$
.

9.14.
$$x^5y''' + x^4y'' = 1$$
.

9.15.
$$xy''' - y'' + \frac{1}{x} = 0$$
.

$$9.16. \ xy''' + y'' + x = 0.$$

9.17. th
$$x \cdot y^{IV} = y'''$$
.

9.18.
$$xy''' + y'' = \sqrt{x}$$
.

9.19.
$$y''' \operatorname{tg} x = y'' + 1$$
.

9.20.
$$y''' \operatorname{tg} 5x = 5y''$$
.

9.21.
$$v''' \text{ th } 7x = 7v''$$
.

9.22.
$$x^3y''' + x^2y'' = \sqrt{x}$$
.

9.23.
$$\operatorname{cth} x \cdot y'' - y' + \frac{1}{\operatorname{ch} x} = 0.$$

9.24.
$$(x+1)y''' + y'' = (x+1)$$
.

Задача 10. Найти решение задачи Коши.

10.1.
$$4y^3y'' = y^4 - 1$$
, $y(0) = \sqrt{2}$, $y'(0) = 1/(2\sqrt{2})$.

10.2.
$$y'' = 128y^3$$
, $y(0) = 1$, $y'(0) = 8$.

10.3.
$$y''y^3 + 64 = 0$$
, $y(0) = 4$, $y'(0) = 2$.

10.4.
$$y'' + 2\sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

10.5.
$$y'' = 32\sin^3 y \cos y$$
, $y(1) = \pi/2$, $y'(1) = 4$.

10.6.
$$y'' = 98y^3$$
, $y(1) = 1$, $y'(1) = 7$.

10.7.
$$y''y^3 + 49 = 0$$
, $y(3) = -7$, $y'(3) = -1$.

10.8.
$$4y^3y'' = 16y^4 - 1$$
, $y(0) = \sqrt{2}/2$, $y'(0) = 1/\sqrt{2}$.

10.9.
$$y'' + 8 \sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 2$.

10.10.
$$y'' = 72y^3$$
, $y(2) = 1$, $y'(2) = 6$.

10.11.
$$y''y^3 + 36 = 0$$
, $y(0) = 3$, $y'(0) = 2$.

10.12.
$$y'' = 18\sin^3 y \cos y$$
, $y(1) = \pi/2$, $y'(1) = 3$.

10.13.
$$4y^3y'' = y^4 - 16$$
, $y(0) = 2\sqrt{2}$, $y'(0) = 1/\sqrt{2}$.

10.14.
$$y'' = 50y^3$$
, $y(3) = 1$, $y'(3) = 5$.

10.15.
$$y''y^3 + 25 = 0$$
, $y(2) = -5$, $y'(2) = -1$.

10.16.
$$y'' + 18\sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 3$.

10.17.
$$y'' = 8\sin^3 y \cos y$$
, $y(1) = \pi/2$, $y'(1) = 2$.

10.18.
$$y'' = 32y^3$$
, $y(4) = 1$, $y'(4) = 4$.

10.19.
$$y''y^3 + 16 = 0$$
, $y(1) = 2$, $y'(1) = 2$.

10.20.
$$y'' + 32\sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 4$.

10.21.
$$y'' = 50\sin^3 y \cos y$$
, $y(1) = \pi/2$, $y'(1) = 5$.

10.22.
$$y'' = 18y^3$$
, $y(1) = 1$, $y'(1) = 3$.

10.23.
$$y''y^3 + 9 = 0$$
, $y(1) = 1$, $y'(1) = 3$.

10.24.
$$y^3y'' = 4(y^4 - 1), y(0) = \sqrt{2}, y'(0) = \sqrt{2}.$$

Задача 11. Найти общее решение дифференциального уравнения.

11.1.
$$y''' + 3y'' + 2y' = 1 - x^2$$
. 11.2. $y''' - y'' = 6x^2 + 3x$.

11.3.
$$y''' - y' = x^2 + x$$
. 11.4. $y^{IV} - 3y''' + 3y'' - y' = 2x$.

11.5.
$$y^{IV} - y''' = 5(x+2)^2$$
. 11.6. $y^{IV} - 2y''' + y'' = 2x(1-x)$.

11.7.
$$y^{IV} + 2y''' + y'' = x^2 + x - 1$$
.

11.9.
$$3y^{IV} + y''' = 6x - 1$$
.

11.11.
$$y''' + y'' = 5x^2 - 1$$
.

11.13.
$$7y''' - y'' = 12x$$
.

11.15.
$$y''' - y' = 3x^2 - 2x + 1$$
.

11.17.
$$y^{IV} - 3y''' + 3y'' - y' = x - 3$$
.

11.19.
$$y''' - 4y'' = 32 - 384x^2$$
.

11.21.
$$y''' + 3y'' + 2y' = x^2 + 2x + 3$$
.

11.23.
$$y''' - 13y'' + 12y' = x - 1$$
.

11.8.
$$y^V - y^{IV} = 2x + 3$$
.

11.10.
$$y^{IV} + 2y''' + y'' = 4x^2$$
.

11.12.
$$v^{IV} + 4v''' + 4v'' = x - x^2$$
.

11.14.
$$y''' + 3y'' + 2y' = 3x^2 + 2x$$
.

11.16.
$$y''' - y'' = 4x^2 - 3x + 2$$
.

11.18.
$$y^{IV} + y''' = x$$
.

11.20.
$$y^{IV} + 2y''' + y'' = 2 - 3x^2$$
.

11.22.
$$y''' - 2y'' = 3x^2 + x - 4$$
.

11.24.
$$v''' + v'' = 49 - 24x^2$$
.

Задача 12. Найти общее решение дифференциального уравнения.

12.1.
$$y''' - 4y'' + 5y' - 2y = (16 - 12x)e^{-x}$$
.

12.2.
$$y''' - 3y'' + 2y' = (1 - 2x)e^x$$
.

12.3.
$$y''' - y'' - y' + y = (3x + 7)e^{2x}$$
.

12.4.
$$y''' - 2y'' + y' = (2x + 5)e^{2x}$$
.

12.5.
$$y''' - 3y'' + 4y = (18x - 21)e^{-x}$$
.

12.6.
$$y''' - 5y'' + 8y' - 4y = (2x - 5)e^{x}$$
.

12.7.
$$y''' - 4y'' + 4y' = (x-1)e^x$$
.

12.8.
$$y''' + 2y'' + y' = (18x + 21)e^{2x}$$
.

12.9.
$$y''' + y'' - y' - y = (8x + 4)e^{x}$$
.

12.10.
$$y''' - 3y' - 2y = -4x \cdot e^{x}$$
.

12.11.
$$y''' - 3y' + 2y = (4x + 9)e^{2x}$$
.

12.12.
$$y''' + 4y'' + 5y' + 2y = (12x + 16)e^{x}$$
.

12.13.
$$y''' - y'' - 2y' = (6x - 11)e^{-x}$$
.

12.14.
$$y''' + y'' - 2y' = (6x + 5)e^{x}$$
.

12.15.
$$y''' + 4y'' + 4y' = (9x + 15)e^{x}$$
.

12.16.
$$y''' - 3y'' - y' + 3y = (4 - 8x)e^{x}$$
.

12.17.
$$y''' - y'' - 4y' + 4y = (7 - 6x)e^{x}$$
.

12.18.
$$y''' + 3y'' + 2y' = (1 - 2x)e^{-x}$$
.

12.19.
$$y''' - 5y'' + 7y' - 3y = (20 - 16x)e^{-x}$$
.

12.20.
$$y''' - 4y'' + 3y' = -4x \cdot e^{x}$$
.

12.21.
$$y''' - 5y'' + 3y' + 9y = (32x - 32)e^{-x}$$
.

12.22.
$$y''' - 6y'' + 9y' = 4x \cdot e^{x}$$
.

12.23.
$$y''' - 7y'' + 15y' - 9y = (8x - 12)e^{x}$$
.

12.24.
$$y''' - y'' - 5y' - 3y = -(8x + 4)e^{x}$$
.

Задача 13. Найти общее решение дифференциального уравнения.

13.1.
$$y'' + 2y' = 4e^{x} (\sin x + \cos x)$$
.

13.2.
$$y'' - 4y' + 4y = -e^{2x} \sin 6x$$
.

13.3.
$$y'' + 2y' = -2e^{x} (\sin x + \cos x)$$
.

13.4.
$$y'' + y = 2\cos 7x + 3\sin 7x$$
.

13.5.
$$y'' + 2y' + 5y = -\sin 2x$$
.

13.6.
$$y'' - 4y' + 8y = e^{x} (5\sin x - 3\cos x)$$
.

13.7.
$$y'' + 2y' = e^{x} (\sin x + \cos x)$$
.

13.8.
$$y'' - 4y' + 4y = e^{2x} \sin 3x$$
.

13.9.
$$y'' + 6y' + 13y = e^{-3x} \cos 4x$$
.

13.10.
$$y'' + y = 2\cos 3x - 3\sin 3x$$
.

13.11.
$$y'' + 2y' + 5y = -2\sin x$$
.

13.12.
$$y'' - 4y' + 8y = e^{x} (-3\sin x + 4\cos x)$$
.

13.13.
$$y'' + 2y' = 10e^{x} (\sin x + \cos x)$$
.

13.14.
$$y'' - 4y' + 4y = e^{2x} \sin 5x$$
.

13.15.
$$y'' + y = 2\cos 5x + 3\sin 5x$$
.

13.16.
$$y'' + 2y' + 5y = -17\sin 2x$$
.

13.17.
$$y'' + 6y' + 13y = e^{-3x} \cos x$$
.

13.18.
$$y'' - 4y' + 8y = e^{x} (3\sin x + 5\cos x)$$
.

13.19.
$$y'' + 2y' = 6e^{x} (\sin x + \cos x)$$
.

13.20.
$$y'' - 4y' + 4y = -e^{2x} \sin 4x$$
.

13.21.
$$y'' + 6y' + 13y = -e^{3x}\cos 5x$$
.

13.22.
$$y'' + y = 2\cos 7x - 3\sin 7x$$
.

13.23.
$$y'' + 2y' + 5y = -\cos x$$
.

13.24.
$$y'' - 4y' + 8y = e^x (2\sin x - \cos x)$$
.

Задача 14. Найти общее решение дифференциального уравнения.

14.1.
$$y'' - 2y' = 2 \operatorname{ch} 2x$$
.

14.2.
$$y'' + y = 2\sin x - 6\cos x + 2e^{x}$$
.

14.3.
$$y''' - y' = 2e^x + \cos x$$
.

14.4.
$$y'' - 3y' = 2 \operatorname{ch} 3x$$
.

14.5.
$$y'' + 4y = -8\sin 2x + 32\cos 2x + 4e^{2x}$$
.

14.6.
$$y''' - y' = 10\sin x + 6\cos x + 4e^{x}$$
.

14.7.
$$y'' - 4y' = 16 \operatorname{ch} 4y$$
.

14.8.
$$y'' + 9y = -18\sin 3x - 18e^{3x}$$
.

14.9.
$$y''' - 4y' = 24e^{2x} - 4\cos 2x + 8\sin 2x$$
.

14.10.
$$y'' - 5y' = 50 \operatorname{ch} 5x$$
.

14.11.
$$y'' + 16y = 16\cos 4x - 16e^{4x}$$
.

14.12.
$$y''' - 9y' = -9e^{3x} + 18\sin 3x - 9\cos 3x$$
.

14.13.
$$y'' - y' = 2 \operatorname{ch} x$$
.

14.14.
$$y'' + 25y = 20\cos 5x - 10\sin 5x + 50e^{5x}$$
.

14.15.
$$y''' - 16y' = 48e^{4x} + 64\cos 4x - 64\sin 4x$$
.

14.16.
$$y'' + 2y' = 2 \sinh 2x$$
.

14.17.
$$y'' + 36y = 24\sin 6x - 12\cos 6x + 36e^{6x}$$
.

14.18.
$$y''' - 25y' = 25(\sin 5x + \cos 5x) - 50e^{5x}$$
.

14.19.
$$y'' + 3y' = 2 \sinh 3x$$
.

14.20.
$$y'' + 49y = 14\sin 7x + 7\cos 7x - 98e^{7x}$$
.

14.21.
$$y''' - 36y' = 36e^{6x} - 72(\cos 6x + \sin 6x)$$
.

14.22.
$$y'' + 4y' = 16 \sinh 4x$$
.

14.23.
$$y'' + 64y = 16\sin 8x - 16\cos 8x - 64e^{8x}$$
.

14.24.
$$y''' - 49y' = 14e^{7x} - 49(\cos 7x + \sin 7x)$$
.

Задача 15. Найти решение задачи Коши.

15.1.
$$y'' + \pi^2 y = \pi^2 / \cos \pi x$$
, $y(0) = 3$, $y'(0) = 0$.

15.2.
$$y'' + 3y' = 9e^{3x}/(1 + e^{3x})$$
, $y(0) = \ln 4$, $y'(0) = 3(1 - \ln 2)$.

15.3.
$$y'' + 4y = 8 \operatorname{ctg} 2x$$
, $y(\pi/4) = 5$, $y'(\pi/4) = 4$.

15.4.
$$y'' - 6y' + 8y = 4/(1 + e^{-2x})$$
, $y(0) = 1 + 2\ln 2$, $y'(0) = 6\ln 2$.

15.5.
$$y'' - 9y' + 18y = 9e^{3x}/(1 + e^{-3x}), y(0) = 0, y'(0) = 0.$$

15.6.
$$y'' + \pi^2 y = \pi^2 / \sin \pi x - 1$$
, $y(1/2)$, $y'(1/2) = \pi^2 / 2$.

15.7.
$$y'' + \frac{1}{\pi^2} y = \frac{1}{\pi^2 \cos(x/\pi)}, \quad y(0) = 2, \quad y'(0) = 0.$$

15.8.
$$y'' - 3y' = \frac{9e^{-3x}}{3 + e^{-3x}}, \quad y(0) = 4\ln 4, \quad y'(0) = 3(3\ln 4 - 1).$$

15.9.
$$y'' + y = 4 \operatorname{ctg} x$$
, $y(\pi/2) = 4$, $y'(\pi/2) = 4$.

15.10.
$$y'' - 6y' + 8y = 4/(2 + e^{-2x})$$
, $y(0) = 1 + 3\ln 3$, $y'(0) = 10\ln 3$.

15.11.
$$y'' + 6y' + 8y = 4e^{-2x}/(2 + e^{2x}), y(0) = 0, y'(0) = 0.$$

15.12.
$$y'' + 9y = 9/\sin 3x$$
, $y(\pi/6) = 4$, $y'(\pi/6) = 3\pi/2$.

15.13.
$$y'' + 9y = 9/\cos 3x$$
, $y(0) = 1$, $y'(0) = 0$.

15.14.
$$y'' - y' = e^{-x} / (2 + e^{-x}), \quad y(0) = \ln 27, \quad y'(0) = \ln 9 - 1.$$

15.15.
$$y'' + 4y = 4ctg 2x$$
, $y(\pi/4) = 3$, $y'(\pi/4) = 2$.

15.16.
$$y'' - 3y' + 2y = \frac{1}{3 + e^{-x}}, \quad y(0) = 1 + 8\ln 2, \quad y'(0) = 14\ln 2.$$

15.17.
$$y'' - 6y' + 8y = 4e^{2x}/(1 + e^{-2x}), y(0) = 0, y'(0) = 0.$$

15.18.
$$y'' + 16y = 16/\sin 4x$$
, $y(\pi/8) = 3$, $y'(\pi/8) = 2\pi$.

15.19.
$$y'' + 16y = 16/\cos 4x$$
, $y(0) = 3$, $y'(0) = 0$.

15.20.
$$y'' - 2y' = 4e^{-2x}/(1 + e^{-2x})$$
, $y(0) = \ln 4$, $y'(0) = \ln 4 - 2$.

15.21.
$$y'' + \frac{y}{4} = \frac{1}{4} \operatorname{ctg}(x/2), \quad y(\pi) = 2, \quad y'(\pi) = 1/2.$$

15.22.
$$y'' - 3y' + 2y = 1/(2 + e^{-x})$$
, $y(0) = 1 + 3\ln 3$, $y'(0) = 5\ln 3$.

15.23.
$$y'' + 3y' + 2y = e^{-x/(2+e^x)}$$
, $y(0) = 0$, $y'(0) = 0$.

15.24.
$$y'' + 4y = 4/\sin 2x$$
, $y(\pi/4) = 2$, $y'(\pi/4) = \pi$.

5. КОНТРОЛЬНАЯ РАБОТА «Дифференциальные уравнения» (45 мин.)

1. Найти общее решение дифференциального уравнения первого порядка.

1.1.
$$y'\cos x = (y+1)\sin x$$
;

1.3.
$$y' = \frac{1+x^2}{1+y^2}$$
;

1.5.
$$xy' - y = \sqrt{x^2 + y^2}$$
;

1.7.
$$y' + \frac{y}{x} = \frac{\sin x}{x}$$
;

1.9.
$$xy' + y = 2$$
;

1.2.
$$y'\cos x + y\sin x = 1$$
;

1.4.
$$xy' - 3y = x^4 e^x$$
;

1.6.
$$(x-y)ydx - x^2dy + 0$$
;

1.8.
$$2x^2yy' + y^2 = 2$$
;

1.10.
$$xy' + xy^{y/x} - y = 0$$
.

2. Решить дифференциальное уравнение второго порядка.

2.1.
$$2xy'y'' = (y')^2 - 1$$
;

2.3.
$$y'' = y' + (y')^2$$
;

2.5
$$xy'' + y' = \ln x$$
;

2.7.
$$x^4v'' + x^3v' = 1$$
:

2.9.
$$y'' = x \ln x$$
;

2.2.
$$v''x \ln x = 2v'$$
:

2.4.
$$xy'' = y' + x^2$$
;

2.6.
$$y'' = \sqrt{x} - \sin 2x$$
;

2.8.
$$2yy'' = (y')^2$$
;

2.10.
$$y'' = e^x + x$$
.

3. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям.

3.1.
$$y'' + 2y' = 6x^2 + 2x + 1$$
, $y(0) = 2$, $y'(0) = 0$;

3.2.
$$y'' - 3y' + 2y = \sin x - 7\cos x$$
, $y(0) = 2$, $y'(0) = 7$;

3.3.
$$y'' - 10y' + 25y = e^{5x}$$
, $y(0) = 1$, $y'(0) = 0$;

3.4.
$$y'' + y' + y = 4x^2 + 7x - 10$$
, $y(0) = 2$, $y'(0) = 3$;

3.5.
$$y'' + 2y' + 2y = 2x^2 + 8x + 6$$
, $y(0) = 0$, $y'(0) = 4$;

3.6.
$$y'' + 10y' + 34y = -9e^{-5x}$$
, $y(0) = 1$, $y'(0) = 6$;

3.7.
$$y'' - 9y' + 18y = 26\cos x - \sin x$$
, $y(0) = 0$, $y'(0) = 2$;

3.8.
$$y'' + 3y' = (40x + 58)e^{2x}$$
, $y(0) = 0$, $y'(0) = 2$;

3.9.
$$y'' - 4y' + 4y = -169\sin 3x$$
, $y(0) = -12$, $y'(0) = 16$;

3.10.
$$y'' + y' - 6y = 50\cos x$$
, $y(0) = 3$, $y'(0) = 5$.

ПРИЛОЖЕНИЕ 1

Основные типы дифференциальных уравнений I порядка и методы их интегрирования

Таблица 1

№	Название и вид ДУ	Определяющий признак ДУ, способ решения	
	I порядка		
1	2	3	
переменными только от одной		Каждый из множителей f_i и φ_I , i = 1, 2 зависит только от одной переменной. $Peшeнue: \int \frac{f_1(x)}{\varphi_1(x)} dx = -\int \frac{\varphi_2(y)}{f_2(y)} dy + c.$	
	Однородное уравнение:	f(x,y) – однородная функция нулевого изме-	
	$y' = f(x, y) = f\left(1, \frac{y}{x}\right)$	рения $f(x \cdot \lambda, y \cdot \lambda) = \lambda^0 f(x, y)$.	
2	(1)	Решение: уравнение приводится к предыдущему	
		типу с помощью подстановки $t = \frac{y}{x}$,	
		$y' = t(x) + x \cdot t'(x).$	
	Уравнения, приводящиеся к	Решение: а) уравнение приводится к однородно-	
	однородным	му с помощью замены	
	$y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2x + c_2}\right)$	$\begin{cases} x = x_0 + u, \\ v = v_0 + v. \end{cases}$	
	$\left(a_2x+b_2x+c_2\right)$	$(y = y_0 + v,$	
3	a) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$; 6) $\frac{a_1}{a_2} = \frac{b_1}{b_2}$	где (x_0, y_0) находят из решения системы урав-	
	a_2 b_2 a_2 b_2	нений	
		$\begin{cases} a_1 x + b_1 y + c_1 = 0, \\ a_2 x + b_2 y + c_2 = 0, \end{cases} y' = \frac{dv}{du};$	
		б) замена $z = a_1 x + b_1 y$; $y' = z' - a_1$	
4	Линейное уравнение:	Решение: А) методом Лагранжа (вариации про-	

y'+P(x)	y = Q(x)	извольной постоянной).
		а) Найти общее решение $y = y(x,c)$ уравне-
		ния $y' + P(x) \cdot y = 0$.
		б) полагая $c = c(x)$, подставляем $y = y(x,c(x))$ в
		исходное уравнение, находим функцию $c(x)$ и общее решение исходного ДУ $y = c(x) \cdot x$.
		Б) Методом подстановки Бернулли: $y = u(x) \cdot v(x)$, где $u(x)$, $v(x)$ определяются из
		уравнений
		$(v' + P(x) \cdot v = 0)$
		$\begin{cases} v' + P(x) \cdot v = 0 \\ u' \cdot v = Q(x). \end{cases}$

Продолжение таблицы 1

1	2	3	
	Уравнение Бернулли: $y' + P(x) \cdot y = Q(x) \cdot y^n, n \neq 0, 1$	Решение: 1) разделив ДУ на y^n и сделав подстановку $z = \frac{1}{y^{n-1}}$, $z' = (1-n) \cdot y^{n-1} \cdot y'$, получить	
5		линейное ДУ: $\frac{1}{1-n}z' + P(x) \cdot z = Q(x);$	
		2) проинтегрировать последнее уравнение одним из методов предыдущего пункта. Замечание. Поскольку доказано, что ДУ Бернулли сходится к линейному, можно его интегрировать любым из методов (Бернулли или Лагранжа), минуя процедуру сведения к линейному ДУ.	
6	Уравнение в полных дифференциалах: $P(x,y)dx + Q(x,y)dy = 0$	Признак: $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Решение: $du(x,y) = 0 \Rightarrow u(x,y) = c$,	
	17	$u(x,y) = \int_{x_0}^{x} P(x,y) dx + \int_{y_0}^{y} Q(x_0,y) dy.$	
7	Уравнения, допускающие интегрирующий множитель $\mu = \mu(x)$ или $\mu = \mu(y)$:	Решение: если $\frac{\partial p}{\partial y} \neq \frac{\partial Q}{\partial x}$, то умножение обеих частей уравнения на $\mu(x) = e^{\int \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) dx}$,	
	P(x,y)dx + Q(x,y)dy = 0	$\mu(y) = e^{-\int \frac{1}{p} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dy}$ приводят ДУ к уравнению в	
	Уравнения, не разрешённые	полных дифференциалах. Решение: сделать замену $y' = p$. Решение найти	
8	относительно y'	в параметрическом виде.	

9	Уравнение Лагранжа $y = x\varphi(y') + \psi(y')$	Решение: метод введения параметра $y' = p$. Общее решение записывается в параметрическом виде $x = cf(p) + q(p)$, $y = (cf(p) + q(p))\varphi(p) + \psi(p)$.	
10	Уравнение Клеро $y = xy' + \psi(y')$	Решение: ввести параметр $y' = p$. Общее решение уравнения имеет вид $y = cx + \psi(c)$. особое решение найти из системы $\begin{cases} x = -\psi'(p), \\ y = px + \psi(p). \end{cases}$	

ПРИЛОЖЕНИЕ 2 Типы дифференциальных уравнений II порядка и способы их решения Таблица 2

	Название и вид ДУ <i>n-го</i> по- Определяющий признак ДУ, способ решег		
№	рядка		
1	2	3	
1	Дифференциальные уравнения высших порядков, допускающие понижение порядка	$Tun\ \mathrm{I})\ y^{(n)} = f\left(x\right).$ Метод последовательного интегрирования: $y^{(n-1)} = \int f\left(x\right) dx + c_1.$ $Tun\ \mathrm{II})\ F\left(x,y^{(k)},,y^{(n)}\right) = 0.$ используется подстановка $y^{(k)} = v(x), y^{(k+1)} = v',$ $Tun\ \mathrm{III})\ F\left(y,y^{(k)},y^{(n)}\right) = 0.$ Используется подстановка $y^{(k)} = v(y), \ y^{(k+1)} = v'_y \cdot v,$	
2	Линейные однородные ДУ n-го порядка с постоянными коэффициентами: $y^{(n)} + a_1 y^{(n-1)} +a_n y = 0,$ $a_i = const$ для всех $i = 1, 2,, n$	Решение ищут в виде $y=e^{kx}$, где k – корень характеристического уравнения $k^n+a_1k^{n-1}++a_n=0.$ а) Если корни действительные и различные: $k_1\neq k_2\neq\neq k_n, \text{ то общее решение}$ $y=c_1e^{k_1x}+c_2e^{k_2x}++c_ne^{k_nx};$ б) если корни действительные и кратные $k_1=k_2=k_n=k, \text{ то общее решение:}$ $y=e^{kx}\Big(c_1+c_2x++c_nx^{n-1}\Big),$ в) если среди корней есть пара комплексно—сопряженных $k_{1,2}=\alpha\pm i\beta,\ k_3,,k_n$, то общее	

		решение: $y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x) + c_3 e^{k_3 x} + + c_n e^{k_n x}.$
3	Линейные неоднородные ДУ пго порядка с постоянными коэффициентами: $y^{(n)} + a_1 y^{(n-1)} + a_n y = f(x)$ $f(x) \not\equiv 0$, $a_i = const$ для всех $i = 1, 2,, n$	1) Решение ищут в виде: $y = y + y^*$, где $y = y + y + y^*$, где $y = y + y + y^*$, где $y = y + y + y + y + y + y + y + y + y + $

ПРИЛОЖЕНИЕ 3

Частное решение неоднородного ДУ 2-го порядка с правой частью «специального» вида (метод неопределенных коэффициентов)

Таблица 3

Правая часть		Сравнение с корнями характери-	Вид частного
уравнения		стического уравнения	решения
1	$Q_{m}(x) = a_{0}x^{m} + a_{1}x^{m-1} + \dots + a_{m}$	Число 0 не является корнем характеристического уравнения	$P_{m}(x) = b_{0}x^{m} + b_{1}x^{m-1} + \dots + b_{m}$
		Число 0 – корень характеристиче- ского уравнения кратности <i>s</i>	$x^{s}P_{m}(x)$
,	$e^{\alpha x}Q_{m}\left(x ight)$	Число α не является корнем характеристического уравнения	$e^{\alpha x}P_m(x)$
2	$e^{\alpha x}Q_m(x)$ (α – действительное)	Число α – корень характеристического уравнения кратности s	$x^{s}e^{\alpha x}P_{m}(x)$
3	$Q_k(x)\cos\beta x + \widetilde{Q}_l(x)\sin\beta x$	Числа $\pm i\beta$ не являются корнями характеристического уравнения	$R_{r}(x)\cos\beta x + + \widetilde{R_{r}}(x)\sin\beta x$
		Числа $\pm i\beta$ — корни характеристического уравнения кратности s	$x^{s} \left[R_{r}(x) \cos \beta x + \widetilde{R}_{r}(x) \sin \beta x \right]$
4	$e^{\alpha x} \left[Q_k(x) \cos \beta x + \widetilde{Q}_l(x) \sin \beta x \right]$	Числа $\alpha \pm i\beta$ не являются корнями характеристического уравнения	$e^{\alpha x} \left[R_r(x) \cos \beta x + \widetilde{R}_r(x) \sin \beta x \right]$
		Числа $\alpha \pm i\beta$ – корни характеристического уравнения кратности s	$x^{s}e^{\alpha x}\left[R_{r}(x)\cos\beta x+\right.$ $\left.+\widetilde{R_{r}}(x)\sin\beta x\right]$

 $P_m(x)$ – многочлен степени m,

 $Q_{k}\left(x
ight)$, $\widetilde{Q}_{l}\left(x
ight)$ — многочлены степени k и l,

 $R_{r}(x)$, $\widetilde{R_{r}}(x)$ — многочлены с неопределенными коэффициентами степени r, равной наибольшей из степеней k, l.

СПИСОК ЛИТЕРАТУРЫ

- 1. Высшая математика. Ч.ІІІ. Дифференциальные уравнения первого порядка. Дифференциальные уравнения высших порядков. / К. П. Арефьев и др.: учеб. пособие / Том. политех.ун-т. Томск, 2004. 100 с.
- 2. Запорожец Г.И. Руководство к решению задач по математическому анализу. М.: Изд-во «Высшая школа», 1966. 460 с.
- 3. Кузнецов Л. А. Сборник заданий по высшей математике (типовые расчёты). Спб.: Издательство «Лань», 2005. 246 с.
- 4. Лунгу К.Н., Письменный Д.Т., Федин С.Н., Шевченко Ю.А. Сборник задач по высшей математике. 1курс. М.: Рольф, 2001. 576 с.
- 5. Подольский В.А., Суходский А.М., Мироненко Е.С. Сборник задач по математике: учеб. пособие. 2-е изд., перераб. и доп. М.: Высш.шк., 1999. 495 с.
- 6. Сборник индивидуальных заданий по высшей математике: В 3-х ч. / А.П. Рябушко, В.В.Бархатов, В.В. Держовец, И.Е. Юруть / под ред. А.П. Рябушко. Минск: Высш. шк, Ч. 2. 1991. 352 с.
- 7. Терехина Л.И., Фикс И.И. Высшая математика. Часть 4. Дифференциальные уравнения. Ряды. Функции комплексного переменного. Операционный метод.: учебное пособие. Издательство ТПУ. Томск, 2003. –264 с.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Методические указания по математике для студентов всех специальностей

Составители Людмила Болеславна Гиль

Анна Владимировна Тищенкова

Печатается в редакции составителей

Подписано к печати. 27.05.2010 Формат 60х84/16. Бумага офсетная Плоская печать. Усл. печ. лист 4,65. Уч.-изд. 4,21 Тираж 60 экз. Заказ 2038. Цена свободная ИПЛ ЮТИ НИТПУ. Ризограф ЮТИ ТПУ 652000, Юрга, ул. Московская, 17.