Individual assignment No 2

1. Calculate the final pressure when 1 mole of nitrogen at 300 K and 100 atm is heated at constant volume until attaining 500 K .
2. Calculate the pressure exerted by 1 mole of CO_{2} behaving as (a) perfect gas and (b) van der Waals gas, when it is confined in the following conditions: T $=273.15 \mathrm{~K}$ and $\mathrm{V}=22.414 \mathrm{~L}$ (constants of the van der Waals equation: $\mathrm{a}=3.592 \mathrm{~atm} \cdot \mathrm{~L}^{2} \cdot \mathrm{~mol}^{-2}$ and $\mathrm{b}=4.267 \cdot 10^{-2} \cdot \mathrm{~L} \cdot \mathrm{~mol}^{-1}$)
3. Calculate the pressure for 1 mole of He at $25^{\circ} \mathrm{C}$ to be in same volume with 1 mole of H_{2} at 1 atm and $25^{\circ} \mathrm{C}$.
4. Calculate the pressure exerted by 1 mole of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ behaving as: (a) perfect gas; (b) van der Waals gas, when confined in the following conditions: i) 273.15 K and $\mathrm{V}=22.414 \mathrm{~L}$; ii) 1000 K and $100 \mathrm{~cm}^{3}$. Data: $\mathrm{a}=5.489 \mathrm{~L}^{2} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-2}$ and $\mathrm{b}=6.380 \cdot 10^{-2} \mathrm{~L} \cdot \mathrm{~mol}^{-1}$.
5. The mass percentage of dry air at sea level is approximately: $\mathrm{N}_{2}-75.5 \% ; \mathrm{O}_{2}$ -23.2%, and $\mathrm{Ar}-1.3 \%$. What are the partial pressures of each component when the total pressure is 1 atm ?
6. A sample of 87 mg of an ideal gas at 0.600 bar duplicates its volume and triplicates its temperature. What will be the final pressure?
7. Two moles of an ideal gas at 500 K are isothermally and reversibly compressed until a final volume will equal to $1 / 10$ of the initial volume. Calculate: (a) $\Delta \mathrm{U}$ (b) $\Delta \mathrm{H}$ (c) work done by the gas (d) heat absorbed by the gas. Specific molar isochoric heat capacity of gas should be taken according to MKT 2.5R.
8. One mole of an ideal gas expands from 10 L and $0^{\circ} \mathrm{C}$ to 20 L and $100^{\circ} \mathrm{C}$. Taking $\mathrm{C}_{\mathrm{V}}=20 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$, calculate $\Delta \mathrm{U}, \mathrm{W}$ and Q for each of the following alternative steps for the whole process: (a) Isothermal and reversible expansion at $0{ }^{\circ} \mathrm{C}$ from 10 L to 20 L , followed by a constant volume heating until $100{ }^{\circ} \mathrm{C}$ and (b) Heating of 10 L at constant volume until $100^{\circ} \mathrm{C}$, followed by an isothermal and reversible expansion until 20 L .
