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Chapter 1

Kinematics

Any motion of an real object from one space point to another is called
mechanical motion. The purpose of classical mechanics is studying of
mechanical motion. This purpose consists of two parts:

- mathematical description of all the possible mechanical motions of a
object in study;

- explanation of motion causes in all the possible conditions that ac-
company the mechanical motion of the object.

The first problem is solved by branch of mechanics, called kinematics,
the second – by branch of mechanics, called dynamics.

1.1 Physical reality and its modelling

The mathematical description of the motion of real objects of world
around is impossible (at least with the help of the mathematics, that man
has built to date). Modern mathematics can only describe a mathematical
model of a real object. And of course, the simpler the model, the easier
its description.

The simplest model of the object that can move is a point particle. As
it is known a point particle is usually referred to as a physical object, the
own size of that is small or negligible, or if its geometrical properties
and structure are irrelevant.

Such a definition of a point particle allows one to create a sufficiently
clear idea about this physical object, but it is not mathematically construc-
tive (i.e. it does not contain elements of a mathematical model indicating
how to describe the physical object in mathematical language).
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We introduce a slightly different definition of a point particle. First of
all, we emphasize that a point particle is a mathematical abstraction of a
real object of Nature. And accordingly, by a point particle will be called
any point in space, which is attributed to all the physical parameters of
the object.

From such a definition of a point particle, it is clear that in terms
of mathematics the description of a point particle location in space is
equivalent to the description of any space point position. But to describe
the position of a point in space, one must first define the coordinate
system (abbreviated – CS).

Coordinate system is a rule by which every point in space is associated
with n numbers, called coordinates of a point. The minimum number
of coordinates needed to describe the position of a point in space, called
the dimension of the space.

Fig.1.1.

Our everyday experience shows us that physical space is three-di-
mensional (i.e., n =3). The simplest ex-
ample of coordinate system is Cartesian
CS. It consists of three axes oriented per-
pendicularly to each other and the point
where they meet is its origin. Coordi-
nate axis are usually named as X, Y , and
Z. On the figure, for example, a three di-
mensional Cartesian coordinate system is
represented, with origin O and axis lines

X, Y and Z oriented as it is drawn by the arrows. Procedure for finding
the coordinates (x, y, z) of a point particle M is qualitatively shown in
Fig.1.1.

However, to describe not just the position of a point in space but its
motion as well — we must be able to measure the change of the point
position in space over the time. In physics, a procedure that allows to
define coordinate system as well as the method of time measurement is
called the procedure of specifying the reference frame (abbreviated -
RF).

More precisely, the reference frame is the set of basis and calibra-
tion. Here:

• basis is the set of physical laboratories (real or imagined), located at
all points in space and equipped with instruments for measuring time
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and length intervals;

• calibration is the rule that assigns 4 (four) numbers to each event in
the physical space. Three (3) of this numbers specifies the coordinates
of the physical event (i.e., they specify the CS), and the fourth number
is the time of the physical event occurrence.

According to this definition, the reference frame can be drawn in two ways:

- as a coordinate system one of which axes is the axe of time (it is
possible, if the point moves on a plane, or along a straight line);

- as a coordinate system with the additional designation, indicating
the possibility of measuring time (usually by letter K).

Fig.1.2.

Consider the motion of a point relative to a RF K. Let in time in-
terval from t1 to t2 a point particle has
moved from the space point M1 to some
space pointM2 along L line (called, as it is
well known, trajectory or the path). Let
connect the origin of the CS (coincided
with the selected RF) with the points M1

andM2 by segments directed to the points
(OM1 and OM2 segments). Each of these
segments is obviously a vector and is re-
ferred to as radius vector (position vec-
tor) of a point particle. So, we have:

OM1 : ~r1 = (x1, y1, z1), OM2 : ~r2 = (x2, y2, z2),

Therefore, specifying the radius vector of a point particle in some moment
we specify the coordinates of the point in that moment and thus, we
completely define the position of the point relative to the selected RF.

During the motion of a point particle along some curvilinear path the
radius vector is changed in time. The change of the radius vector in the
selected RF is described by equation that can be written in vector or
coordinate form

~r = ~r(t) ⇐⇒


x = x(t),
y = y(t),
z = z(t).

(1.1.1)
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Fig.1.3.

These equations are called the equations of motion of a point
particle. We recall, that equations (1.1.1)
are the equations of a line in three dimen-
sional space, written in parametric form.
The time t plays the role of a parameter
and the line is nothing but the trajectory
of a point. Equations (1.1.1) can be writ-
ten in the form of f(x, y, z) = 0 as well.
To do that one needs to exclude the pa-
rameter t (time) from these equations and
to find the relationship between the spa-
tial coordinates of a moving point. The

equations of motion, written in such a form, are referred to in physics as
phase trajectory equations.

Consider an elementary (or, as mathematicians say, infinitesimal) dis-
placement d~l of a point particle along the trajectory L, which took place
in an elementary time interval dt. Elementary interval |d~l |, which con-
nects the initial and final position of the point particle in this case, should
be a linear approximation corresponding to the curved segment dl̆ of the
trajectory L.

Then, according to the geometric meaning of the differential, segment
|d~l | must lie on a tangent line to the trajectory at the point correspond-
ing to the initial position ~r(t). Therefore, the vector d~r, directed along
the tangent to the trajectory of a particle, is called an elementary dis-
placement vector and its length — elementary path dS:

|d~r| = dS . (1.1.2)

The sum of elementary paths along the trajectory will give us, obviously,
the length of the trajectory, that is the distance travelled by the point
particle. By definition, the sum of infinitesimal quantities (i.e., elementary
quantities) is an integral. So we have:

S =

∫
L

|d~r| , (1.1.3)

where S is the distance covered by a point particle,
∫
L

— notation for the

curvilinear integral along the point trajectory L.
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Note that the definition (1.1.3) represents the distance as the sum of
the modules (i.e., positive values) and hence the distance covered by a
point particle can only increase.

Derivative of the radius vector with respect to time at any given point
of the trajectory is called the velocity vector of a point:

~v(t) =
d~r(t)

dt
⇐⇒


vx = dx(t)/dt,
vy = dy(t)/dt,
vz = dz(t)/dt.

(1.1.4)

According to the definition (1.1.4) and taking into account the meaning of
the derivative, velocity vector ~v(t) measures the rate of the radius vector
change in time during the motion of a point in space. Obviously, the
velocity vector (as well as d~r) is directed at a tangent to the trajectory.

Magnitude of the velocity – speed – is the module (length) of the
velocity vector and therefore by definition (1.1.4)

|~v(t)| = |d~r(t)/dt|
↗ dt>0

= |d~r(t)|/dt = dS/dt .

↘ according to (1.1.2)

(1.1.5)

Thus the speed (magnitude of the velocity) is the time derivative of dis-
tance and characterizes the rate of change particle path length in time.

Further, a derivative of the velocity vector with respect to time at any
given point of the trajectory is called the acceleration vector of a point
particle

~a =
d~v(t)

dt
⇐⇒


ax = dvx(t)/dt = d2x(t)/dt2,
ay = dvy(t)/dt = d2y(t)/dt2,
az = dvz(t)/dt = d2z(t)/dt2.

(1.1.6)

in a similar way to velocity, acceleration measures the rate of change of
velocity vector during the motion of a point in space.

1.2 Velocity for an arbitrary motion

We study the properties of the kinematic characteristics of motion –
velocity and acceleration – at any given time moment.

To do this we need the notion of an “instantaneous” coordinate
system: the “instantaneous” CS we will call so coordinate system, that
set only to certain time moment.
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Fig.1.4.

As usual, we consider the motion of a point particle with respect to the
reference frame K. Suppose that in an el-
ementary time dt starting from initial mo-
ment t the point particle has moved from
the space pointM1 to the space pointM2.
We choose the direction of the axis OZ
of the instantaneous Cartesian CS (coin-
cided with the selected RF K) so that the
points M1 and M2 lie in a plane parallel
to the coordinate planeXY . We represent
the radius vector of the point particle as
the product of a unit vector ~er(t), which is

directed along the radius vector (at any time), and of the module (length)
of the radius vector:

~r(t) = ~er(t)|~r|. (1.2.1)

Then the velocity vector takes the form

~v(t) =
d~r(t)

dt
= ~er(t)

|d~r(t)|
dt

+ |~r(t)|d~er(t)
dt

. (1.2.2)

Thus, the velocity vector of a point for any type of its motion can be
represented as the sum of two components. One component is directed
along the radius vector

~vr(t) = ~er(t)
|d~r(t)|
dt

(1.2.3)

and is called the linear motion velocity of a point particle. The second
component, is perpendicular to the radius vector:

~vn(t) = |~r(t)|d~er(t)
dt

. (1.2.4)

The name of the component ~vn we will introduced a little bit later. First
we need to find out the meaning of time derivative of the unit vector ~er.

To find this derivative we will complete the Fig.1.4: let’s draw the unit
vectors along the initial radius vector of the particle (i.e. in the direction
of vector ~OM 1 — ~er(t)) and along the radius vector for the time point
t + dt (i.e. in the direction of vector ~OM 2 — ~er(t + dt)). The angle
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between the OZ axis and the radius vector of a particle will be denoted
by θ.

Fig.1.5.

Next, we draw perpendiculars to the OZ axis from the end of the
unit vectors. Due to the fact that the
ends of the unit vectors (as well as the
pointsM1 andM2) lie in the plane parallel
to XY coordinate plane, perpendiculars
from these points will fall into one point
of the OZ axis — a point z1. Accordingly,
the perpendiculars form the segments z1a
and z1b, as well as the triangle z1ab are
parallel to the XY plane. Then e1 =
z1a = |~er(t)| sin θ is the magnitude of the
unit vector projection on the XY coordi-

nate plane at the initial time point t, and e2 = z1b = |~er(t + dt)| sin θ is
the magnitude of the unit vector projection on the XY coordinate plane
at the time point t+ dt.

Let us denote the elementary angle between the initial and final posi-
tions of the point in the XY plane (i.e., between segments e1 and e2) by
dϕ. Then the length of the elementary segment d|~e|, connecting the ends
of the segments e1 and e2, equals to

d|~e| = e1dϕ = |~er| sin θdϕ. (1.2.5)

We recall that the derivative of the rotation angle of a particle over time
is called angular velocity of a particle

ω =
dϕ

dt
. (1.2.6)

Consequently it follows from (1.2.5) that

d|~er|
dt

= |~er|ω sin θ. (1.2.7)

By definition, the magnitude of the vector product (cross product)
of any two vectors, such as ~a and ~b, to take an example, is

|[~a,~b]| = |~a||~b| sin(~̂a,~b). (1.2.8)
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Thus, assuming that the angular velocity vector is directed along the
axis of rotation (i.e. along the Z axis), we obtain

d~er
dt

= [~ω, ~er]. (1.2.9)

According to the definition (1.2.4), the velocity component, perpendicular
to the radius vector of a point, can be written in the next form

~vn(t) = [~ω,~r]. (1.2.10)

From (1.2.10) it is clear that this velocity vector is a characteristic of
rotational motion of a point (it shows the velocity of radius vector rotation
around the axis of rotation – in our case around Z axis) and is called,
respectively, rotational velocity.

So, we have found that

any motion of a particle
can be decomposed into two types of motion:
linear (rectilinear) – along the radius vector

(with velocity ~vr)
and rotational – with respect to the reference frame origin

(with velocity ~vn)

Accordingly, the particle velocity vector at any point of its trajectory
can be decomposed into two components:

- velocity ~vr of linear motion (eq. (1.2.3)

- and velocity ~vn of rotational motion (eq. (1.2.10).

So, the velocity vector for a general motion can be written in the form

~v(t) = ~er(t)
d|~r(t)|
dt

+ [~ω(t), ~r(t)]. (1.2.11)

To be more precise, it should be said that the change in direction of the
vector ~ω(t) in time is equivalent to change in direction of the Z axis (as
well as of X and Y axes) belonging to the “instantaneous” coordinate
system.
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1.3 Acceleration for an arbitrary motion

As in the previous paragraph, we study the motion of a point with
respect to the reference frame K. Let us suppose, as before, that in an
elementary time dt the point particle has moved from the space point M1

to the space point M2.
Velocity vector of a point particle ~v can be written in the form of

a product of the unit vector ~eτ(t), which is directed along the velocity
vector (for any certain time), and the module (length) of velocity vector:

~v(t) = ~eτ(t)|~v|. (1.3.1)

Then acceleration vector will have the form

~a(t) =
d

dt
(~eτ(t)|~v|) = ~eτ(t)

d|~v(t)|
dt

+ |~v(t)|d~eτ(t)
dt

. (1.3.2)

In the last term of equation (1.3.2) we change the variables:

d~eτ(t)

dt
=

d~eτ
dS

dS

dt︸︷︷︸ = |~v(t)|d~eτ
dS

(1.3.3)

↘ according to (1.1.5) it is |~v|

and introduce new notation

R = 1

/∣∣∣∣∣d~eτdS
∣∣∣∣∣. (1.3.4)

So, for the acceleration vector we obtain:

~a(t) = ~eτ
d|~v(t)|
dt

+
|~v|2

R
~en, (1.3.5)

where ~en is the unitary vector perpendicular to the velocity vector (i.e.
perpendicular to the unitary vector ~eτ). The first term in this equation
is denoted by aτ and is called tangential (i.e. tangent to the velocity
vector) acceleration. Accordingly, the second term is denoted by an and
is called normal (perpendicular to the velocity vector) acceleration.

Let us find out the meaning of the value R, introduced in the equality
(1.3.4). To do this, we consider the motion of a point particle along a
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circular path with constant velocity (i.e. both angular velocity vector
~ω = const and the radius vector |~r | = const). In this case, ~v = ~vn and
we have for the acceleration

~a(t) =
d~vn
dt

↗ω = const

=
d

dt
[~ω,~r] =

[
~ω,
d~r

dt

]
=

[
~ω, [~ω,~r]

]
.

↘
see (1.2.10)

(1.3.6)

The last expression in this equation contains a double vector (cross) prod-
uct, which can be transformed according to the formula[

~a, [~b,~c]

]
= ~b(~a~c)− ~c(~a~b). (1.3.7)

The relationship (1.3.7) is easy to remember by a mnemonic rule: bac-
cab.

Consequently, ~a(t) = ~ω(~ω,~r) − ~rω2. But for the motion of a point
along the circular path it’s angular velocity vector ~ω is perpendicular to
the radius vector ~r. This means that the scalar product of these vectors
is zero (~ω,~r) = 0. And we obtain for the acceleration

~a(t) = −~rω2. (1.3.8)

The magnitude of acceleration vector equals to |~a| = |~r|ω2. Then, recalling
that the magnitude of it’s angular velocity vector ω = |~v|/R, (here the
letter R denotes the length of the radius vector |~r|, i.e. the radius of the
circle) we arrive at the well-known expression

|~a(t)| =
|~v|2

R
= |~ac|. (1.3.9)

Hence, for the motion along a circular path with constant velocity, normal
acceleration vector of a point particle is a centrifugal acceleration |~ac|.

Comparing the formula for the normal acceleration (second term in
(1.3.5)) with the last equation, we see that for the motion of a point along
a circular path the value of R coincides with the radius R of the circle.

Obviously for an arbitrary motion of a point particle, value R equal to
the radius of a certain (i.e., corresponding to a certain time) circle. In
other words, the result obtained in equation (1.3.5), means that
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at any trajectory point,
point particle motion

can be regarded as
rotational motion along the certain circle arc,

whose radius equals to R
(with tangent ~aτ and normal ~an accelerations.)

Value R is called the trajectory curvature radius at a certain point.

Fig.1.6.

The figure shows an example of decomposition of the total acceleration
vector for a point particle (located at a pre-
set space point M at a certain time) on its
components: normal and tangential acceler-
ations. For the same pointM the certain cir-
cle with centre at the point O is constructed.
The circle radius equals to the curvature tra-

jectory radius R at the point M and numerically equals to the segment
OM length.

1.4 Types of acceleration

In paragraph 1.2 it was found that any motion of a point particle can
be decomposed into two types of motion: linear (along the radius vector)
and rotational (with respect to the origin of RF). Accordingly, velocity
vector can be represented as a vector sum of two vectors that characterize
these motions (velocity vectors ~vr and ~vn).

Obviously, such representation of the motion affects also by the accel-
eration. Let us find out what types of acceleration characterize the motion
of a point particle taking into account the possibility of the motion de-
composition on linear and rotational one.

According to the definition (1.1.6)

~a(t) =
d~v(t)

dt
.

If we recall here the expression for the velocity (1.2.11), then we obtain
for the acceleration

~a(t) =
d

dt

(
~e(t)

d|~r(t)|
dt

+ [~ω(t), ~r(t)]

)
(1.4.1)
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From this expression, using the product rule for derivatives, it’s easy to
find that (for the functions on time we use here the abbreviation f instead
of f(t) for brevity):

~a(t) = ~e
d2|~r|
dt2

+
d~e

dt

d|~r|
dt

+

[
d~ω

dt
, ~r

]
+

[
~ω,
d~r

dt

]
. (1.4.2)

Derivative of the particle angular velocity over time is called angular ac-
celeration of a particle

~ε =
d~ω

dt
. (1.4.3)

The equation (1.2.9) gives us, as we had shown earlier, the derivative of
the unit vector ~e on time t. Then

~a = ~e
d2|~r|
dt2

+
d|~r|
dt

[~ω,~e ] + [~ε, ~r ] +

[
~ω,

(
~e
d|~r|
dt

+ [~ω,~r ]

)
︸ ︷︷ ︸
velocity ~v =

d~r

dt

]
(1.4.4)

If we now open the brackets in the last vector product, we obtain

~a = ~e
d2|~r|
dt2

+ 2

[
~ω,~e

d|~r|
dt

]
+ [~ε, ~r ] +

[
~ω, [~ω,~r ]

]
. (1.4.5)

In paragraph 1.2, the value of d|~r|/dt was named the velocity ~vr(t) of a
point linear motion. Accordingly, the value of ~ar

~ar = ~e
d2|~r|
dt2

, (1.4.6)

we will call the linear motion acceleration (along the radius vector)
of a point particle

With the help of this notations, the equation for the acceleration of a
point particle will have the form:

~a = ~ar + 2 [~ω,~vr] + [~ε, ~r ] +

[
~ω, [~ω,~r ]

]
. (1.4.7)
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In this expression only the first term (i.e., ~ar ) characterizes a particle mo-
tion along the radius vector. Hence the remaining three members charac-
terize the rotational motion of a point particle with respect to the reference
frame origin. Historically, these three components of particle acceleration
are divided into two

~aξ = [~ε, ~r ] +

[
~ω, [~ω,~r ]

]
, (1.4.8)

~ak = 2 [~ω,~vr]. (1.4.9)

Component of the acceleration ~aξ is called drag acceleration. It
characterizes the change in the velocity when the particle moves along an
arc of an instant circle.

Component of the acceleration ~ak is called Coriolis acceleration
(Gaspard-Gustave de Coriolis was a French scientist, who studied the
motion with such acceleration). This acceleration characterizes the rate
of change of velocity vector for the motion of a point particle along the
radius of rotating instant circle.

To better visualize the properties of these components of the total
acceleration, we consider examples of a particle motion in which these
components occur.

a) A particle moves linearly. Then

kinematic kinematic characteristics
conditions of motion (Fig.1.8a)
of motion
~ω = 0 ~a = ~ar = ~e d2|~r|/dt2

(~ε = d~ω/dt = 0) ~v = ~vr = ~e d|~r|/dt
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a) b) c)
Fig.1.8.

b) A particle moves along the arc of a circle. Then

kinematic kinematic characteristics
conditions of motion (Fig.1.8b)
of motion
r = const ~a = ~aξ = [~ε, ~r ] + [~ω, [~ω,~r ] ] =
~ω ⊥ ~r = ~ω(~ω,~r)− ~rω2 + [~ε, ~r ] =

= ~an + ~aτ
~v = ~vn = [~ω,~r ].

Here, in obtaining an expression for the acceleration, we used the formula
(1.3.7) to calculate the double vector product.

в) A particle moves along the radius of a rotating circle (disk). Then

kinematic kinematic characteristics
conditions of motion (Fig.1.8c)
of motion
~ω = const ~a = 2 [~ω,~vr] − ~rω2 =
~vr = const = ~ak + ~an
~ω ⊥ ~r ~v = ~vr + [~ω,~r ] = ~vr + ~vn.

It should be noted that it is impossible to build a motion in which
the acceleration of a point would have only the Coriolis acceleration com-
ponent.
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1.5 Reconstructing motion equation (integral rela-
tions)

Knowing the equation of motion, i.e. the dependence of the radius
vector on time ~r = ~r(t), we can find the velocity ~v and acceleration ~a
vectors of a point particle for any time point. This is so-called direct
problem. The question arises: can we find the motion equation ~r = ~r(t),
knowing the time dependence of the velocity ~v(t) or acceleration ~a(t)
vectors? The solution to this problem is called the inverse problem.

1.5.1 From the velocity vector

Suppose we are given the velocity vector of a point as a function of
time

~v = ~v(t) =
d~r(t)

dt
(1.5.1)

and it is required to find the trajectory equation, that is, the dependence
of ~r = ~r(t) , on the base of the knowledge the velocity vector. It is clear
that from (1.5.1) we can find d~r(t) = ~v(t)dt . Integration of this equation
from the initial time point t0 to any current time point t gives us

~r(t)− ~r(t0) =

t∫
t0

~v(t)dt , (1.5.2)

or

~r(t) = ~r(t0) +
t∫
t0

~v(t)dt , (1.5.3)

where ~r(t0) is the point particle radius vector at the initial time moment.
Thus we see that

for the reconstructing motion equation
from the velocity vector

one needs to know
initial position of the point particle.
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For example consider a particle moving so that its velocity vector remains
constant in magnitude and direction (i.e., a point particle moves uni-
formly and rectilinearly):

~v(t) = const = ~v0 (1.5.4)

Let us substitute this expression for the velocity in equation (1.5.3)

~r(t) = ~r(t0) +

t∫
t0

~v0dt = ~r(t0) + ~v0

t∫
t0

dt = ~r(t0) + ~v0(t− t0) . (1.5.5)

Obtained equation describes a particle in linear motion with a constant
velocity and initial position defined by the radius vector ~r0 = ~r(t0). If
we assume that in the initial time moment t0 = 0 the particle was at the
reference frame origin, this equation takes its simplest form:

~r(t) = ~v0t . (1.5.6)

1.5.2 From the acceleration vector

Suppose we are given the acceleration vector of a point particle as a
function of time

~a = ~a(t) =
d~v(t)

dt
. (1.5.7)

And it is required to find the trajectory equation, that is, the dependence
~r = ~r(t), from this definition. It is clear that equation (1.5.7) reads
d~v(t) = ~a(t)dt. Integration of this equation from the initial time point t0
to any current time point t gives us

~v(t)− ~v(t0) =

t∫
t0

~a(t)dt , (1.5.8)

or

~v(t) = ~v(t0) +

t∫
t0

~a(t)dt , (1.5.9)

where ~v(t0) is the velocity vector at the initial time point.
Equation (1.5.9) determines the velocity vector as a function of time.

Therefore now, to find the equation of the trajectory, we can use the result
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of the preceding paragraph, where we had found trajectory equation for a
given velocity. Substituting the right hand side of the last equation into
the equation (1.5.3) we obtain:

~r(t) = ~r(t0) +

t∫
t0

[
~v(t0) +

t∫
t0

~a(t)dt

]
dt (1.5.10)

or

~r(t) = ~r(t0) + ~v(t0) (t− t0) +

t∫
t0

t∫
t0

~a(t)dt2 (1.5.11)

where ~r(t0) is the radius vector, and ~v(t0) is the velocity vector at the
initial time moment.

By this way we see, that

for reconstructing motion equation
from the acceleration vector

one needs to have two parameters:
initial position and velocity vector

of the point particle
at the initial time point.

When a particle moves so that its acceleration vector remains a con-
stant (magnitude as well as direction are constant, so this is uniformly
accelerated motion): ~a(t) = const = ~a0, the corresponding equation
(1.5.11) have the form:

~r(t) = ~r(t0) + ~v(t0) (t− t0) +
~a0(t− t0)2

2
. (1.5.12)

In this case, we have found the motion equation with constant acceleration
~a0, initial radius vector ~r0 = ~r(t0) and initial velocity vector ~v0 = ~v(t0).
If we assume that at the initial time moment t0 = 0 the particle was at
the reference frame origin, this equation receive simplest form:

~r(t) = ~v0 t +
~a0t

2

2
. (1.5.13)
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1.6 Galilean transformations

Before this section, the mathematical description of a point particle
mechanical motion was considered in a certain frame of reference

This means that if the necessary measurements have been made in a cer-
tain reference frame (for example, was measured the particle coordinates
at the different time points), then these measurements allow to obtained
any others kinematic parameters of this particle (velocity, acceleration,
etc.).

However, the question arises: how to obtain the description of a particle
motion in the reference frame K, on the base of measurement results in
the reference frame K ′ moving relatively to RF K with a certain velocity
~v0(t)?

Fig.1.9.

To answer this question, we consider the motion of a point particle
with respect to two reference frames — K

and K ′. Radius vector connecting the ori-
gins of these reference frames (points O and
O′) we denote as ~ro. Suppose that in a spe-
cific time point t the particle is at a point
M . Then the radius vector of the particle
relative to the reference frame K is ~r(t) and
relative to the reference frame K ′ is ~r ′(t′)
(here t′ is time measured in reference frame
K ′ – in general case it is different from t).

These three vectors form a triangle and hence

~r(t) = ~ro(t) + ~r ′(t′). (1.6.1)

By definition, ~v ′(t′) =
d~r ′(t′)

dt′
is the velocity vector of a point particle

relative to reference frame K ′. Accordingly, ~v(t) =
d~r(t)

dt
is the velocity

vector of the point particle relative to the reference frame K, and ~vo(t) =
d~ro(t)

dt
is the velocity vector of the reference frame K ′ itself with respect

to K.
Taking the time derivative of expression (1.6.1) with respect to time t
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defined in the reference frame K we obtain

~v(t) =
d~ro(t)

dt
+

d~r ′(t′)

dt′
dt′

dt
=

= ~vo(t) + ~v ′(t′)
dt′

dt
. (1.6.2)

Here we’ve made the change of variables in the second term on the right
hand side. Thus we see that for an unambiguous determination of
kinematic parameters describing the motion of a point particle
relative to the reference frame K, by the measurements made
in the reference frame K ′, one needs to know the connection of
time moments t and t′.

In classical mechanics the problem of time points relationship in various
frame references is solved by use of Galileo postulate:

time points in different reference frames
coincide with each other

up to a constant,
that is defined by the clock synchronization procedure,

id est:
t = t′ + const. (1.6.3)

It is usually assumed that clocks are synchronized so, that t = t′ , i.e.
const = 0. By using this method of synchronization the equation (1.6.1)
takes the form

~r = ~ro + ~r ′ (1.6.4)

(time points are not shown for the reason of their equality).This equation
is called Galileo transformation rule for the coordinates, that were
measured from an arbitrary reference frames.

Equation (1.6.2) does not depend on the method of time synchroniza-
tion (i.e. on the choice of the constant in (1.6.3)):

~v = ~vo + ~v ′ (1.6.5)

and is called the law of velocities addition.
To find the relationship between accelerations in different reference

frames one needs (by definition) to take time derivative of equation (1.6.5).
As the result we have:

~a = ~ao + ~a ′ . (1.6.6)
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Here ~ao is acceleration of reference frame K ′ relative to K.
The set of all three equations (1.6.4 - 1.6.6) is called Galileo trans-

formation rules for the arbitrary reference frames.
There is a set of reference frames among all the possible ones that

occupies a special place: they move relative to each other with constant
velocity (i.e., their relative acceleration is zero). Such reference frames are
called inertial reference frames (IRF).1

Let us find Galileo transformation rules for inertial reference frames. If
the velocity vector of IRF K ′ (~vo = const) is known, then the location of
IRF K ′ origin could be found as equation of motion obtained on the base
of known velocity (see, Section 1.5):

~ro(t) = ~ro(to) + ~vo (t− to), (1.6.7)

where ~ro(to) is the radius vector of IRF K ′ origin point (i.e. of the point
O′ - see, Fig.1.9) at the initial time moment to.

Let’s take initial time point to be zero: to = 0 and origins of inertial
reference frames K and K ′ at this moment coincide: ~ro(to) = 0. Then
Galileo transformation rules for inertial reference frames will take
the form

~r(t) = ~vo t+ ~r ′(t),
~v(t) = ~vo + ~v ′(t),
~a(t) = ~a ′(t),

(1.6.8)

The last equation in this transformation rules should be paid a special
attention. It means that acceleration vector of a point particle is
the same in all of the inertial reference frames.

This result is a quite clear evidence of exceptional properties of inertial
reference frames. As the consequence, exactly these systems should be
used to study of mechanical phenomena. Anywhere below, if it is not
specified otherwise, such a choice of reference frame will be assumed.

1This frase is not a definition of inertial reference frames (it will be formulated in next
chapter), but it gives a good logic and reasonable idea of such systems.



Chapter 2

Dynamics

Kinematics describes the motion of bodies not taking into account the
question of why the body moves so (e.g. uniformly in a circle, or is uni-
formly accelerated in a straight line), and not otherwise.

Dynamics studies the motion of bodies in relation to those factors (in-
teractions between bodies), which cause a particular pattern of motion.
The basis of the so-called classical or Newtonian mechanics is the three
laws of dynamics, formulated by Newton in the end of XVIth century.

In this chapter the dynamics of:

• a material point,

• system of material points,

• absolutely rigid body

is consecutively described. On this basis we set out the basic laws of ab-
solutely rigid body dynamics, that is modelled by a system of material
points (this allows us the use of all previous material). In further para-
graphs concepts of work and energy are introduced with special attention
paid to the concept of potential fields, potential energy and their prop-
erties. The laws of conservation for full mechanical energy, linear and
angular momentums are derived. On the base of conservation laws some
important types of mechanical interaction and motion are considered: ab-
solutely rigid and non rigid collisions, the motion of a body of variable
mass and Kepler’s laws.
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2.1 Dynamics of material point

The laws of physics, like of any other science — the laws that describe
abstract models of real objects of Nature. Therefore, before formulating
a law for the objects of interest in the selected RF, we need to build it’s
model that accurately reflects the properties of the object in the selected
RF. It is clear that this type of description, will force us to re-build all the
laws for each new RF – obviously an impossible task. Consequently, for
the construction of the laws describing the abstract models of real objects
we need to construct such abstract reference frames, that will conserve the
form of physical laws (at least mechanical laws).

In other words, our laws should be valid in all (well-formed) abstract
reference frames. In particular for problems of mechanics we can assume
that there is a reference frame in which the acceleration of a point is en-
tirely originated from interaction with other bodies. Then, a free particle
that is not exposed to any other bodies, should move relative to a reference
frame uniformly, or, as it is said, by inertia. Such RFs are called inertial
reference frames, the qualitative concept of which has already been given
in section 1.6.

The assertion that the inertial reference frames exist is the content of
the first law of classical mechanics — the Galileo-Newton’s law of inertia.
In the next section we give a rigorous definition of the inertial reference
frames and Newton’s laws are formulated.

2.1.1 Laws of Newton

Newton’s laws have resulted from the large number of theoretical gen-
eralization of experimental facts. The correctness of these laws, as well as
any other, confirmed by the agreement of theoretical results of abstract
models description with the observed behaviour of real objects.

Accordingly, if in some conditions, the behaviour of real objects begins
to differ from predicted behaviour of their model, this means that the law
is not satisfied. Therefore we need to either refine the existing law, or
(if the predictions of the law essentially differ from the behaviour of real
objects) – to build a new one. But, for the construction of a new law we
need, of course, first accumulate a sufficiently large set of experimental
facts to have the possibility of generalization.
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First Newton’s law

Let us give a rigorous definition of inertial reference frames. Refer-
ence frames in which the law (equation) of motion is uniquely defined, if
specified:

• initial conditions ~ro = ~r(to), ~vo = ~v(to),

• the function ~F (~r, t), describing the interaction with the environment

are called inertial reference frames (IRF ).
Function of coordinates and time ~F (~r, t), describing the interaction of

a point with the environment, is called force. The target of Newton laws
— to find out the causes of motion and, as it will be shown later, this
problem in each case is in determination of the function ~F (~r, t).

Having defined the concept of IRF, we can formulate Newton’s first
law:

Inertial reference frames exist,
as a mathematical abstraction

of real reference frames.

The second Newton law

As mentioned above, the problem of Newton’s laws - to find out the
causes of movement. Let us compare the means of obtaining the equations
of motion in the kinematics and dynamics.

From the viewpoint of kinematics, to recover the equations of motion
for a given acceleration ~a(~r, t) one needs to know two parameters: the
initial position of a material point and the speed of this point in the
initial time moment.

From the point of view of dynamics equation of motion can be uniquely
determined on the base of knowledge of the function ~F (~r, t) – force. In
this case one needs to know two parameters: the initial position of a point
and the speed of this point in the initial time moment.

Kinematics Dynamics
~r0, ~v0 ~r = ~r(t) ~r0, ~v0 ~r = ~r(t)

~a(t) ~F (~r, t)

⇒ ~a(t)⇐⇒ ~F (~r, t)
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Thus the acceleration and force perform similar functions in the two
sections of mechanics. As a consequence, we can formulate the second law
of Newton:

In inertial reference frames
interaction of an object with the environment (force)

causes acceleration of the object.

Historically, the particular mathematical form of the law connecting ac-
celeration and force was chosen in the simplest form:

~a(t) =
1

m
~F (~r, t) (2.1.1)

where m is the coefficient of proportionality between acceleration and
force. It characterizes the ability of the body to receive acceleration due
to some force, i.e. is a measure of the body inertia and, accordingly, is
called inert mass.

In essence, the equation (2.1.1) is the definition of the force concept.

Third Law of Newton

Newton’s third law in general, is a universal law of interactions: every
action causes an equal in magnitude reaction. The third law of Newton
for physics:

For any physical interaction
the action of one body on another

causes equal in magnitude and opposite in direction
reaction of the second one on the first body.

We emphasize that the forces related by Newton’s third law are attached
to different bodies and therefore can never start at one point.

This feature of the forces connected by Newton’s third law (the impos-
sibility to have the origin in one point), imposes certain restrictions on
the form of the law itself. The fact of the matter is that
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• one vector equation may not contain vectors that originate in differ-
ent points of the space.

That is why third Newton’s law can not be written in vector form. But
we can write it in the next form:

|~F12| = −|~F21|, (2.1.2)

where the minus sign – the so-called “physical” minus which only shows
that forces |~F12| and |~F21| are oppositely directed.

2.1.2 Types of forces in point mechanics

We emphasize that if one uses the model of material point to describe
the motion of a physical body, all the forces applied to this body, must
be appended precisely to this point (which, as we will see in further para-
graphs, is the centre of mass). There are four types of forces in me-
chanics of a material point.

1. Predefined forces (symbol - ~F )

Specifically defined force, the magnitude and direction of which are defined
a priory (figure 2.2).

2. Gravity force (symbol - ~Fg)

The origin of gravity force is the gravitational interaction of a body
with the Earth. It is always directed to the centre of gravity of the Earth
(or vertically down if it’s possible to introduce the concept of vertical).
The magnitude of the force: Fg = mg, where g – acceleration due to
gravity (figure 2.2).

3. Reaction forces

This type of forces arise in the direct contact of the body in study with
other bodies. Accordingly, the number of reaction forces equals to the
number of bodies, with that the studied body is in direct mechanical
contact. There are two types of reaction forces:

a) support reaction force or normal force (symbol – ~N), perpendicular
to the plane of contact (or to a tangent plane) out from the plane
(figure 2.3);
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Fig. 2.2. Fig. 2.3. Fig. 2.4

b) string reaction force (symbol – ~T ), is directed from the centre of mass
along the string (on the figure 2.3 the string is drawn as a chain).

String reaction forces can be modelled using ideal strings which is un-
stretchable (and can be also massless and frictionless, if needed).

The magnitude of reaction forces can be determined only from the
laws of Newton.

4. Friction forces (symbol – ~Ffr)

Friction is a surface force that opposes relative motion (real or possible).
There are two kinds of friction forces: static friction (~Ffr)st and kinetic
friction (~Ffr)kin.

Vector of the static friction force equals to resulting vector ~R of
all other forces. But conventionally, by the force of static friction is called
the projection vector ~Fst on the plane of motion (figure 2.4). Maximum
value of static friction force (achieved when the body begins to move) is
called the force of kinetic friction:∣∣∣(~Ffr)kin

∣∣∣ =
∣∣∣max

(
(~Ffr)st

)∣∣∣ = k
∣∣∣ ~N ∣∣∣ (2.1.3)

where k – is the coefficient of static friction that is defined by the properties
of the surfaces in contact.

The last equality in the ratio (2.1.3) is approximate and is satisfied for
sufficiently small values of the coefficient of friction (usually for k < 0.6).
For large values of friction force this relationship between magnitude of
reaction force | ~N | and friction force is non-linear.
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2.2 The system of interacting particles

2.2.1 Centre of mass

Definition: the set of material points bounded in space, arbitrarily
moving in space is called mechanical system.

Let’s consider such a system with respect to some inertial reference
frame K (figure 2.5). For any mechanical system we can determine an
imaginary point called centre of mass. This point has important prop-
erties required for the description of particles motion. The position of the
centre of mass with respect to the given reference frame is characterized
by radius-vector ~rc, defined as follows:

Fig. 2.5.

~rc =
~r1m1 + ~r2m2 + ...+ ~rnmn

m1 +m2 + ...+mn

=
1

M

n∑
i=1

~rimi,
(2.2.3)

where i – is the index of a point, n – number of
points, mi – mass of ith point andM is the mass
of the whole system. Consequently the speed of
the centre of mass is, by definition:

~vc =
d~rc
dt

=
1

M

n∑
i=1

mi
d~ri
dt

=
1

M

n∑
i=1

mi~vi. (2.2.4)

In kinematics we have dealt with kinematic parameters of the particle
motion (speed and acceleration). In dynamics, to describe the causes of
motion, we introduce new parameters of motion – dynamic parameters.
These parameters could be obtained by multiplying the kinematic param-
eters of a particle by its inertial mass. The value ~pi = mi~vi is the first
dynamic parameter of a particle and is called impulse. The value

~Pc = M~vc =
∑
i

mi~vi (2.2.5)

is called the centre of mass impulse. By this way we see, that impulse
~Pc is connected with velocity ~vc by the same way as for material point
with mass M (whole mass of the system).
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In other words, the concept of the centre of mass is a rigorous math-
ematical procedure for mapping of an arbitrary mechanical system to a
mathematically precise model – the centre of mass.

2.2.2 A theorem on the motion of the centre of mass

We now find the acceleration of the centre of mass. By definition,
the acceleration vector is the first derivative of the velocity vector with
respect to time:

~ac =
d~vc
dt

=
1

M

n∑
i=1

mi
d~vi
dt

=
1

M

n∑
i=1

mi~ai. (2.2.6)

The value ~Fi = mi~ai is the second dynamic parameter and, according to
Newton’s second law, is the force acting on the particle. Thus:

~ac =
1

M

n∑
i

~Fi. (2.2.7)

It should be noted that this formula makes sense only for homogeneous
and stationary force fields, i.e.:

~Fi 6= ~Fi(~r, t). (2.2.8)

The formula (2.2.7) is an analytic form of the theorem on the motion
of mass centre: for all the interactions of each particle of a mechanical
system with the environment, the centre of mass of a mechanical system
moves in such a way as if all the forces, acting on individual particles of
the system, are attached to one point — the centre of mass.

Consider now more in detail forces acting on the particles of a mechani-
cal system. The forces acting on each point of the system could be divided
into two types:

1. forces from all other particles in the system (internal forces);

2. the resultant of all external forces.

Thus, in general the force acting on a particle with the number i can be
written as

~Fi =
n∑
k 6=i

~Fik + ~Fiext (2.2.9)
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where ~Fi – the resultant of all forces acting on the i-th material point, ~Fik
– is the force from the particle with number k, applied to the i-th particle
(inner force), and ~Fiext – the sum of all external forces acting on the i-th
particle (figure 2.6).

We substitute this expression into a theorem of the centre of mass
motion (2.2.7):

~ac =
1

M

 n∑
i,k 6=i

~Fik +
n∑
i

~Fiext

 .

Let us consider the first sum in this equation more in detail. For
the sake of simplicity, we assume that our mechanical system consists of
three particles. Generalization to an arbitrary number of particles is not
difficult.

Fig. 2.6 Fig. 2.7

Let us draw all the forces acting between the points. To take an
example, F12 and F13 are the forces acting on the first point due to the
second and third points, respectively. Similarly, for the points numbered
2 and 3. Obviously, this is interaction forces, that is, they obey Newton’s
third law. In the figure pairs of forces related by Newton’s third law are
marked by one, two and three dashes respectively.

Sums of these pairs of forces is obviously zero. Consequently, according
to Newton’s third law in the summation of all the vectors of internal forces
we will get zero and

∑
ik
~Fik = 0. Then the second theorem of centre

of mass motion takes the form:

~ac =
1

M

n∑
i=1

(
~Fi

)
ext
. (2.2.10)
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This form of the theorem implies that if the system is in an external
stationary and uniform field, no action within the system can not change
the motion of the centre of mass of the system.

2.2.3 Motion of a body with variable mass

Very often, in real situations, the body moves in such a way that the
mass of the body is permanently changing during the movement (rocket,
jet plane, platform loaded on the move, etc.). Let us deduce the equation
of motion of such a body.

We model the studied body by system of material points, provided that
the mass m of the system can be changed (particles can enter or leave the
system).

Fig. 2.8.

Suppose that in an infinitesimal time dt mass of the system has
changed by an infinitesimal amount dm
(figure 2.8). If the velocity ~u with re-
spect to the system (relative velocity) of
an ejected particle of mass dm is not zero,
then, the impulse of the system will be
changed (velocity will increase by d~v).
But, by the theorem of the motion of the

centre of mass, impulse of the system can be changed also by an external
force:

d~P = ~Fextdt. (2.2.11)

Thus, the total change in impulse of the system in time dt is:

md~v = ~Fextdt+ ~udm (2.2.12)

and we receive the equation of variable mass body dynamics

m(t)
d~v

dt
= ~Fext + ~u

dm(t)

dt
. (2.2.13)

It is called Meshcherskij equation. This equation was first obtained by
Russian scientist V. Meshchersky in 1904.

Let us consider some particular examples.
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Tsiolkovsky equation

We assume that there are no external forces (~Fext = 0). Then the total
change in the impulse of the system in time dt is:

m(t)d~v = ~udm(t). (2.2.14)

If the velocity ~u of ejected particles with respect to the system (relative
velocity) is constant, then for the velocity of the system ~v we get

~v(t) = ~v0 + ~u ln
m(t)

m0
(2.2.15)

reactive motion equation (Tsiolkovsky equation). In the expression
(2.2.15) vector ~v0 and m0 are initial (at time t =0) velocity and mass of
the system.

Normally, during the reactive motion, velocity vectors ~v (of a body)
and ~u (of “fuel”) are opposite, therefore

v(t) = v0 + u ln
m0

m(t)
. (2.2.16)

This equation was obtained by the Soviet (regardless the works of he V.M.
Meshcherskij) scientist K. Tsiolkovsky in 1897.

Jet propulsion rocket

We assume that the rocket moves in the atmosphere – then as a model
of external forces a resistance force proportional to the velocity vector can
serve ~Fext = −k~v. In this case, the total change in linear momentum of
the rocket during time dt equals to:

m(t)d~v = −k~vdt+ ~udm. (2.2.17)

If the velocity ~u of emitted particles relative to the rocket (the relative
velocity) is constant in time and α is the fuel consumption per second
(due to combustion), the law of the rocket mass change with time can be
written as follows:

dm(t)

dt
= −α(m(t)−m0), (2.2.18)

where m0 – rocket mass without fuel, (m(t) − m0) – fuel mass at time
moment t.



36 CHAPTER 2. DYNAMICS

In equation (2.2.17) we divide both sides of the equality on dt, as the
result we get:

m(t)
d~v

dt
= −k~v + ~u

dm(t)

dt
. (2.2.19)

To solve system of equations (2.2.18, 2.2.19) we choose next parameters:
m0 =10 kg, mf =100 kg (initial mass of fuel), k =0.1 kg/s2, α = 0.2s−1,
u =500 m/s, v0 = 0 m/s. Numerical solution of such differential system
of equations for our choose of initial data is shown on the figure where the
rocket velocity is presented as a function of time:
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Fig. 2.9.

2.2.4 Conservation of linear momentum

Mechanical system is called closed, if the resultant of all the external
forces acting on the system equals to zero:

~Fext =
n∑
i=1

(
~Fi

)
ext

= 0. (2.2.20)

Hence, for a closed system ~ac = 0. On the other hand, if the system is
closed, then from the equation (2.2.6) it follows:

n∑
i=1

mi~ai =
n∑
i=1

mi
d~vi
dt

=
d

dt

n∑
i=1

mi~vi = 0. (2.2.21)

By definition (2.2.5) it can be written in the form

d~Pc
dt

= 0 ⇐⇒ ~Pc = const (2.2.22)

or ~vc = const. By this way we get the law that is called impulse conser-
vation law :
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the centre of mass impulse of a closed mechanical system
is conserved.

This means that centre of mass of a closed mechanical system ether moves
uniformly, or keeps its state of rest.

From the last equality in expression (2.2.21) one can deduce impulse
conservation law in more familiar form like the course of physics in senior
schools:

~Pc =
n∑
i=1

mi~vi =
n∑
i=1

~pi = const, (2.2.23)

id est, vector sum of particles impulses is conserved in closed systems.

2.3 Description of the rigid body motion

Following the standard scheme of any scientific description of real ob-
jects of Nature we have to build a rigid body model. In the description of
motion of a rigid body we will study only the so called absolutely rigid
body — an idealization of a solid body in which deformation is neglected.
In other words, the distance between any two given points of a rigid body
remains constant in time regardless of external forces exerted on it. This,
of course, a qualitative definition.

Modelling the behaviour of an absolutely rigid body we will break it
down (mentally) into as much as desired large number of sufficiently small
parts – that is, wemodel the absolutely rigid body by a mechanical system.

Then, it is obvious that an arbitrary motion of an absolutely rigid body
can be reduced to the sum of linear and rotational motions of all the points
of the body.

In the following sections we give rigorous definitions of linear and ro-
tational motions of a rigid body, and introduce new dynamic parameters
necessary to describe the rotational motion of an absolutely rigid body.

2.3.1 Rectilinear motion

Rectilinearmotion of a rigid body is a motion of its system of material
points, with a condition that velocities of rectilinear motion of these points
with respect to any inertial reference frames are the same, while angular
velocities with respect to the axis passing through the centre of mass are
zero (figure 2.10).
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Fig. 2.10.

From this definition it follows that the kinematic conditions of recti-
linear motion are as follows:

~vi = ~eri
d|~ri|
dt

= ~vr = const

~ωi = ~ω = 0,
(2.3.3)

where i – the index of a point, ~vr – velocity
of translational motion. Then kinematic
characteristics of motion are:

~vc =
1

M

n∑
i=1

mi~vi = ~vr; ~ar =
d~vr
dt

=
~Fext

M
, (2.3.4)

where ~vc – velocity of the centre of mass (2.2.4) and ~ar – acceleration of
translational motion of the body, M =

∑
imi – the mass of the body.

Therefore, to describe the linear motion of an absolutely rigid body it
is enough to describe the motion of a single point – the body centre of
mass. All the other points move in the same way.

2.3.2 Rotational motion

Rotational motion of a rigid body is a motion of its system of material
points, with a condition that rectilinear velocities of these points with
respect to a given inertial reference frame are zero, and angular velocities
with respect to a given axis are identical. From this definition it follows
that kinematic conditions of rotational motion are as follows:

~vri = 0; ~ωi = ~ω = const, (2.3.5)

where ~vri – velocity of rectilinear motion of a point i (1.2.10) and ~ω –
angular velocity vector. Then kinematic characteristics of motion could
be obtained by substitution of conditions (2.3.5) into equations (1.2.11)
and (1.4.7):

~vi = [~ω,~ri]; ~ai = [~ε, ~ri]− ~ri ω2. (2.3.6)

Respectively, the second law of Newton for any point of an absolutely
rigid body under the rotational motion becomes:

~Fi = mi~ai, ⇐⇒ mi
d2~ri
dt2

= [~ε, ~ri]− ~ri ω2. (2.3.7)
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Fig. 2.11. Fig. 2.12. Fig. 2.13.

It is very difficult to find the law of motion ~ri = ~ri(t) from this equation.
Therefore there is a need to build some new dynamics equations describing
exactly the rotational motion of a point.

To do that we introduce new dynamic parameters : the angular and
force momentums.

Angular momentum of a particle with respect to some inertial ref-
erence frame is a vector ~Li that equals to vector product of the material
point i radius vector ~ri (figure 2.11) with linear momentum ~pi:

~Li = [~ri, ~pi] = mi[~ri, ~vi]. (2.3.8)

Force momentum (torque) of a material point with respect to some
inertial reference frame is a vector ~Mi that equals to vector product of the
material point i radius vector ~ri (figure 2.11) with force vector ~Fi applied
to the point:

~Mi = [~ri, ~Fi] = mi[~ri,~ai]. (2.3.9)

Projections of angular and force momentums

Let’s find the projection of the expression (2.3.8, 2.3.9) on the axis of
rotation Z. Using the kinematic conditions of rotational motion (2.3.5)
we get:

[~ri, ~vi] = [~ri, [~ω,~ri]] = ~ω|~ri|2 − ~ri(~ω,~ri), (2.3.10)

where in the last equality we used the rule (1.3.7) BAC-CAB. As a result,
we received a sum of vectors, the first one of which is directed along the
axis of rotation Z, and the second along the radius vector of the point.
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The projection of this expression on the axis of rotation Z is:(
~ω|~ri|2 − ~ri(~ω,~ri)

)∣∣
z

= ω|~ri|2 − |~ri| cos θ (ω|~ri| cos θ) =

ω|~ri|2(1− cos2 θ) = ωρ2i ,
(2.3.11)

where ρi – distance from the axis to the point under consideration (figure
2.12).

Similarly for vector product [~ri,~ai]:

[~ri,~ai] =
[
~ri,
(
[~ε, ~ri]− ~riω2

)]
= ~ε |~ri|2 − ~ri(~ε, ~ri)− [~ri, ~ri]ω

2. (2.3.12)

Vector product of a vector on itself is zero: [~ri, ~ri] ≡ 0. Therefore:

[~ri,~ai] = ~ε |~ri|2 − ~ri(~ε, ~ri). (2.3.13)

Obtained expression differs from (2.3.10) only by vector ~ω instead of vector
~ε. Both of the vectors are directed along the same axe – axe of rotation.
Consequently, projection of vector product [~ri,~ai] on the axe of rotation
will be ερ2i .

As a result for projections of angular and force momentums on the axe
of rotation (figure 2.13):

~Li

∣∣∣
z

= miρ
2
i ω (2.3.14)

and
~Mi

∣∣∣
z

= miρ
2
i ε = Jiz ε , (2.3.15)

where new notation is introduced:

Jiz = miρ
2
i . (2.3.16)

Quantity Jiz is called moment of inertia of a material point with re-
spect to axe Z. Equation (2.3.15) is the law we looked for – the law of
rotational motion dynamics for a material point: force momentum
projection ~Mi

∣∣∣
z
on rotational axe equals to inertial moment of the mate-

rial point (measured with respect to rotational axe) multiplied by angular
acceleration vector.

Comment: angular acceleration vector ~ε and vector of angular velocity
~ω are parallel to rotational axe, therefore absolute values |~ε | and |~ω| are
equal their own projections on rotational axe:

ε = ±|~ε | = ~ε |z, ω = ±|~ω | = ~ω |z (2.3.17)
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But, it should be noted that, projection of a vector can have different signs
as opposed to the length of the vector.

Equations (2.3.14, 2.3.15) are obtained for a single arbitrary point of a
(rotating) rigid body. Summing up all over the body, we obtain

Lz =
n∑
i=1

~Li

∣∣∣
z

= Jzω (2.3.18)

Mz =
n∑
i=1

~Mi

∣∣∣
z

= Jzε, (2.3.19)

where Jz =
∑n

i=1 Jiz – the moment of inertia of the rigid body.
Thus, the moment of inertia of a rigid body about an axis is a

quantity that is a measure of inertia of the rigid body in the rotational
motion around this axis and equals to the sum of products of masses (the
body consists of) and of it’s squared distances from the same axis.

The equation (2.3.19) is the fundamental law of rotational motion
dynamics for an absolutely rigid body: resulting force momentum
Mz projected on the axe of rotation (acts on the whole of the body) equals
to the product of the body inertial momentum (measured with respect to
axe of rotation) and angular acceleration vector ε, projected as well on
the axe of rotation.

Comment (2.3.17) should be taken into account here as well as in the
law of rotational motion dynamics for a material point.

It can be seen from Table 1 that formulas describing the rotational
motion with respect to a fixed axis are similar to expressions for rectilinear
motion. So, it is enough to replace the values (m,~r,~v,~a, ...) by the
corresponding angular values (J, ~ϕ, ~ω, ~ε, .. .) and we get all the laws and
relationships for rotational motion.

Table 1: Relations between kinematic and dynamic parameters.
Rectilinear motion Rotational motion

~r ~ϕ
~v = d~r/dt ~ω = d~ϕ/dt
~a = d~v/dt ~ε = d~ω/dt

m Jz
~p = m~v ~L = [~r, ~p], Lz = Jzω
~F = m~a ~M = [~r, ~F ], Mz = Jzε
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To take an example, elementary work of force ~F on elementary dis-
placement d~r is by definition:

δA = ~Fd~r.

Then for elementary work of force momentum ~M on elementary angle
displacement d~ϕ, we get, using the Table 1:

δA = ~Md~ϕ.

Kinetic energy T for rectilinear motion is defined by

T = (mv2)/2,

then for rotational motion it will have the form:

T = (Jω2)/2.

2.3.3 The Basic Law of a rigid body rotational dynamics in
differential form

Let us consider the basic law of dynamics of a rigid body rotational
motion:

Mz = Jzε.

If we find the time derivative of angular momentum:

dLz
dt

=
d

dt
(Jzω) = Jzε, (2.3.20)

and compare this expression with (2.3.19) we will obtain the basic law of
dynamics of a rigid body rotational motion in differential form:

Mz =
dLz
dt

. (2.3.21)

As before, the forces acting on each point of a rigid body could be divided
into two kinds – internal and external forces:

Mz =
n∑
i=1

[~ri, ~Fi]
∣∣∣
z

=
n∑
i=1

~ri, n∑
k 6=i

(
~Fik

)
in

+
(
~Fi

)
ext

∣∣∣∣∣∣
z

=

= Minz +Mextz .

(2.3.22)



2.3. DESCRIPTION OF THE RIGID BODY MOTION 43

By Newton’s third law (as in (2.2.10))

Minz =
n∑
i=1

~ri, n∑
k 6=i

(
~Fik

)
in

∣∣∣∣∣∣
z

= 0. (2.3.23)

As a consequence, the basic law of dynamics of a rigid body rotational
motion (it is sometimes called momentums equation) takes the form:

Moutz =
dLz
dt

. (2.3.24)

The total force momentum projected on the axe of rotation equals the
rate of change of angular momentum projected as well on the axe of ro-
tation.

2.3.4 Law of conservation of angular momentum

If the total force momentum projection on the axe of rotation is zero
Moutz = 0, then from the equation (2.3.24) we can get that angular mo-
mentum projection on the axe of rotation Lz is conserved with time:

Lz = Jzω = const. (2.3.25)

It should be noted that, as before, obtained results are valid only for a
homogeneous and stationary external field.

If the resultant moment of all external forces acting on a mechanical
system in the state of rotational motion is zero, then this system is called
closed with respect to the torques (moments of forces). More impor-
tant role plays not the law of conservation of angular momentum but it’s
consequence:

No action within the closed system
(with respect to moments of forces)
in a homogeneous stationary field,
can change the angular velocity

of a system centre of mass.

All mentioned above is valid for the model of on absolutely rigid body.
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2.3.5 Moment of inertia of a rigid body

Consider a rigid body in rotational motion. Moment of inertia about
any axis can be found by calculation or measured experimentally. The
motion of a rigid body we describe by the model of mechanical system (a
system of material points). An elementary piece of it has mass dm and
elementary moment of inertia for this piece is

dJz = ρ2dm = r2 sin2 θ dm. (2.3.26)

Then, the summation of these elementary moments overall the volume of
the rigid body (i.e., integration), gives

Jz =

∫
V

r2ρ0(~r) sin2 θ dV, (2.3.27)

where ρ0(~r) = dm/dV – density of the body at the point with radius
vector ~r. Analytical calculation of such integrals is possible only in the
simplest cases when the body’s shape is geometrically simple (sphere,
cylinder, etc.). For bodies of irregular shape such integrals can be found
numerically.

Calculation of moments of inertia in many cases can be simplified using
the ideas of similarity and symmetry, the theorem of Huygens-Steiner, as
well as some other common relationship.
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2.3.6 Huygens-Steiner theorem

The parallel axis theorem, also known as Huygens-Steiner theorem af-
ter Christiaan Huygens and Jakob Steiner, can be used to determine the
moment of inertia Jz of a rigid body (of mass M) about any axis Z, given
the body’s moment of inertia J0 about a parallel axis Z ′, passing through
the object’s centre of mass and taking place at a distance a from axis
Z ′.

Fig. 2.14.

As usual we modelize the body by a mechanical system of material
points. For the solution of the problem
we choose an arbitrary point of the body
with mass mi which is located at a dis-
tance ρi from the axis Z. Moment of in-
ertia for this point with respect to axe Z
equals to Jzi = ρ2imi. Let us denote by
~a the vector perpendicular to both of the
axes and directed towards the centre of
mass. Then vectors ~a, ~ρi and ~ρi

′ (figure
2.14.) form a triangle, so following the

rule of vectors summation: ~ρi = ~a+ ~ρi
′. Consequently:

Jzi = ~ρi
2mi = (~ρi

′ + ~a)2mi. (2.3.28)

Expanding the brackets and summing over all the points of the body we
obtain the moment of inertia of the whole body:

Jz =
n∑
i=1

(
~ρi
′2 + 2~a~ρi

′ + ~a2
)
mi. (2.3.29)

After that we rewrite this expression by the next manner – we multiply
and divide the second term on M – the mass of the whole body:

Jz =
n∑
i=1

ρ′2i mi + 2~aM

(
1

M

n∑
i=1

~ρi
′mi

)
+ a2

n∑
i=1

mi. (2.3.30)

The expression in brackets is by definition radius vector of the centre
of mass (2.2.3), in our case coordinate system is chosen so that its origin
coincides with the centre of mass, so its coordinate is zero and we have:

Jz = J0 +Ma2 (2.3.31)
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where J0 =
∑n

i=1 ρ
′2
i mi – is the inertia moment of the body in interest

with respect to the axe Z ′ passing through the centre of mass.
So, Huygens-Steiner theorem states: a rigid body moment of inertia

with respect to an arbitrary axe is equal to the sum of a moment of inertia
of the same body with respect to the axe passing through the centre of
mass, (both axes being parallel to each other) and the moment of inertia
of the mass point (with the mass of the whole body) with respect to the
initial axe.

As it seen from expression (2.3.31), moment of inertia of a rigid body
with respect to an axe through the centre of mass is always less than the
moment of inertia about any other axe parallel to the one passing through
the centre of mass.

2.4 Work and energy

2.4.1 Work

Let us give, first, the definition of a physical field. We will say that a
physical field is defined if there is a correspondence between every point
in space and some certain value of a physical quantity.

Now we can consider the motion of a point particle in some force field,
i.e. the motion due to some forces with known magnitude and direction
for every point of trajectory L (figure 2.15).

Figure 2.15.

Let in elementary time interval dt point particle makes elementary
displacement d~r due to force ~F . The process of displacement due to

force is called the work of the
force. By definition, elementary
work of the force on an elementary
displacement equals to scalar prod-
uct of the force vector ~F and ele-
mentary displacement vector d~r:

δA = ~Fd~r. (2.4.3)

It should be pointed out here that
for an elementary work we use notation δA (and not dA) to emphasize
that in general case elementary work do not equals the linear part of
increment (i.e. it is not a differential).
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Obviously, for an arbitrary displacement, to take an example consider
points 1 and 2 of the trajectory L, work of the force ~F for the total
displacement is equal to the sum of elementary works along the trajectory:
A12 =

∑2
1 δA. The summation of infinitesimal quantities is, by definition,

an integral.
Therefore, in general case, the work on displacement of a point particle

along an arbitrary trajectory L equals to

A =

∫
L

~F d~r. (2.4.4)

Here symbol «
∫
L» is the integral along the trajectory L and is called

curvilinear integral.
The results we have obtained (definitions (2.4.3, 2.4.4) are valid only

for a point particle. But, developing the dynamics laws, we had found,
that behaviour of physical objects of Nature could be described or by
mechanical system model or by rigid body model. The number of models
we can use is not limited by this two, we have named only the studied
here models. It is possible to invent as many of it as we wish. Next reason
is the theorem of centre of mass motion – to describe the behaviour of
a mechanical system or of a rigid body it is enough to describe just the
behaviour of one point – the centre of mass point. Consequently, obtained
definitions are valid for such models as well, or, more precisely – for the
description of centre of mass motion for corresponding objects. Therefore,
talking further about a physical body we will mean it’s model and all the
forces will be attached to the only one point of the body – the centre of
mass.

2.4.2 Kinetic energy theorem

Let a point particle (or a centre of mass) made a displacement d~r due
to force ~F , i.e. an elementary work δA have been done. Let us substitute
the definition of second dynamical parameter – force into elementary work
expression:

δA = ~Fd~r = m
d~v

dt
d~r = m~vd~v. (2.4.5)

Obtained equation could be transformed with the use of next relation:

d(~v,~v) = (d~v,~v) + (~v, d~v) = 2(~v, d~v) ⇒ m(~v, d~v) = d

(
m

(~v,~v)

2

)
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Then elementary work formulae will have the form:

δA = d

(
mv2

2

)
. (2.4.6)

The quantity in brackets

T =
mv2

2
is called kinetic energy of the body.

As the result we have obtained the theorem on the kinetic energy:
– for elementary displacements :

Elementary work made on some body
equals to differential δA = dT
of kinetic energy

– for an arbitrary displacement :

A12 =

∫ 2

1

dT = T2 − T1 ⇒ A = ∆T

The work on displacement of a body
between any two points in space

equals to the difference of kinetic energies
in final and initial points

2.4.3 Potential fields

Let us consider elementary displacement d~r of a body due to external
forces. Scalar product in work definition we expand through the known
components of corresponding vectors:

δA = ~Fd~r = Fxdx+ Fydy + Fzdz. (2.4.7)

Suppose that components of resultant force vector acting on the body
satisfy the next conditions in any space point:

Fx = − ∂

∂x
Φ(x, y, z),

Fy = − ∂

∂y
Φ(x, y, z),

Fz = − ∂

∂z
Φ(x, y, z),

(2.4.8)
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where Φ(x, y, z) – is some scalar function. Id est, each component of force
vector ~F = (Fx, Fy, Fz) could be expressed as a partial derivative of the
scalar function Φ(x, y, z). Then, if we put equation (2.4.8) into (2.4.7),
we obtain:

−δA =
∂Φ

∂x
dx+

∂Φ

∂y
dy +

∂Φ

∂y
dz. (2.4.9)

Right hand side of equation (2.4.9) is, by definition, differential of scalar
function (x, y, z). Therefore, elementary work δA in the force field, satis-
fying condition (2.4.8), is equal to the full differential (with minus sign)
of some scalar function Φ(x, y, z):

δA = −dΦ(x, y, z). (2.4.10)

Function Φ(x, y, z) is called potential function of the force field.
Consequently, if a force field, allows to introduce potential function, id

est it satisfies the relation (2.4.8), is called potential force field.
For an arbitrary displacement in a potential force field:

A12 = −
∫ 2

1

dΦ = Φ1 − Φ2 ⇒ A = −∆Φ (2.4.11)

so the work on displacement of body in potential field do not depend on
the form of trajectory and is defined only by initial and final positions of
the body.

According to the condition (2.4.11), if a body moves on a closed tra-
jectory

A11 = −
∫ 1

1

dΦ = Φ1 − Φ1 ≡ 0. (2.4.12)

Consequently the work in a potential force field along any closed
trajectory is zero: ∮

~F · d~r ≡ 0. (2.4.13)

Symbol «
∮
» means that the integral should be taken along the closed

curve.
Force field, satisfying only condition (2.4.13), is called conservative.

As the result we obtain that if a field is potential, then it is necessarily
conservative. The opposite, in general case, is incorrect: conservative field
is not necessarily potential.
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Obviously, expression (2.4.8) could be written in the next form

~F = −
(
∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

)
(2.4.14)

or equivalently
~F = −

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
Φ. (2.4.15)

The brackets in last equation contain an expression that is formally a
vector, but it’s components are not numbers but some objects that ”wants
to take the derivative“ from function to the right – it is called operator-
vector and is denoted by symbol ~∇:

~∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (2.4.16)

In physics operator-vector ~∇ is called operator “nabla”. Operator “nabla”
applied to a scalar function is called gradient of the function:

~∇Φ = grad Φ. (2.4.17)

In geometry the gradient of a scalar field is a vector field that points in
the direction of the greatest rate of increase of the scalar field, and whose
magnitude is that rate of increase.

In the above two images, the scalar field is in black and white, black
representing higher values, and its corresponding gradient is represented
by blue arrows.

With the help of operator “nabla” equation (2.4.8) – force field po-
tentiality condition, obtains the most laconic form:

~F = −~∇Φ. (2.4.18)
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Fig. 2.16

To clarify the meaning of gradient we introduce the concept of equipo-
tential surface. Equipotential sur-
face in potential fields is the set of the
field points in which the potential func-
tion has the same value. The equation
of equipotential surface:

Φ(x, y, z) = const. (2.4.19)

It is clear that for every value of const in this equation corresponds its
own equipotential surface (Figure 2.16). In a potential field

~F = −~∇Φ(x, y, z) ≡ − grad Φ, (2.4.20)

force vector is directed towards the steepest decrease of the potential func-
tion (Φ1 > Φ2 > Φ3) and, therefore, is always perpendicular to the equipo-
tential surfaces.

A line tangent to which in each point coincides with the direction of
force vector at this point, is called force line (field line).

Consequently, in a potential field force lines and equipotential surfaces
are always perpendicular to each other.

2.4.4 Potential energy

As we have found, work in a potential field is the difference between
the values of the potential function at the initial and final points of the
field:

A12 = Φ1 − Φ2. (2.4.21)

The work is the physical quantity experimentally measurable. Accord-
ingly, potential function is measurable only up to an arbitrary constant.
This means that in a potential field any one of the potential surfaces can
be taken as zero surface with function Φ0 = 0 (Figure 2.17). In this case,
Ai0 = Φi, that is, the work of moving the body from a given point of
the field to the point of zero potential numerically equals the value of the
potential function at this point. The numerical value of the potential func-
tion at any point of the field (for a given zero surface) is called potential
energy of the body at this point and is denoted by Ui.
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Fig. 2.17.

It means that for a given zero surface the values of potential en-
ergy and function are the same (nu-
merically): Ui = Φi. So, we have
now recipe of potential energy calcu-
lation at a given point of space: po-
tential energy numerically equals
the work, that should be done, to
move the body from a given point of
the field at the point of zero poten-
tial. Taking into account that poten-

tial function is a way of describing the surrounding force fields influence
of on the body (on the body centre of mass) we can formulate the next
qualitative definition of the potential energy:

potential energy is the measure of the body interaction
with the surrounding force field
at a given point of the potential field.

2.4.5 Energy conservation law

In general, conservation laws are just the reflection of certain symmetry
properties of dynamics laws. That is why conservation laws permit to get
the answers on some important questions easy enough without invoking
the equations of motion. This circumstance makes the conservation laws
a very effective instrument of researches.

Let us obtain the energy conservation law. For elementary displace-
ments in a potential field the elementary work equals δAp = −dU (equa-
tion (2.4.10)). Elementary work of all forces acting on a body (potential
and non potential) by the kinetic energy theorem is δA = δAp + δAnp =
dT . Putting together both of this equations we obtain

d(T + U) = δAnp. (2.4.22)

Quantity in brackets E = T + U is called total mechanical energy of
a body.

So, for elementary displacements

differential of total mechanical energy equals to elementary work of non
potential forces :
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dE = δAnp (2.4.23)

For an arbitrary displacement we integrate equation (2.4.22) and obtain
that:

the change of a body’s total mechanical energy during any displacement
equals to the work of non potential forces :

∆E = Anp. (2.4.24)

From the last equation we see that if the work of non potential forces is
zero (Anp = 0) then ∆E = 0, consequently total mechanical energy of the
body is conserved (E = const). Therefore we obtain the law of total
mechanical energy conservation:

total mechanical energy of a body is conserved
in any states of the body,

if the work of non potential fields in this states
equals to zero.

It should be noted here that it is the total mechanical energy con-
served, while kinetic as well as potential energies in general case change
their value. However, if law of total mechanical energy conservation is
satisfied, then these changes are always so that the increment of one of
them equals exactly the decrement of the second one: ∆T = −∆U . But
this does not mean that the kinetic energy is converted into potential
energy (or vice versa). Only total mechanical energy can be converted
into other forms of energy.

A special case of the total energy conservation law is the absence of
non potential forces (Fnp = 0). Obviously, under this condition the work
Anp is zero.

Consequence:

Total mechanical energy of a body
moving in a potential field

is conserved.

In closed systems, i.e. in the absence of any kinds of forces (or, when
their vector sum is zero), the total mechanical energy is conserved as well,
but this case is of very limited practical value.
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2.5 Collision of point particles

In this paragraph we will consider different kinds of point particles
collisions in a closed system. As an instrument of investigation we will
use the conservation laws of total energy and momentum.

Fig. 2.18

Collision of point particles is a mechanical interaction through the
direct contact in an infinitesimally small pe-
riod of time during that particles interchange
their energy and momentum provided that the
system of particles remains closed.

There are two types of collisions: perfectly-
inelastic, such a collision that after the im-
pact point particles move as a single unit and
perfectly-elastic – after the impact point par-
ticles move with different velocity vectors pro-

vided that the laws of momentum and total mechanical energy conserva-
tion are satisfied.

Perfectly-elastic collision could be of two types: central and non-central
collisions.

Figure. 2.19

Non-central : after the collision particles move in different directions,
that do not coincide with the direction of their
relative motion before the interaction. This
type of collision, for example, the collision of
billiard balls (moving without torsion), that
moved before the interaction on a straight line
not coinciding with the one that pass through

the centres of mass of the balls.
Central collision: is the one of point particles. This type of collision

models, for example, the collision of billiard balls, that moved before the
interaction on a straight line coinciding with the one that pass through
the centres of mass of the balls.

Let us consider more in detail each one of this types of collisions.

2.5.1 Perfectly-inelastic collision

Hereafter, we will assume that a system consists of two particles or for
an arbitrary system we will assume that in any time moment in a given
point there is only one collision of two particles.
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Following the definition of the perfectly-inelastic collision the momen-
tum conservation law takes the form

m1~v1 +m2~v2 = (m1 +m2)~u. (2.5.1)

From this equation we can find the system velocity vector after the inter-
action with respect to some inertial reference frame (figure 2.19):

~u =
m1~v1

m1 +m2
+

m2~v2
m1 +m2

=
m1m2

m1 +m2

(
~v1
m2

+
~v2
m1

)
. (2.5.2)

Let us consider this interaction in an inertial reference frame K0, that
moves with the system velocity ~u. In this reference frame both of the
particles have zero velocity after the interaction u′ = 0. Correspondingly,
the momentum conservation law (2.5.1) will have the form:

m1~v1
′ +m2~v2

′ = 0, ⇒ m1~v1
′ = −m2~v2

′. (2.5.3)

Fig. 2.19

By this way we see that in inertial reference frame K0 before the col-
lision both of the particles move forward
to each other with equal momentums. Af-
ter the collision the new particle of mass
m1 + m2 stands still. Therefore, kinetic
energy of the system after interaction in
reference frame K0 is zero. Evidently, be-
fore the interaction the total kinetic en-
ergy of the system is not zero (the sum of

two squared real numbers that are not zero could not be zero):

m1(~v1
′)2

2
+
m2(~v2

′)2

2
6= 0. (2.5.4)

Consequently, the law of total mechanical energy conservation for
a perfectly-inelastic collision does not holds.

Let us denote by Q the total mechanical energy of particles in inertial
reference frame K0 before the interaction and by µ – the so called reduced
mass:

Q =
m1(~v1

′)2

2
+
m2(~v2

′)2

2
; µ =

m1m2

m1 +m2
. (2.5.5)

Total mechanical energy Q can not “disappear” after the interaction.
Therefore, the obtained result means that for an perfectly-inelastic
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collision part of mechanical energy Q transforms into other type
of energy – internal energy, id est the heat.

Now we find the quantity Q with respect to the initial (laboratory)
inertial reference frame. To do that we express the energy Q in terms of
particles momentums:

Q =
(m1~v1

′)2

2m1
+

(m2~v2
′)2

2m2
(2.5.6)

and we find the equation that binds together momentums ~p1′ = m1~v1
′

and ~p2
′ = m2~v2

′ of the particles in reference frame K0 with correspond-
ing momentums in laboratory reference frame (with the use of Galileo
transformation rules (1.6.8)):

m1~v1
′ = m1(~u− ~v1) = m1

(
~v1
m2

+
~v2
m1

)
m1m2

m1 +m2
−m1~v1. (2.5.7)

Here we have used the equation (2.5.2) for the velocity of the system after
the perfectly-inelastic collision. Now we expand the brackets in the last
equality in (2.5.7) and simplify it:

m1

m2

m1m2

m1 +m2
~v1 +

m1m2

m1 +m2
~v2 −m1~v1 =

m1~v1

(
m1

m1 +m2
− 1

)
+ µ~v2

(2.5.8)

The expression in brackets on the right hand side after the simplification
equals to the reduced mass µ. By this way, for the first particle momentum
in inertial reference frame K0 we have obtained:

m1~v1
′ = µ(~v2 − ~v1). (2.5.9)

For the second particle momentum we obtain by analogy:

m2~v2
′ = µ(~v1 − ~v2). (2.5.10)

As the result, the equation (2.5.6) takes the form:

Q =
µ2(~v2 − ~v1)2

2m1
+
µ2(~v1 − ~v2)2

2m2
(2.5.11)

and for the mechanical energyQ after some simple enough transformations
(taking into account (2.5.5)) we get the expression in terms of quantities,
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that characterise the motion of the system particles with respect to labo-
ratory inertial reference frame:

Q =
µ(~v2 − ~v1)2

2
. (2.5.12)

As the result, for an perfectly-inelastic collision part Q of the
total mechanical energy of interacting particles is transformed
(during the time of collision) into internal energy of the new
particle. The value of Q for a given pair of particles depends on their
relative velocity only.

2.5.2 Perfectly-elastic collision, central

Let us consider closed system of particles with respect to two inertial
reference frames – K (laboratory) and Kc. Reference frame Kc have the
velocity ~vc with respect to K (figure 2.20) where ~vc is the velocity of the
mass centre.

Fig. 2.20

We again assume that only two mass points, not more, can collide in
any time moment in a given space point. Velocities of the particles before

interaction we will denote by ~v1, ~v2,...~vi
(in inertial reference frameKc – the same
symbols with primes – vi′) and velocities
of the particles after the interaction we
will denote by ~u1, ~u2,..., ~ui (in inertial ref-
erence frameKc – the same symbols with
primes – ui′). Let us consider the system
in question from the reference frame Kc.
The law of energy conservation in this
system have the form:

m1~v1
′2 +m2~v2

′2 =

= m1~u1
′2 +m2~u2

′2.
(2.5.15)

This equation multiplied by m1 gives us:

m2
1~v1
′2 +m1m2~v2

′2 =

m2
1~u1
′2 +m1m2~u2

′2.
(2.5.16)
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From the law of momentum conservation it is obvious that (m1~v1
′)2 =

(m2~v2
′)2 and (m1~u1

′)2 = (m2~u2
′)2. Then we obtain:

m2
2~v2
′2 +m1m2~v2

′2 = m2
2~u2
′2 +m1m2~u2

′2 (2.5.17)

Now it’s evident that

(m2
2 +m1m2)~v2

′2 = (m2
2 +m1m2)~u2

′2 (2.5.18)

Consequently, in inertial reference frame Kc |~v2′| = |~u2′|. For an arbitrary
number of points |~vi′| = |~ui′|. The centre of mass velocity with respect to
reference frame Kc is zero, so we obtain

~vi
′ = −~ui′, (2.5.19)

id est, from the point of view of an observer in reference frame Kc the
velocity vectors of particles will change their sign but not the module as
the result of collision. To transform our equations into reference frame K
we will use Galileo transformation rules:

~ui = 2~vc − ~vi. (2.5.20)

Particularly, for two mass points:

~u1 = 2
m1~v1 +m2~v2
m1 +m2

− ~v1; ~u2 = 2
m1~v1 +m2~v2
m1 +m2

− ~v2. (2.5.21)

2.5.3 Perfectly-elastic collision, non central

To take an example of a non central perfectly-elastic collision we will
consider two particles of different masses. We find the velocities of the
particles after the interaction as well as the angle between this velocities.
As a reference frame we choose such that moves with the same velocity as
the particle of mass M , so this particle has zero velocity in this reference
frame before a collision.
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Fig. 2.21.

The laws of momentum and energy conservation in laboratory reference
frame have the form:

m~v = m~v ′ +M~u ′,

m~v 2 = m(~v ′)2 +M(~u ′)2.
(2.5.26)

The second power of the first equation:

m2~v 2 = m2(~v ′)2 +M 2(~u ′)2 + 2mM(~v ′, ~u ′), (2.5.27)

and the second one we multiply by m:

m2~v 2 = m2(~v ′)2 +mM(~u ′)2. (2.5.28)

Now we subtract this equation from the previous one:

M 2(~u ′)2 + 2mM(~v ′~u ′) = mM(~u ′)2. (2.5.29)

Expanding the scalar product here we regroup the terms of the sum:

2mv′u′ cosα = (m−M)(~u ′)2. (2.5.30)

Now we can find the angle between the velocities of the particles after the
perfectly-elastic non central collision

cosα =
u′

2v′

(
1− M

m

)
. (2.5.31)

The more interesting case is the one of the equal masses: in this case
cosα = 0 and, consequently, the angle α=90◦, id est the particles of
the same mass in a perfectly-elastic non central collision moves after the
interaction in perpendicular directions.

2.6 Gravitational field

2.6.1 The universal law of gravitation

If the acceleration of a test particle due to a force field does not depend
on the mass of the particle, such force field will be called gravitational
field. Gravitational field supplies the gravitational interaction all the
objects of the material world are involved in.
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The universal law of gravitation is the law describing the gravita-
tional interaction of mass points (figure 2.22):

~F12 = G
m1m2

|~r2 − ~r1|3
(~r2 − ~r1) (2.6.1)

where G = 6, 673 · 10−8cm3/g·s2 – gravitational constant, m1 and m2 –
gravitational masses of particles. Due to the spherical symmetry of the
right hand side of equation (2.6.1), it is valid not only for mass points but
for spherically symmetrical bodies as well – particularly, for solar system
planets. In this case radius vectors ~r1 and ~r2 in (2.6.1) are the radius
vectors of the corresponding body centres.

Fig. 2.22. Fig. 2.23.

2.6.2 Equivalence principle

Let us consider the interaction of a mass point with the Earth. The
force acting on the mass point from Earth is the gravitational force (figure
2.23)

~Fgr = −GMm

|~r|3
~r ⇒ Fgr = G

Mm

(R +H)2
(2.6.2)

where R = 6, 371 ·108 cm – radius of the Earth, H – the height above the
ground where the point mass is situated, M = 5, 977 · 1027 g – Earth’s
mass.

Following the second Newton law the point mass mi gains acceleration
ag due to gravity:

ag =
Fgr

mi
= G

M

(R +H)2
m

mi
= g

m

mi
(2.6.3)
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where mi – inertial mass of the mass point and g is the acceleration of a
freely falling object. Therefore, from the second Newton law we see that
acceleration ag due to gravity is not the same as acceleration of a freely
falling object

ag 6= g. (2.6.4)

However, experiments on measuring gravitational m and inertial mi

masses for different bodies shows that numerically they are equal with
a very high precision — relative error is not greater than 10−13. On this
basis the principal of equivalence was formulated. This principal states
that

gravitational and inertial masses of a body
numerically are always equal.

Thereby:

ag = G
M

(R +H)2
≡ g. (2.6.5)

Thus, the value of acceleration due to gravity ag and the value of a freely
falling body acceleration g are the same if the principle of equivalence
is satisfied.

2.6.3 Potentiality of gravitational field

Consider the gravitational interaction of two point bodies of mass m1

and m2. In order to make sure that the gravitational field of a mass
point m1 is potential, we need to ensure that there exists a scalar function
Φ12(~r) so that its gradient (grad) equals to the strength of gravitational
interaction of the mass point with any other point body of mass m2. To
do that we need to calculate the result of the operator ~∇ action on the
function Φ12(~r).

The solution of the problem for Φ~12(r) function we will look for in the
next form:

Φ12(~r) = G
m1m2

|~r |
. (2.6.6)

Operator nabla ~∇ is by definition:

~∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(2.6.7)
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so we need just to calculate the differentials of function (2.6.6) with respect
to coordinates. As we see from (2.6.6) differentials of Φ are the differentials
of inverse absolute value of radius-vector |~r| = (x2 + y2 + z2)1/2. The task
is not so hard but, in view of further use of operator nabla we will do it
otherwise, namely, with the help of operator nabla ~∇ properties:(

~a ~∇
)

Φ = ~a
(
~∇Φ
)
, ~∇|~r |n = n|~r |n−2~r, ~∇ (~a~r) = a. (2.6.8)

Then the second formula from (2.6.8) gives us:

~∇Φ12(~r) = Gm1m2
~∇|~r|(−1) = −Gm1m2

|~r|3
~r. (2.6.9)

Now comparing obtained expression with the universal law of gravitation
(2.6.1), we see that

F12 = −~∇Φ12(~r). (2.6.10)

By this way we have proven that the force of gravitational interaction of
two point masses m1 and m2 is defined by the gradient of a scalar func-
tion Φ12(~r). This function is called the potential function of gravitational
interaction. Consequently, gravitational field is potential.

2.7 Motion in a central field

Central field is a potential field having the potential function de-
pending on absolute value of radius-vector only, id est it is defined by the
distance of a point to the origin of the force field.

Therefore, potential function of a central force field should have the
form:

Φc(~r) = U(|~r|). (2.7.1)

Correspondingly the force acting on a test particle in the central field:

~Fc = −∇U(|~r|) = −∂U(|~r |)
∂~r

= −dU(|~r |)
d|~r |

~r

|~r |
(2.7.2)

is always opposite to the direction of the radius vector ~r, id est it is directed
towards the origin of the force field. With the use of angular momentum
definition we can show that in the central field it is zero:

~Mc = [~r, ~Fc] = −dU(|~r |)
d|~r |

1

|~r |
[~r, ~r ] ≡ 0. (2.7.3)
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The consequence of this fact is the conservation of angular momentum in
central force field. Let us prove it. The law of rotational motion dynamics
in differential form:

~Mc =
d~Lc
dt
≡ 0 (2.7.4)

– gravitational force momentum acting on a test particle is zero, so the
derivative of corresponding angular momentum with respect to time is
zero too. Therefore it is conserved:

~Lc = m[~r,~vc] = const. (2.7.5)

On the base of this information it can be shown that a trajectory of any
test particle in central force field is planar. Let us find the scalar product
of angular momentum ~Lc on radius vector of the test particle:

~Lc ~r = m~r [~r,~v] = m~v [~r, ~r] ≡ 0 ⇒ ~Lc ⊥ ~r

(here in last equality we have made cyclic permutation of vectors in mixed
product ~r [~r,~v]). The zero scalar product ~Lc ~r means that vectors ~Lc and
~r are always mutually perpendicular for any type of a test particle motion
in a central force field. Therefore, the radius vector ~r remains all the time
in the same plane perpendicular to the vector ~L, that is, the trajectory of
a particle in a central force field lies entirely in one plane.

The scalar product ~Lc ~r can be written as:

Lxx+ Lyy + Lzz = 0. (2.7.6)

The last expression is the equation of a plane passing through the origin,
and indeed in that the particle moves.

Let us study more in detail the motion of a test particle in a central
force field. We choose an inertial reference frame with the origin at the
centre of force field O. From the expression for the total mechanical energy
of the particle it is easy to find the connection between the d|~r | and dt.

It was shown in paragraph 1.2 that any motion of a particle can be
decomposed into two types of motion: linear (rectilinear) – along the ra-
dius vector (with velocity ~vr) and rotational – with respect to the reference
frame origin (with velocity ~vn). Then we can write total mechanical energy
of the particle in a central force field as the sum of it’s potential energy
U(|~r|) and kinetic energy: kinetic energy of rectilinear motion along the
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radius vector and kinetic energy of rotational motion with respect to the
force field origin:

E =

(
mv2r

2
+
Jω2

2

)
+ U(|~r|). (2.7.7)

Using the definitions (1.2.3) and (2.3.18) we rewrite the last expression:

E =
m

2

(
d|~r |
dt

)2

+
L2

2J
+U(|~r|) =

m

2

(
d|~r |
dt

)2

+
L2

2m|~r |2
+U(|~r|) (2.7.8)

and express from the resulting one the differential from absolute value of
radius vector with respect to time:(

d|~r |
dt

)2

=
2

m
(E − U(|~r|))− L2

m2|~r |2
. (2.7.9)

Then

dt = d|~r |
(

2

m
(E − U(|~r|))− L2

m2|~r |2

)−1/2
. (2.7.10)

Integrating this differential equation, we can find the time interval during
which a particle moves from one field point to any other one.

By definition of angular momentum projection on the axe of rotation
L = Jω = mr2dφ/dt, therefore:

dφ =
L

mr2
dt (2.7.11)

If we substitute here the expression for dt from (2.7.10) we will obtain:

dφ =
L

mr2
d|~r |

(
2

m
(E − U(|~r|))− L2

m2|~r |2

)−1/2
. (2.7.12)

This is a differential equation of the particle trajectory in the polar coor-
dinate system. Integrating this equation we can find the explicit form of
the trajectory, that is, the dependence φ = φ(~r).

2.7.1 Kepler problem

Kepler problem is the problem of describing the motion of a particle in
a central force field with corresponding potential function of the form

U(|~r |) =
α

|~r |
(2.7.13)
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For the Kepler problem the total mechanical energy of a particle in the
points where the velocity ~vr = 0 is zero (turning points) equals to:

E =
L2

2m|~r |2
− α

|~r |
. (2.7.14)

This expression leads to quadratic equation on |~r |:

|~r |2 + 2a|~r | − b2 = 0, (2.7.15)

where we denoted:

a =
α

2E
, b =

L√
2mE

(2.7.16)

Roots of this equation are:

|~r |1,2 = −a
(

1±
√

1 + (b/a)2
)

(2.7.17)

Let us consider two cases: parameter α < 0 – negative (repulsive centre)
and α > 0 – positive (attractive centre).

In the first case (α < 0), if
the total mechanical energy E > 0

In the second case (α > 0) of at-
tractive centre if the total mechani-

then parameters a < 0, b > 0 and cal energy E > 0 positive, then pa-
b ∈ Re. Only one real root is pos- rameters a > 0, b > 0 and b ∈ Re.
sible:

|~r |1 = |a|
(

1 +
√

1 + (b/a)2
) Only one real root is possible:

|~r |1 = a
(
−1 +

√
1 + (b/a)2

)
If the total mechanical energy is

negative: E < 0 then parameters and the motion is infinite.

a > 0 and b ∈ Im. There are not
If the total mechanical energy is

negative: E < 0 then parameters
any positive roots. a < 0 and b ∈ Im. There are two

So, for an repulsive centre en-
ergy could be only positive E > 0

roots :

|~r |1,2 = −a
(

1±
√

1− (b/a)2
)

and the motion is infinite. and the motion is finite.
Let us consider the Kepler problem more in detail for an attractive

force centre.
With notations (2.7.16) equation (2.7.12) takes the form:

dφ =
b

r2
dr

(
1 +

2a

r
− b2

r2

)−1/2
. (2.7.18)
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Integrating this equation we obtain:

cosφ =

(
b2

ra
− 1

)(
1 +

b2

a2

)−1/2
(2.7.19)

and after some transformations:

1 + e cosφ = p (2.7.20)

where we denoted e =
√

1 + (b/a)2 – the eccentricity and p = b2/ra –
orbit parameter. Expression (2.7.20) is the equation of conic section (with
the focus at the origin of coordinate system) in polar coordinates. On the
figure all the possible types of conic sections are presented.

Thus, the motion of a particle in a central field with an attractive centre
could have only three possible types of trajectories (figure):

1. parabola (E = 0, e = 1);

2. ellipse (E < 0, e < 1).

3. hyperbola (E > 0, e > 1);

For an ellipse the quantities a and b are the major and minor axis.
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2.7.2 Kepler laws

The results of the Kepler problem solution for a particle moving in a
central force field with the attractive centre are called Kepler’s laws. For
example the laws of planetary motion.

First Kepler law

By definition, Kepler’s laws corresponds to the Kepler problem with
parameters α > 0 and E < 0. Therefore:

the only one possible closed trajectory
of a point particle in a central force field

with attractive force centre
could be an ellipse

(with the force centre in the focus).

Second Kepler law

Consider a particle moving in a central field along a closed path. As we
have already shown, for the motion in a central field the angular momen-
tum of a particle is conserved ~L = const (2.7.5). From the other point of
view

L = Jω = mr2ω = mr2
dϕ

dt
= m

r(rdϕ)

dt
, (2.7.21)

here we have used the definition of angular momentum for a material point
(2.3.16) and the definition of angular velocity (1.2.6). Area of an ellipse
sector could be found by the next formula: dS = r2dϕ/2, then:

L = 2m
dS

dt
= const. (2.7.22)

On the figure 2.24 a closed trajectory of a point particle in a central force
field is shown. The force centre is in one of the focuses. The shaded area –
the area dS of the elementary sector formed by two infinitely close radius
vectors ~r(t) and ~r(t+ dt) and by an element of the path arc.
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Fig. 2.24.

Thereby from (2.7.21) we obtain:
dS

dt
= const. (2.7.23)

The differential dS/dt is called areal velocity. Expression (2.7.23) is called
the second Kepler’s law – for the motion in a central field in an elliptical
orbit, the areal velocity remains constant. Or:

Radius vector of a particle
that moves along an elliptical orbit

in a central force field
sweeps out equal areas

during equal intervals of time.

Third Kepler’s law

From the second Kepler law:

2m
dS

dt
= L = const. (2.7.24)

Then, for the period of revolution of a point particle moving in an elliptical
orbit in the central field we obtain:

T =
2mS

L
. (2.7.25)

Given that the area of the ellipse S = πab from the expression (2.7.25)
with the use of notation (2.7.16) we can write

2mπab = TL = Tb
√

2mE = Tb

√
2m

α

2a
. (2.7.26)

Where, after simplification we find the period T :

T = 2πa3/2
√
m

α
. (2.7.27)
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Raising this expression in the second power we find the the ratio of periods
for two trajectories (with different a – semi-major axes of the ellipses) and
obtain the third law (see Fig. 2.25) of Kepler:

T 2
1

T 2
2

=
a31
a32
. (2.7.28)

The square of the orbital period of particles
in gravitational field is directly proportional

to the cube of the semi-major axis of its orbit.

Fig. 2.25

2.8 Non-inertial reference frames

The study of the dynamics we had started with Newton’s laws and
found that Newton’s second law (2.1.1) is valid only in inertial reference
frames. However, all the real reference frames could taken as inertial only
approximately. In particular – a frame of reference associated with any
point on Earth’s surface (except the poles) is non-inertial. The cause is in
daily rotation of the Earth. Accordingly, the lower the velocity vr = ωR
(where ω is the angular velocity of the rotation and vr is the rotational
velocity of the point on the surface of the Earth), the more accurate will
be the model of inertial reference frame for this point.

Naturally, the question arises: how to write a law of motion for a parti-
cle in a non-inertial reference frame K’, moving with respect to an inertial
reference frame K with a known acceleration a0?

Consider the motion of a material point of mass m along some trajec-
tory L from two reference frames – inertial K and non-inertial K ′. The
magnitude and direction of the non-inertial reference frame K ′ accelera-
tion ~a0 we chose to be equal to the acceleration ~a0 of the particle (with
respect to an inertial reference frame K).
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Fig. 2.26

A particle moves in the field of real forces FiR, acting on the particle. Then
the law of dynamics in the inertial reference frame K will be written as
follows:

n∑
i=1

~FiR = ~a0, (2.8.1)

In a non-inertial reference frame K ′ particle acceleration is zero and the
law of dynamics must be of the form

n+1∑
i=1

~Fi = 0. (2.8.2)

The number of particles in mechanical system as well as the number of
external real forces equals to n. The upper boundary n + 1 in the sum
means that in non-inertial reference frame one extra force is needed so
that it will equilibrate all the real forces. Let us invent new notation:

~Fu = −m~a0. (2.8.3)

Quantity ~Fu is an additive (fictive) force, that arise in non-inertial refer-
ence frames and is called “force” of inertia. Thus the law of material point
dynamics in non-inertial reference frame K ′ takes the form:

n∑
i=1

~Fi + ~Fu = 0. (2.8.4)

We emphasize that the inertia force ~Fu does not describe any physical
interaction. In this sense, the force of inertia has no physical meaning –
it’s just the quantity that has the dimension of power.
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2.8.1 Gravitational force and weight of a body

Let us consider a small enough body (figure 2.27), attached by a rope
on some (not very big) height H. The Earth rotates (daily rotation) – all
the bodies on the surface of the Earth take part in this rotational motion.
Gravity force acts on the body due to gravitational interaction with the
Earth. In inertial reference frame K with the origin in the Earth’s centre
the law of dynamics for the particle in question have the form

~Fgr + ~T = m~acf, (2.8.5)

where ~T – reaction force of the rope, ~acf – centrifugal acceleration.

Fig. 2.27

The surface of the Earth is non-inertial reference frame that rotates
with acceleration ~acf. Therefore the law of dynamics in non-inertial refer-
ence frame bound to the surface of the Earth have the form:

~Fgr + ~T + ~Fcf = 0, (2.8.6)

where ~Fcf = −m~acf – centrifugal force of inertia.

The weight of the body is the force,
acting on a horizontal support

or vertical suspension.

Hence the weight P of a body of mass m

|~P | = | − ~N |. (2.8.7)
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Writing this formula, we have taken into account that the weight of a
body ~P and the reaction force of the thread ~T are the forces bound by
Newton’s third law, and therefore can not be reduced to a single point in
space. As a (mathematical) consequence, these forces can not be written
in one vector equation (see Section 2.1.1, Newton’s Third Law).

Then, having ~acf = ~ρω2, where ρ is the radius of the circle along that
the particle under the consideration moves together with the Earth, we
obtain:

|~P | = |m~g +m~ρω2|. (2.8.8)

Let us introduce notation:

~gR = ~g + ~ρω2. (2.8.9)

As the result the weight of a body of mass m

P = mgR, (2.8.10)

where gR – acceleration due to gravity at the latitude at which the particle
is located.



Chapter 3

Relativistic mechanics

3.1 Kinematics of special theory of relativity (STR)

3.1.1 Introduction

The special theory of relativity (SRT) is a mechanic, taking into ac-
count the peculiarities of time and space for objects moving at very high
velocities relative to the observer - relativistic mechanics.

Historically, the basis of SRT are the Lorentz transformation rules.
The first results related to the Lorentz transformation rules were obtained
by himself (Hendrik Antoon Lorentz) in 1885 and by Woldemar Voigt
in 1887. In 1904 came the work of Lorentz where transformation rules
were firstly formulated as an independent scientific result. Then, in June
1905, a French mathematician Henri Poincaré has given a new form to
transformation rules proposed by Lorenz (it was Poincaré who gave them
the name of Lorentz), and established their group1 nature. Due to these
transformations the speed of light is constant and Maxwell’s equations are
invariant and thus satisfied the principle of relativity (the relativity prin-
ciple of Poincaré): “the laws of physics must be the same for a stationary
observer as well as for the observer involved in a uniform motion, so that
we do not have and can not have any means of knowing whether or not
we are in the state of such a motion”.

At the end of September 1905 came the work of Albert Einstein, in
which the same principle of relativity was formulated and Lorentz trans-
formation rules were obtained.

The main difference of Einstein’s work was the fact that the new prin-
1The Lorentz group is the group of Lorentz transformations of Minkowski space, preserving the

origin. The group of all Lorentz transformations, including translation is called the Poincaré group.
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ciple of relativity and the constancy of the speed of light in all inertial
reference frames (IRF) were initial postulates whilst the Lorentz trans-
formation rules only a consequence of these postulates. In the works of
Poincaré all results were obtained as a consequence of ether properties
(ether – special physical substance in which all the observed physical ob-
jects are moving).

Thus, Einstein first proposed the idea that the unusual (in terms of
Newtonian mechanics) form of the Lorentz transformation rules is the
property of space itself (and not the consequence the unobserved ether
properties).

3.1.2 Relativity principle

In classical mechanics, relativity principle was formulated by Galileo
Galilei and can be reduced to the following statement:

all the laws of mechanics do not depend on the choice of the inertial
reference frame (IRF), that is they are invariant with respect to the
choice of IRF.

This means that by no means (mechanical experiment) within any inertial
reference frame it is impossible to determine whether the system is moving
or at rest.

Einstein and Poincaré had generalized the classical Galilean relativity
principle to include all the Natural phenomena (and therefore correspond-
ing laws). Einstein-Poincaré principle of relativity can be formulated as
follows:

all the laws of Nature do not depend on the choice of inertial reference
frame (IRF), that is they are invariant with respect to the choice of
IRF.

This means that by no means within any inertial reference frame it is
impossible to determine whether the system is moving or at rest.

Hence the principle of relativity (both classical and relativistic) claims
the equality of all inertial reference frames.

3.1.3 Basic principals of SRT

The basic postulate of classical (ie Galilean) principle of relativity,
which provides the equality of inertial reference frames in classical me-
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chanics, is the postulate of Galileo, which states that in all of IRF time
behaves the same way (ie, the time is absolute).

What are the changes introduced by Einstein and Poincaré in the clas-
sical views of inertial reference frames?

• The most important difference of Einstein-Poincaré principle of rel-
ativity to the classical one is that they refused the absoluteness of
time with respect to the choice of IRF.

• As a consequence, the length of a segment in different IRF should
also be different, i.e. it depends on the choice of IRF.

So, according to the ideas of the relativistic principle of relativity

dt 6= inv dl 6= inv

where dt and dl are elementary time and length intervals accordingly, inv
– invariant (with respect to the choice of IRF). Thus, time and length
intervals in STR are relative values.

A question arises – what is invariant (with respect to the choice of IRF)
in relativistic principle of relativity?

This question is answered by basic postulate of SRT (Einstein’s pos-
tulate), which states that

the speed of light c does not depend on the choice of IRF,
ie in all of the IRF is the same

The second (or additional) postulate is the postulate of space and time
isotropy and homogeneity. By logical reasoning one can deduce from the
speed of light invariance the invariance of the value s2 = −c2∆t2 + ∆l2,
called the interval.

To eliminate the need to carry out a fairly complex (and most impor-
tantly – not very convincing) logical reasoning, we proceed differently –
we introduce new invariant quantity instead of non-invariant with respect
to the choice of IRF units dt and dl: ds2 = −c2dt2 + dl2. This quantity
is called elementary interval and we postulate it invariance with respect
to the choice of inertial reference frame (additional postulate):

ds2 = −c2dt2 + dl2 = inv

Here c – is the speed of light.
Thus, two postulates correspond to the principle of relativity. They

can shortly be written as:
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c = inv ds2 = inv

3.1.4 Clock synchronization in SRT

To describe the motion of a point it is necessary to be able to measure
the change in the position of the studied mass point in space over time. In
physics (and particularly in SRT) the procedure, allowing to define both
the coordinate system and method of time measurement is called setting
of reference frame.

By definition (1.1) the reference frame is the set of basis and calibration.
Basis is the set of physical laboratories (real or imagined), located at all
points in space and equipped with instruments for measuring time and
length intervals. In order to be able to measure the time it is first necessary
to agree the procedure of clock synchronisation.

The synchronization procedure is based on the basic postulate of special
relativity (c = inv):

1. we choose the base clock and set on them time t0;

2. on all the ather clocks we set time t0i (preliminary having measured
distances li to each clock):

t0i = li/c

3. at time moment t0 we start base clocks and simultaneously send the
signal with the speed of light to all of the other clocks. The signals
reaching the clocks start them.

Fig. 3.1
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3.1.5 Lorentz transformation

Time intervals in different IRF

Рис. 3.2.

In the previous section we have established that, under the principle of
relativity, relativistic time intervals depend on
the choice of the inertial reference frame and,
therefore, are different in different IRF. Let us
find out the connection between time periods in
inertial reference frames moving relative to each
other at a speed of V = const.

To simplify the calculations, consider inertial
reference frames, moving so that their axes are

parallel. The rest frame (laboratory one) will be denoted by K, and
moving frame – by K ′ (see Figure 3.2). Assume that at the initial time
moment the origins of IRF K and K ′ coincide.

Let us look for the clocks in the origin of K ′ IRF. In elementary time
interval dt from the point of view of an observer in the rest IRF K, the
clocks moved on elementary distance dl. However, according to the rela-
tivistic principle of relativity, the observer in an inertial reference frame
K ′, will measure the duration of the same process dt′ – different time in-
terval. His clocks in IRFK ′ did not moved. The above can be summarized
in the following form:

K : dt −→ dl K ′ : dt′ −→ 0.

According to the second (additive) postulate of SRT, ds2 = ds′ 2. That
is

−c2dt2 + dl2 = −c2dt′ 2 + dl′
2︸︷︷︸

≡ 0

. (3.1.1)

And we easily find that

dt′ = dt

√
1−

(
dl

dt

)2 /
c2. (3.1.2)

As the clocks move together with IRF K ′, then dl/dt equals to V – the
velocity of IRF K ′, ie dl/dt = V . Hence, elementary time intervals dt
and dt′ in different inertial reference frames are bound by next formula:

dt′ = dt
√

1− V 2/c2, (3.1.3)
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where V is the relative velocity of inertial reference frames. Integrating
the last expression we will obtain the relation or to be more precise the
rule of recalculation of time intervals measured from different IRF:

∆t′ = ∆t
√

1− V 2/c2. (3.1.4)

Time in the rest frame is called own time and is denoted by letter τ
(we have τ = t′). Time in all the other inertial reference frames is called
world time and is denoted by t. Then equation (3.1.3) will have the form

dτ =
dt

γ
, (3.1.5)

where γ is the so called relativistic factor (Lorentz factor):

γ =

(
1− V 2

c2

)−1/2
. (3.1.6)

Lorentz factor varies from 1 (for v � c – non-relativistic limit) to infinity
(at velocities close to the speed of light).

Obviously, time intervals measured by own clocks are always
minimal.

In relativistic mechanics, due to technical impossibility (for now) ex-
perimentally verify the theoretical results, abstract problem method called
a “thought experiment” is widely used. If the solution of such an abstract
problem (“thought experiment”) leads to an obvious contradiction, the
problem is called a paradox.

One of the most well-known paradoxes associated with the formulas
(3.1.4, 3.1.5) that allows to recalculate periods of time from one inertial
reference frame to another is the so called twin paradox.

It should be noted that formula (3.1.5) is symmetric with respect to
each inertial reference frame K and K ′. In other words, if in terms of K-
system clocks in K ′-system are “slower”, on the contrary, from the point
of view of K ′-system, clocks in K-system are “slower” (in the same rate).
It is a necessary consequence of the special relativity postulates, and can
not be attributed to any change in the properties of clocks due to their
movement.

In other words, formula (3.1.5) is simply the rule of recalculation
of time intervals measuring results from one inertial reference frame to
another.
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Length of a segment in SRT

In previous paragraph 3.1.3 we have established that according to the
principle of relativity in SRT dl 6= inv i.e. the length of a segment is
different in different inertial reference frames. Let us find out the relation
between measurement results of the same segment in different inertial
reference frames moving with respect to each other with velocity V =
const.

Рис. 3.3.

To simplify calculations we choose inertial reference frames so that
their coordinate axes are parallel and at the
initial time moment both origins ofK andK ′

systems coincide. HereK is the rest reference
frame (laboratory) andK ′ – moving reference
frame (figure 3.3).

Consider a rod fixed in reference frame K ′

so that one end is in the origin and the other
points out along the Ox axe. We will lead
measurements from the point of view of an
observer in K ′ reference frame, but the time

will be measured with the help of clocks in K reference frame (figure 3.3).

It always important to clearly specify the scheme of time measurement
in special theory of relativity so that it is in accordance with time syn-
chronisation procedure. To do that let us mentally place two sources of
electro-magnetic waves at two ends of the rod. This sources are able to
emit the waves strictly along the Z axe (figure 3.3). By this way we can
measure the time ∆t needed for the rod to pass along the clocks and
calculate the length l of the rod in reference frame K:

l = V∆t. (3.1.7)

Analogously we can calculate the length of the rod in IRF K ′ by fixing
the time moments t′1 and t′2 when both of the rod’s ends pass in front of
the clocks in inertial reference frame K ′. Then the length of the rod l0 in
the rest frame equals to:

l0 = V∆t′. (3.1.8)
The ratio of rod’s length measured from different IRF K and K ′:

l

l0
=

∆t0
∆t′

. (3.1.9)
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The time in reference frame where the clocks are at rest is the own time:
∆t0 ≡ ∆τ . Then clearly:

l0 = γl. (3.1.10)

Summarising we can say that, the length of the rod in the rest frame
(own length) is always maximum.

As well as in the previous paragraph, equation (3.1.10) is just the rule
of recalculation: how can we calculate the rod’s length if the results of
this length measurements from other – moving IRF are provided.

Lorentz transformations

Figure 3.4.

Consider two inertial reference frames K and K ′. Let K ′-frame be
moving with respect to K-frame with ve-
locity ~V . Let us choose coordinate axes as
it is shown on the figure 3.4: axes X and
X ′ coincide and directed parallel to the
vector ~V , axes Z and Z ′ both are parallel.
Then we fix similar clocks and synchro-
nise them separately in K-frame and in
K ′-frame. Finally, we start the measure-
ments at time moment when the origins

O and O′ coincide (at t = t′ = 0).
An event A considered from the IRF K ′ has coordinate along the

X ′ axe equal to the distance from point x′ on this axe to the origin O′;
we denote this distance by x′ = l0 (length of the segment measured in
rest frame). In reference frame K the same distance equals to x− V t = l
(length of the same segment measured from moving reference frame):

K ′ : x′ = lO′x′ = l0
K : x− V t = lO′x = l

}
⇐ l =

l0
γ
. (3.1.11)

With the use of relation of lengths of segments l0 measured in own refer-
ence frame and l we obtain:

x− V t = x′/γ. (3.1.12)

Expressing x′ we get: x′ = γ(x− V t).
The event A considered from the IRF K has coordinate along the

X axe equal to the distance lOx from point x on this axe to the origin
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O; now this length is the own one and should be denoted by l0 while the
same distance in IRF K ′ equals to x′ + V t′:

K : x = lOx = l0
K ′ : x′ + V t′ = lOx′ = l

}
⇐ x′ = γ(x− V t). (3.1.13)

Using the relation (3.1.10) between length of the segment l0 measured in
own IRF and l together with expression for x′:

γ(x− V t) + V t′ =
x

γ
. (3.1.14)

Then obviously:

V t′ =
x

γ
− xγ + V tγ = γ

(
V t− x+

x

γ2

)
. (3.1.15)

Multiplier in brackets could be simplified by substitution of Lorentz-factor
γ in the full form:

V t′ = γ

(
V t− xV

2

c2

)
. (3.1.16)

So we have obtained expression that relates time moment t in rest reference
frame with t′ time moment in moving reference frame with velocity V :

t′ = γ

(
t− V x

c2

)
. (3.1.17)

As the result we have get Lorentz transformations for coordinates and
time:

y′ = y, z′ = z,

x′ = γ(x− V t),

t′ = γ

(
t− V x

c2

)
.

(3.1.18)
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3.1.6 Addition law for velocities in SRT

Fig. 3.5.

Consider arbitrarily moving mass point from two inertial reference
frames K and K ′. And, as before we
choose the moving system K ′ so that the
axis X ′ is parallel to the axis X. Let the
velocity of the particle in inertial refer-
ence frame K is known. Let us find what
is its speed in the reference frame K ′.
By definition:

v′x =
dx′

dt′
, v′y =

dy′

dt′
, v′z =

dz′

dt′
.

Therefore we need to find relations dx′ → dx, dy′ → dy, dz′ → dz and
dt′ → dt. For this we take the differential from the left and right sides of
the Lorentz transformation (3.1.18) and obtain:

dx′ = (dx− V dt)γ, dt′ = (dt− V

c2
dx)γ,

dy′ = dy, dz′ = dz.
(3.1.19)

Substituting these expressions in the definition of velocity, we obtain

v′x =
dx′

dt′
=

(dx− V dt)γ
(dt− V/c2dx)γ

. (3.1.20)

Divide the numerator and denominator by dt:

v′x =

(
dx
dt − V

)(
1− V

c2
dx
dt

) (3.1.21)

and again, using the definition of velocity we arrive at the final expression
for the mass point velocity component along the direction of motion of
the inertial reference system K ′:

v′x =
vx − V

1− vxV/c2
. (3.1.22)

For y component of the velocity in the moving reference frame we have
v′y = dy′/dt′. Substituting the relation (3.1.19) into this definition we
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obtain the velocity addition law for the component v′y perpendicular to
the direction of motion of the reference frame K ′:

v′y =
dy

(dt− V/c2dx)γ
. (3.1.23)

Divide the numerator and denominator by dt:

v′y =
dy
dt(

1− V
c2
dx
dt

)
γ

=
vy

(1− vxV
c2 )γ

. (3.1.24)

Similarly, for the last component of the velocity vector corresponding ex-
pression can be obtained, and, finally, we get the velocity addition law:

v′x =
vx − V
1− vxV

c2

, v′y =
vy

(1− vxV
c2 )γ

, v′z =
vz

(1− vxV
c2 )γ

. (3.1.25)

The addition law is also called a composition law for velocities.

3.1.7 Transformation of acceleration vector components

Consider arbitrarily moving mass point from two inertial reference
frames K and K ′. We choose the moving system K ′ so that the axis
X ′ is parallel to the axis X. Let the acceleration vector of the particle in
inertial reference frame K is known. Let us find what is its acceleration
in the reference frame K ′.
By definition:

a′x =
dv′x
dt′

, a′y =
dv′y
dt′

, a′z =
dv′z
dt′

.

Therefore we need to find relations dv′x → dvx, dv
′
y → dvy, dv

′
z → dvz

and dt′ → dt. The relation for time we have already obtained in equation
(3.1.19). Let us find the relation for velocity components differentials. For
x component we have:

dv′x = d
vx − V(
1− V vx

c2

) =
dvx(

1− V vx
c2

) +
(vx − V )V dvx

c2
(
1− V vx

c2

)2 . (3.1.26)

After combining similar terms and simplifications the differential of the
velocity component dvx will have the form:

dv′x = dvx
1− V 2

c2

(1− V vx
c2 )2

=
dvx

γ2
(
1− V vx

c2

)2 . (3.1.27)
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Now transform the expression (3.1.19):

dt′ = γ

(
dt− V dx

c2

)
= γdt

(
1− V

c2
dx

dt

)
, (3.1.28)

and substitute it together with equation (3.1.27) into definition of accel-
eration:

a′x =
dv′x
dt′

=
dvx

dt γ3
(
1− V vx

c2

)3 , (3.1.29)

here we have took into account that dx/dt is by definition vx. As the
result we obtain:

a′x =
ax

γ3
(
1− V vx

c2

)3 (3.1.30)

Similarly, for y component of the velocity vector (for the latter z com-
ponent it is likely to be the same up to the change of indices y → z)
differential will be:

dv′y = d
vy

γ(1− vxV
c2 )

=
dvy

γ
(
1− V vx

c2

) +
V vydvx

c2γ
(
1− V vx

c2

)2 . (3.1.31)

After some simplifications:

dv′y =
dvy + V

c2 (vydvx − vxdvy)
γ
(
1− V vx

c2

)2 . (3.1.32)

Then, by definition of acceleration a′y = dv′y/dt
′ with the use of the result-

ing differential of velocity component dv′y and of expression for dt′ (3.1.28):

a′y =
dvy + V

c2 (vydvx − vxdvy)
dt γ2

(
1− V vx

c2

)3 . (3.1.33)

Dividing the numerator and denominator by dt (by analogy we can write
the expression for the component z of the acceleration):

a′y =
ay + V

c2 (vyax − vxay)
γ2
(
1− V vx

c2

)3 ,

a′z =
az + V

c2 (vzax − vxaz)
γ2
(
1− V vx

c2

)3 .

(3.1.34)
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Thus, from the expressions (3.1.30) and (3.1.34) it is clear that the transi-
tion to a moving coordinate system K ′ the components of the acceleration
~a′ transform not only in terms of the original vector ~a components, but
(unlike the Galilean transformations (1.6.6)) depend on the velocity of the
particle as well.

3.1.8 Relativity of simultaneity

Fig. 3.6.

Let us consider two events A and B from two inertial reference frames
K and K ′, such that axis X ′ is paral-
lel to axis X during the relative motion
of frames. We find the time interval ∆t′

between this events in reference frameK ′

provided it is known in inertial reference
frame K. Coordinates of the event A in
IRF K are: (xA, yA, zA, tA). Coordinates
of the event B in IRF K: (xB, yB, zB,
tB). Then with the use of Lorentz trans-
formation (3.1.18) we obtain:

∆t′ = t′B − t′A = γ(tB − xBV/c2)− γ(tA − xAV/c2) (3.1.35)

and regrouping the terms:

∆t′ = γ(∆t−∆xV/c2) (3.1.36)

where it is denoted ∆t = tB − tA и ∆x = xB − xA.
Let the events A and B be simultaneous from the point of view of

an observer in inertial reference frame K, id est ∆t = 0. Then, for any
observer from the inertial reference frame K ′:

∆t′ = −∆x
γV

c2
. (3.1.37)

Consequently: events (taking place at different points), simulta-
neous in one inertial reference frame, are not simultaneous in
all other IRF.

Note that at the same time causality principle is not violated.
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3.2 Dynamics of the special theory of relativity

3.2.1 The basic dynamic characteristics

The concept of force in SRT

In classical mechanics, Newton’s law determines the force ~F = m~a =
d~p/dt, where ~p – particle momentum. In SRT force definition remains
unchanged:

~F =
d~p

dt
. (3.2.1)

But the definition of momentum is improved by taking into account the
dependence of time intervals on the choice of inertial reference frame –
derivative in the definition of momentum is taken with respect to own
time:

~p = m
d~r

dτ
= mγ

d~r

dt
= mγ~v (3.2.2)

where dτ = dt/γ.

Mass and energy in SRT

In classical mechanics it is easy to obtain the expression for kinetic
energy differential with the use of its definition (2.4.6):

dT = d

(
mv2

2

)
= ~v d~p. (3.2.3)

In special theory of relativity, this definition remains unchanged (with
momentum, of course, defined as in (3.2.2)):

dT = ~v d~p = ~v d(γm~v). (3.2.4)

After some simple transformations the last formula takes the form

dT = d(m̃c2), (3.2.5)

where m̃ is the notation for the so-called relativistic mass:

m̃ = γm. (3.2.6)

We present here these transformations. By definition, the derivative of
the product

dT = ~v d(m̃~v) = v2dm̃+ m̃~vd~v. (3.2.7)
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Now we divide the definition of relativistic mass m̃ (3.2.6) on γ and mul-
tiply on c2:

m̃c2/γ = mc2. (3.2.8)

Then we express Lorentz-factor in exact form: γ = 1/
√

1− v2/c2 and
find the second power of the resulting equation:

m̃2c4
(
1− v2/c2

)
= m2c4. (3.2.9)

Expanding and dividing on c2 we obtain:

m̃2c2 − m̃2v2 = m2c2. (3.2.10)

Let us find now differential of the last equation:

2 c2 m̃ dm̃− 2 v2 m̃ dm̃− 2 m̃2 v dv = 0 (3.2.11)

and after the simplifications:

c2 dm̃− (v2 dm̃+ m̃ v dv) = 0. (3.2.12)

If we compare now equation (3.2.12) with the expression for the differ-
ential of kinetic energy dT from (3.2.7) we will obtain: dT = c2dm̃, thus
we have come to equation (3.2.5) that describe kinetic energy of a free
particle. Integrating it we obtain:

T =

∫ v

0

c2dm̃ = m̃c2 −mc2 = mc2(γ − 1). (3.2.13)

We find now conditions under which the expression (3.2.13) transforms
into the expression for the classical kinetic energy. Expanding the param-
eter γ in a Taylor series with respect to small parameter v2/c2 up to the
third term:

γ =

(
1− v2

c2

)−1/2
= 1 +

1

2

v2

c2
+

3

8

v4

c4
+O(v6/c6), (3.2.14)

we see that
T =

mv2

2
+m

3

8

v4

c2
+O(v6/c6), (3.2.15)

that is, the relativistic formula for the kinetic energy (3.2.13) becomes
classical one, if (v/c)2 � 1 and the term proportional to (v/c)4 can be
neglected.
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The quantity
E = m̃c2 = T +mc2 (3.2.16)

is called total mechanical energy of a free particle. For a particle in
rest (T = 0) total energy is E = mc2 and this quantity is called rest
energy E0:

E0 = mc2. (3.2.17)

Total mechanical energy could be expressed in terms of rest energy

E = γE0. (3.2.18)

The relationship between the total mechanical energy of the particle and
its momentum

With the notation for relativistic mass (3.2.6), the definition of mo-
mentum (3.2.2) takes the form:

~p = m̃~v. (3.2.19)

We emphasize that relativistic mass is the third concept of mass (in
addition to the inertial and gravitational masses), and by the physical
meaning relativistic mass is just energy (measured in kilograms).

From equations (3.2.16) and (3.2.19) it is possible to obtain relationship
between momentum and total mechanical energy of a free particle. We
find the second power of this equations: E2 = γ2m2c4, p2 = γ2m2v2 and
minus them:

E2/c2 − p2 = γ2m2c2(1− v2/c2)

or
E2 = c2(m2c2 + p2). (3.2.20)

This expression plays very important role in special theory of relativity.
From this formula, in particular it follows that the rest mass m in SRT is
a non-additive value – the sum of the masses of individual particles in a
system is not equal to the mass of the system. Let us prove it.

Rest mass of a system of particles

Definitions (3.2.2)-(3.2.19) do not, obviously, violate additivity proper-
ties of energy and momentum. We will use it for the calculation of these
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characteristics for a system of two particles. System in consideration en-
ergy and momentum are, respectively:

E = E1 + E2; ~p = ~p1 + ~p2. (3.2.21)

We square both of them:

E2 = E2
2 + 2E1E2 + E2

1 ; ~p 2 = ~p 2
1 + 2~p1~p2 + ~p 2

2 (3.2.22)

and use the definitions of momentum ~p = γm~v and energy E = γmc2:

E2 =
(
γ21m

2
1 + γ22m

2
2 + 2γ1γ2m1m2

)
c4;

~p 2 =γ21m
2
1v

2
1 + γ22m

2
2v

2
2 + 2γ1γ2m1m2~v1~v2

(3.2.23)

where it is denoted:

γ1 =

(
1− v21

c2

)−1/2
, γ2 =

(
1− v22

c2

)−1/2
. (3.2.24)

Now let us substitute expression (3.2.23) into equation (3.2.20): E2/c2 −
p2 = m2c2. After some simplifications we obtain:

m2
1γ

2
1

(
1− v 2

1

c2

)
c2 +m2

2γ
2
2

(
1− v 2

2

c2

)
c2

+2m1m2γ1γ2

(
1− ~v1~v2

c2

)
c2 = m2c2.

(3.2.25)

From where it follows:

m2 = m2
1 +m2

2 + 2m1m2γ1γ2

(
1− ~v1~v2

c2

)
. (3.2.26)

It is not so hard to verify that coefficient γ1γ2
(
1− ~v1~v2

c2

)
≥ 1, id est

m ≥ (m1 +m2). (3.2.27)

Thus, the mass of the system of particles equals to the sum of masses of
the individual particles only in the case where all of the particles are at
rest or move at the same speed rectilinearly in one direction. Neither of
this conditions is realistic for a real system.

This result is one of the most important practical conclusions
of special relativity theory.
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To prove that γ1γ2
(
1− ~v1~v2

c2

)
≥ 1 we’ll use the exact form of γi:(

1− ~v1~v2
c2

)
≥ 1

γ1γ2
=

√(
1− v21

c2

)(
1− v22

c2

)
(3.2.28)

Let introduce another notation: ~β = ~v/c, then

1− ~β1~β2 ≥
√

(1− β2
1)(1− β2

2).

square the resulting expression:

1 + β2
1β

2
2 − 2~β1~β2 ≥ (1− β2

1 − β2
2 + β2

1β
2
2).

Obtained inequality:

β2
1 + β2

2 − 2~β1~β2 = (~β2 − ~β1)
2 ≥ 0

is definitely truth.

3.2.2 Equations of motion in SRT

According to the definitions (3.2.1) and (3.2.2), equation of motion for
a particle have the form:

~F =
d(γm~v)

dt
= m

d(γ~v)

dt
= mγ

d~v

dt
+m~v

dγ

dt
. (3.2.29)

It is easy to take the derivatives and write the equations of motion through
the classical dynamic variables. The derivative in the first term is the
acceleration vector ~a (by definition). Let us take the derivative of the
Lorentz factor of γ.

dγ

dt
=

d

dt

(
1− v2

c2

)−1/2
= −1

2

(
1− v2

c2

)−3/2(−2v

c2
dv

dt

)
= γ3

vaτ
c2
,

where aτ is the absolute value of tangential acceleration (see equation
1.3.5). Now we express velocity vector ~v in the second term 3.2.29 in
terms of it absolute value v and unity vector ~eτ that tangential to the
trajectory: ~v = v~eτ . As the result we obtain (with the use of relativistic
mass m̃ = γm notation):

~F = m̃~a+ m̃~eτaτγ
2v

2

c2
= m̃~a+ m̃~aτ

(γv
c

)2
(3.2.30)
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Consequently, force, in general, is not the cause of acceleration, as in
classical mechanics – ie force is not linear function of acceleration.

We consider a special cases of a body motion.

• Particle moves linearly. In this case ~a = ~aτ and we obtain:

~F = m̃~aτ

(
1 +

v2

c2
γ2
)

= m̃γ2~aτ

• Particle moves on a circle. In this case ~a = ~an, aτ = 0 and we get:

~F = m̃~an

Thus, the magnitude of the force measured for the same force inter-
action by different observers – is different. And the magnitude of the
forces measured by each observer, depends not only on the acceleration of
the interacting objects (as in classical mechanics), but also on the speed
of the interacting objects relative to the inertial reference frame of the
observer.



92 CHAPTER 3. RELATIVISTIC MECHANICS

Literature

• Richard P. Feynman, Robert B. Leighton, Matthew Sands,
“The Feynman Lectures on Physics, Vol. 1: Mainly Me-
chanics, Radiation, and Heat ”, Addison Wesley; 2 edition
(July 29, 2005);

• Daniel Kleppner, Robert Kolenkow, “An Introduction To
Mechanics”, McGraw-Hill Science/Engineering/Math; 1 edi-
tion (1973);

• I.E. Irodov, “Fundamental laws of mechanics”, Mir; Rev.
from the 1978 Russian edition (1980)

• Hugh D. Young, Roger A. Freedman, Lewis Ford, “Univer-
sity Physics with Modern Physics”, Addison-Wesley, 12th
edition, (2007).



Educational Edition

K.B. Korotchenko, E.A. Sinitsyn

PHYSICS
BRIEF COURSE

MECHANICS

Study Guide

Published in author’s version

Printed in the TPU Publishing House in full accordance with the quality of the
given make up page

Signed for the press 00.12.2013. Format 60х84/16. Paper “Snegurochka”.
Print XEROX. Arbitrary printer’s sheet 4. Publisher’s signature 000.

Order XXX. Size of print run 100.

National Research Tomsk Polytechnic University Quality
management system of Tomsk Polytechnic University was
certified by NATIONAL QUALITY ASSURANCE on BS
EN ISO 9001:2008

30, Lenina Ave, Tomsk, 634050, Russia
Tel/fax: +7 (3822) 56-35-35, www.tpu.ru


	Kinematics
	Physical reality and its modelling
	Velocity for an arbitrary motion
	Acceleration for an arbitrary motion
	Types of acceleration
	Reconstructing motion equation
	Reconstructing motion equation from the velocity vector
	Reconstructing motion equation from the acceleration vector

	 Galilean transformations

	Dynamics
	Dynamics of material point
	Laws of Newton
	Types of forces in point mechanics 

	 The system of interacting particles
	Centre of mass
	A theorem on the motion of the centre of mass
	Motion of a body with variable mass
	Conservation of linear momentum

	Description of the rigid body motion
	Rectilinear motion
	Rotational motion
	The Basic Law of a rigid body rotational dynamics in differential form
	Law of conservation of angular momentum
	Moment of inertia of a rigid body
	Huygens-Steiner theorem

	Work and energy
	Work
	Kinetic energy theorem
	Potential fields
	Potential energy
	Energy conservation law

	Collision of point particles
	Perfectly-inelastic collision
	Perfectly-elastic collision, central
	Perfectly-elastic collision, non central

	Gravitational field
	The universal law of gravitation
	Equivalence principle
	Potentiality of gravitational field

	Motion in a central field
	Kepler problem
	Kepler laws

	 Non-inertial reference frames
	Gravitational force and weight of a body


	Relativistic mechanics
	Kinematics of STR
	Introduction
	Relativity principle
	Basic principals of SRT 
	 Clock synchronization in SRT
	Lorentz transformation
	Addition law for velocities in SRT
	Transformation of acceleration vector components
	Relativity of simultaneity

	Dynamics of the special theory of relativity
	The basic dynamic characteristics
	Equations of motion in SRT



