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FIRST AND SECOND LAWS OF 

THERMODYNAMICS  
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Content 

 Enthalpy and the caloric equation of state 

 Wording and equation of the first law of 

thermodynamics 

 The first law of thermodynamics for the working 

medium flow 
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    Enthalpy 

 total energy of an expanded system, including working 

medium and the environment 

           H = U + p·V,  J 

 specific enthalpy 

       h = u + p·v, J/kg 
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    Caloric equation of the system state 

 for equilibrium state:  

 

h = f (p, T), 

 

where h – specific enthalpy  
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Wording of the first law of 

thermodynamics 

 Perpetual motion machine of the first kind is 

impossible. 
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First law of thermodynamics 

The first law of thermodynamics is the quantitative 

expression of the law of conservation and 

transformation of energy for the goals of 

thermodynamics. 

 The notion of energy is inseparably linked with the 

matter motion: energy is a physical measure of the 

matter motion, and the law of conservation and 

transformation of energy expresses the fact of 

indestructibility of the material world motion. 

 Based on the law of conservation and transformation of 

energy can be determined the precise quantitative 

relationships between different forms of energy.  
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Wording of the first law of 

thermodynamics 

 Energy of an isolated system is a constant value 

E1 = E2 = const 

  

 heat Q delivered to the thermodynamic system is used to 

change the system energy (E2 - E1) and do the work L:  

Q = E2 – E1 + L, J  

 q = e2 – e1 + l, J/kg 

 

where (e2 – e1) – specific energy change, J/kg 
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Wording of the first law of 

thermodynamics 

 Perpetual motion machine of the first kind is impossible. 

 Previously, it was found that total energy of the fixed 

thermodynamic system equals its internal energy U.  

 Based on this, in expression Q = E2 – E1 + L we replace energy 

change (E2 – E1) with internal energy change (U2 – U1), and work 

L with expansion (compression) work Lv. 
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     Equation of the first law of thermodynamics 

 Based on this, analytical expression of the first law of 

thermodynamics for m kg is written as: 

Q = U2 – U1 + L , 

 i.e., heat Q delivered to the system is used to change 

the internal energy (U2 – U1) and do the expansion 

(compression) work. For 1 kg of substance the first 

law of thermodynamics can be written as: 

q = u2 – u1 + l 

In the differential form: 

 
dq = du + pdv  



SECOND LAW OF THERMODYNAMICS 
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Content 

 Wording of the second law of thermodynamics 

 Entropy 

 Thermodynamic identity 



Department of Nuclear and Thermal Power 

Plants, TPU 
12 

Wording of the second law of 

thermodynamics 

“Heat cannot by itself pass 
from a colder to a hotter 
body, i.e., without 
compensation”  

                     Clausius (1850)   

“Not all of the heat received from 
heat source can be converted 
into work, but only a certain 
part of it. Another part of it 
must inevitably go into the 
heat sink”. 

Thomson (1851)  

“Perpetual motion machine of 
the second kind is 
impossible” 

 Ostwald (1892) 



Department of Nuclear and Thermal Power 

Plants, TPU 
13 

Wording of the second law of 

thermodynamics 

1. In an engine running on a cycle it is not possible to 

convert all the quantity of heat, received from the heat 

source, into work. 

2. Heat flow is always directed toward the lower 
temperature. 
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Statistical formulation of the second law of 

thermodynamics 

 

 A closed system of many particles is spontaneously 

converted from a more ordered into a less ordered 

state (or from a less probable to a more probable). 
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 The second law of thermodynamics is a 

consequence of the irreversibility of thermal 

processes. 
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 Entropy 
 

 

        ds = dq/T,     J/(kgK) 

 

Clausius (1850) 

 

 ds   is a total differential 

 

 s is a function of the system state and is unambiguously 
 determined by any two thermodynamic parameters: 

s = s1(p, v) 

s = s2(p, T) 

s = s3(v, T) 

s = s4(p, h) 

etc. 
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 Entropy 

        ds = dq/T,     J/(kgK) 
 

Clausius (1850) 

 ds is a total differential 

  

s is a function of the system state and is unambiguously 
determined by any two thermal or caloric parameters: 

s = s1(p, v) 

s = s2(p, T) 

s = s3(v, T) 

s = s4(p, h) 

etc. 
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Entropy S for mass m of gas equals: 
  

S=ms, J/K 

 

As zero entropy for gas is taken on a value s0=0 at 

temperature Т=0 оС. 

 

Entropy 
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 Caloric parameters of state 

 

Caloric parameters u, h, s unambiguously describe any 

state of a thermodynamic system. 

 

Caloric u, h, s and thermal p, v, T parameters possess 

unambiguous correspondence. 
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Thermodynamic identity 

or basic equation of thermodynamics 

 

 

 Tds = du + pdv 

 

 

is obtained from dq = du + pdv and dq =Tds 

. 
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Ts-diagram  

q = sq. 1–2–s2–s1 =  
2

1

T(s)ds.    



THERMODYNAMICS 

IDEAL GAS PROCESSES 
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Content 

 Thermodynamic processes research method 

 Ideal gas 

 Polytropic process 

 Analysis of the basic ideal gas processes 



THERMODYNAMIC PROCESSES 

RESEARCH METHOD  

 
The main goal of the study of thermodynamic processes 

is to find: 

 the finite state parameters, achieved by the process;  

 work done; 

 heat, transferred during the process.  

Thermodynamic studies are based on the first and 

second laws of thermodynamics, allowing to obtain the 

calculated ratios for specific processes. 
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THERMODYNAMIC PROCESSES 

RESEARCH METHOD 

 

To calculate the reversible processes required: 

 thermal equation of state f (p, v, T) = 0 

 state functions u, h, s, etc. 

or 

 Dependences of heat capacity cp or cv on parameters 

state 

 

When calculating the irreversible processes, finite 

parameters can be determined by replacing irreversible 

transition from state 0 to state 1 with reversible one.  
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Notion of ideal gas 

 Notion of ideal gas is a scientific abstraction, 
which is a limiting case of real gases diluted: 

 

 no interaction forces between molecules; 

 molecular size is much smaller than intermolecular 

distances. 
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Ideal gas equation 

  Clapeyron (1834) 

     pv=RT 

where R – gas constant, J/(kg·K) 

  for mass m   

    pV=mRT 

where V - volume, occupied by gas, m3 

  for one kmol 

                                  

where Vμ – molar volume, m3/kmol  

Rμ = 8314,4 – molar gas constant, J/(kmol·K) 

 

T  RpV
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Molar gas constant 

5
0 0

0

1,0133 10 22,4
8314 /(kmol )

T 273,15

p V
R J K





 
   

Knowing Rμ, can be found a gas constant R for any gas, 

using the value of its molecular mass μ:  

R
R

The molar mass μ kg/kmol for some gases have the following values: 

nitrogen – 28, ammonia – 17, argon – 40, hydrogen – 2, air – 29, oxygen 

– 32, carbon oxide – 28, carbon dioxide – 44. 



Heat capacity, enthalpy and entropy 

of ideal gases 

 The dependence of heat capacity of ideal gas on 

the parameters can be determined based on the 

general ratios. In addition, for ideal gas:  

 

and 

 

 

 whereby, heat capacities cp and cv of ideal gas 

depend on temperature only 
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p vc ,c f(T)

T

dh
0

dp
T

du
0

dv



Mayer equation 
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p vc -c R
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Polytropic process 

The process, characterized by a constant value of heat 

capacity cn, is called polytropic. 

 

General thermodynamic equation for any processes can be 

obtained from the equations:  

 First law of thermodynamics    dq = cvdT + pdv   

 Clapeyron    pv = RT  

 Mayer    cv = cp - R   

Solving these equations, we obtain:  

 

 

where n – polytropic index 

 

 

 

p n

v n

c c
n

c c

dv dp
n 0

v p



Polytropic process equation 

 After integration we obtain the equation of polytropic 

process 

 

 Using the ideal gas equation pv = RT, we obtain:  

 

 

 The expression for heat capacity of a polytropic 

process 

 

 

 where               – Poisson ratio  
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npv const

n-1Tv const
1-n

nTp const

n v v

n k
c c c R(n 1)

n 1

p

v

c
k

c
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Change of internal energy and enthalpy in the 

polytropic processes of ideal gas 

 

  
2 1 v 2 1u u u c (T T )

2 1 p 2 1h h h c (T T )
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Polytropic process heat 

  

 

v 2 1

n k
q c (T T )

n 1

n 2 1q c (T T )
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Specific work of polytropic process expansion 

                                             or                                                         . 

1 2

R
pdv = (T T )

n 1

Factor out T1 and replace RT1 with p1v1  

1 1 2

1

p v T
(1 )

n 1 T

1 1 2

1

p v p n 1
1

n 1 p n
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Specific technical work 

For ideal gas pv = RT, then 

Work of 1 kg of gas in a continuous flow is linked with 

expansion work by the following dependence  

1 2

n
R(T T )

n 1
tech

1 1 2 2p v p vtech

2 1R(T T )tech

ntech

Substituting the value l, we write  
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Special cases of polytropic process 

 n=0 – isobaric process 

 n=1 – isothermal process 

 n=– isochoric process 

 n=k – adiabatic process 
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Processes in pv-diagram, Ts-diagram 

  

 isobaric process  

 isothermal process 

 isochoric process  

 adiabatic process 

 

Analysis of the basic ideal gas processes 
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Parameters ratio 

  

 isobaric process  

 isothermal process 

 isochoric process  

 adiabatic process 

 

 

Analysis of the basic ideal gas processes 
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Analysis of the basic ideal gas processes 

The change in internal energy, enthalpy, and entropy 

 

 isobaric process  

 isothermal process 

 isochoric process  

 adiabatic process 
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Analysis of the basic ideal gas processes 

Heat and work 

 

 isobaric process  

 isothermal process 

 isochoric process  

 adiabatic process 

 

 



ISOCHORIC PROCESS 

 In the isochoric process, specific volume v remains 

constant, but pressure and temperature of the working 

medium change. 

42 

Isochores in Ts-coordinates 

are logarithmic curves. The 

smaller the value of specific 

volume v, the more to the left 

will pass an isochore, i.e., the 

smaller the entropy value will 

be at a predetermined 

temperature T.  

As for ideal gas h = cpT, then 

hs-diagram will bear a 

complete similarity to Ts-

diagram. 

 

  

v1>v2 



ISOCHORIC PROCESS 

 
 Using the equation of ideal gas state pv = RT, we obtain 

the process equation 

 

 

 Polytropic index of isochoric process: 

 

 

 Process specific heat: 

 

 

 Specific work of volume change:  
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2 2

1 1

p T
=

p T

v 2 1 2 1 v 2 1q u u + pdv u u c (T T )

p v

v v

c c
n =

c c

vd pdv 0
v 0



ISOBARIC PROCESS 

In the isobaric process, pressure p remains constant, 

but volume and temperature of the working medium 

change. 
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р2>р1 

Isobars, like isochores, are 

logarithmic curves. 

As cp > cv, then Δsp > Δsv, so 

isobars become flatter than 

isochores. 

Higher pressure isobars are 

located to the left of the lower 

pressure isobars. 



ISOBARIC PROCESS 

 
 Using the equation of ideal gas state pv = RT, we obtain 

the process equation  

 

 

 Polytropic index of isobaric process: 

 

 Process specific heat: 

 

 

 Specific work of volume change:  
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2 2

1 1

v T
=

v T

p 2 1 2 1 p 2 1q h h vdp h h c (T T )

n 0

pd pdv
p 2 1 2 1p(v v ) R(T T )



ISOTHERMAL PROCESS 

In the isothermal process, temperature remains 

constant, but pressure and specific volume of the 

working medium change. 
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Isotherm in pv-coordinates 

is an equilateral hyperbola. 

In pv-diagram isotherm is an 

equilateral hyperbole, but in 

Ts-diagram – a horizontal 

line. 



ISOTHERMAL PROCESS 

 
 Using the equation of ideal gas state pv = RT, we obtain 

the process equation  

 

 

 Process polytropic index: 

 

 Process hat capacity 

 Change in internal energy and enthalpy equals: 

 

 In the isothermal process of ideal gas its internal energy 

and enthalpy remain constant. 
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2 2

1 1

p v
=

p v

tu h 0

n 1

tc



ISOTHERMAL PROCESS 

 
 To calculate the amount of heat delivered, use the first law 

of thermodynamics 

dq = du + pdv  

 As du = 0 

 

 Replace p with RT/v and obtain after integration  

  

 

 For the isothermal process the expansion work equals the 

technical work. 

This follows because the isotherm in pv-coordinates is an 

equilateral hyperbola. 
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q = = pdv

2 1

1 2

v p
q = = RTln = RTln

v p



ADIABATIC PROCESS 

 In the adiabatic process, heat is not delivered to or 

rejected from the working medium. 

 For the reversible adiabatic processes, entropy 

remains a constant value s = const, since dq = Tds 

= 0. 

 At the adiabatic expansion or compression, 

temperature, pressure, and volume of gas change. 

 Heat capacity of  the adiabatic process cs = 0, since 

dq = cdT = 0 
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ADIABATIC PROCESS 

 
 Polytropic index:  

 

 

where k – adiabatic index or Poisson ratio 

 All ratios given are obtained by replacing the polytropic 

index n with the adiabatic index k 

 

 Equation of adiabatic process:  

   

 whereof  

 

 

  

 

50 

p

v

c
n = = k

c

kpv const

k-1Tv const
1-k

kTp const



ADIABATIC PROCESS 

 Specific work of expansion (compression):  

  

 

 Specific technical work: 

 

 

 or 

 All ratios given hold only for monatomic ideal gases, since 

their heat capacities cv and cp don’t depend on temperature. 

 For di- and polyatomic gases cv, cp = f(T) and, 

consequently, the adiabatic index k = f(T) also depends on 

temperature. 
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1 2

R
(T T )

k -1

1 1 2

1

p v p k -1
1

k 1 p k

ktech

1 2

k
R(T T )

k 1
tech



Behavior of the adiabatic process in pv- and Ts-

diagrams 

52 

Show that in pv-diagram adiabatic is of the form of a 

hyperbole, which is steeper than an isotherm. 

After differentiating the equations of isothermal pv = const 

and adiabatic processes pvk= const, we obtain  

 

 

i.e., an adiabatic is k times steeper than an isotherm. 

In Ts-diagram, a reversible adiabatic is shown as a vertical 

line. 

t

p p

v v s

p p
k

v v



Behavior of the adiabatic process in pv- and Ts-

diagrams 

53 



MIXTURES OF IDEAL GASES 



ТЕРМОДИНАМИКА 55 

Content 

 Gas mixture design 

 Gas mixture laws 

 



BASIC NOTIONS AND DEFINITIONS 

 Thermodynamic processes don’t usually involve 

pure gases but gas mixtures 

 air - gas mixture mainly consisting of nitrogen and oxygen; 

 products of combustion in furnaces of steam boilers and 

internal combustion engines, etc.  

 Each gas mixture is subject to the same 

thermodynamic laws as homogeneous gases 

 For gas mixtures go through all equations obtained 

for pure gases 
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Mixture of ideal gases 

 A mixture consists of several ideal gases, which don’t 

react with one another;  

 Some gases, included in the mixture, are called  

mixture components;  

 The main goal of calculating gas mixtures is to 

determine the thermal parameters (pressure and 

volume) and state functions (internal energy, enthalpy, 

entropy, etc.) 
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Gas mixture design 

 To characterize gas mixture design, the notion of 

concentration is introduced. 

 Depending on the measurement units of components, 

the following kinds of concentration are given:  

 mass concentration  g;  

 molar concentration z;  

 volume concentration r.  

 



MASS CONCENTRATION 

 Let m denote the mixture mass, and m1, m2, m3, etc., 

denote the mass of each component (gas) included in 

the mixture, then total mixture mass equals 

m = m1 + m2 + m3 + … 

 Hence, mass concentrations (fractions) of separate 

components g1, g2, g3, etc., equal  

 

 

 or  

 

 

 i.e., the sum of all mass fractions equals one.  
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1
1

m
g

m

m
g

m

i
i

2
2

m
g

m

1 2 3g g g ... 1



VOLUME CONCENTRATION 

 Let v denote the mixture volume, having pressure p and 

temperature T, and V1, V2, V3, etc., denote the volume of a 

separate component (gas) at pressure and temperature of 

the mixture, then the total mixture volume equals  

V = V1 + V2 + V3 + …, 

where V1, V2, V3,..- partial volumes of mixture components 

 Additivity rule for the mixture volume of ideal gases v is 

due to the fact that each mixture component behaves 

“independently” with respect to the other gases, since 

there is no interaction between molecules (mass points) of 

ideal gas. 
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VOLUME CONCENTRATION 

 Given this issue, volume concentrations (fractions) of the 

components r1, r2, r3, … equal  

 

or 

r1 + r2 + r3 + … = 1, 

 i.e., the sum of all volume fractions equals one. 
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1
1

V
r

V
2

2

V
r

V

3
3

V
r

V



Department of Nuclear and Thermal Power 

Plants, TPU 
62 

Relationship between the mass and 

volume concentrations 

m V
r

m V

i i i i
i ig

V

V
r i
i 
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Gas mixture laws 

 Dalton law 

 Clapeyron equation 

 Avogadro law 

 



Partial volumes and partial pressures of  

gas mixture 

 Assume that in the cylinder of constant volume at the 

pressure p and temperature T is stored gas mixture, 

e.g., air, consisting of nitrogen and oxygen (neglecting 

other components). 

 In case of removing nitrogen at a constant 

temperature T from the cylinder, the pressure of 

oxygen decreases to a value called the partial oxygen 

pressure in the mixture. 

 Partial pressure рi – pressure that a gas mixture 

component has if itself, at the same temperature, fills 

the whole mixture volume V. 
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Dalton law 

....
1

21 



n

i
in ppppp

Total mixture pressure p equals the sum of partial 

pressures of separate gases:  



THERMODYNAMIC STATE FUNCTIONS 

 The fact that ideal gas possesses no interaction 

forces between molecules allows calculating 

thermodynamic properties and state functions 

based on the additivity rule, which greatly simplifies 

the calculations. 

Consequently:  

 mixture internal energy u = Σgjuj;  

 mixture enthalpy h = Σgjhj 
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HEAT CAPACITY OF IDEAL GASES MIXTURE 

 isochoric heat capacity of mixture cv = Σgjcvj  

 isobaric heat capacity of mixture cp = Σgjcpj  
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Clapeyron equation 

рiV=miRiT  


