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Chapter 5. SPECTROMETRY OF FAST ION SCATTERING FROM MONOCRYSTALS
Introduction
[image: image1.wmf] Fig 5.1 shows the elementary cell (of a diamond) and its projection on crystallographic axes. The channels along the crystallographic axes (dashed areas) are formed. Dense packed atomic chains or planes confide the channels. Having studied the propagation of charged particles through crystals, the orientation phenomena have been discovered: the channeling and shadowing effects.  
Fig.5.1. Crystal shell (diamond structure) projections on crystallographic planes

While channeling, the particles undergo a great number of collisions with small angular deviations caused by interactions with atoms of a chain or surface in question. While moving in the region of small electron density, the energy loss is also small; thus, the free path increases. The effect has been observed by Davis and simultaneously treated by Owen and Robinson (computer modeling of ion propagation through cupper crystals). 

A blockading (shadowing) effect manifests itself in the yield decrement in direction of atomic rows or planes if particles are emitted from cell nodes. The effect (discovered by Tulinov) has been widely used for controlling the nuclear reactions time, but has not been practically used in the analysis of solids. We are going to discuss the channeling effect. 

5.1. Channeling effect 

A two-dimensional channel and its projection are shown in Fig.5.2. The potential energy U (r) of particles can be represented as the sum of potentials of nearest (to the channeling particle) atomic chains. We can assume U(r) = (r2, ( is a characteristic factor. The acting force F(r1)= - (r1. The motion equation: d2

/dt2 + 2(

/M1 = 0, the quantity M1 is the ion mass. Its solution is a harmonic oscillation with the period: 

(0 = 2(/(0 = 2((M1/2()1/2.                                                                                         (5.1)

The longitudinal speed v = (2E/M1)1/2, the path covered in the time of one transversal oscillation is: 

( = v(0 = 2((E/()1/2. Thus: 



 = 

sin[Z((/E)1/2] + 

cos[Z((/E)1/2], (

( = (0(E/()1/2 ,                                  (5.2)

(0 is the angle between the trajectory and channel axis;
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 is the channel effective width; r(0 is the entrance point. It follows from (5.1) that the particle oscillates relative the channel axis. While increasing E and (0, the oscillation amplitude (rc) increases too and at great r particles begin to interact with channel walls. Thus, there are the limit quantities (1(E) and E((1) , which provide the channeling. The transversal kinetic energy at the axis is E
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; when oscillation is maximal: 

E
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= U(rcmax) and (1 = [U(rсmax)/E ]1/2,                                                                 (5.3)

The quantities (1 и U(rcmax) are SYMBOL 126 \f "Courier New Cyr"20 and SYMBOL 126 \f "Courier New Cyr"30eV for 1 MeV helium ions. 

Lindhard is supposed to be the founder of the channeling theory. He has proposed the channeling criteria, which are widely used to verify the theoretical and experimental data. Linhard applied the classical mechanics to treat the scattering of particles in ordered structures and proposed the statistical methods to get concrete parameters. The fundamental assumption has been as follows: the process of scattering could be represented as the set of correlated sliding collisions with single atoms of a chain (or plane) with continuous and uniform distribution of potential. The averaged potential is represented as: 
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U(r)  =
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V (R =( r2 + z2v) dz ,                                                                             (5.4)

Fig.5.2. The trajectory of particles while moving in an axial channel under different conditions: ( ( 0 (а), ( = 0 (б) and the scheme of a channel particle collision with an ideal atomic chain  (в)

The quantity V(R) is an ion-atom interaction potential; d is the chain period i.e. the distance between atoms in onward direction (See Fig.5.2в). The potential energy of ion (Z1) and isolated atom (Z2) is a complicated function depending on R, charge and mass of ions and atoms. 

In many cases the Thomas-Fermy potential is a good approximation:  

V(r) = (Z1Z2e2/R)((R/aТФ),                                                                                         (5.5)

The quantity aТF is the screen length:  
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 ( (R/aТФ) is the Fermy potential of an isolated atom; а0 is the Bohr radius; Z1, Z2 and e2 are defined by equation (1.3). The Mollier approximation of ((R/aТФ) is usually used:  

( (R/aТФ) =
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(iexp(-(iR/aТФ),                                                                                  (5.6)

(i = (0.1; 0.55; 0.35) and (i = (6.0; 1.2; 0.3) . We can write the averaged potential of an atomic chain as: 

U(r) = (2Z1Z2/d)
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(iK0((ir/aТФ),                                                                             (5.7)

K0 is a modified Bessel function of zero order.  
We can assume that longitudinal speed of a particle is constant. The transversal kinetic energy: 

E( = Esin2( + U(r) = E(2 + U(r),                                                                            (5.8)

E is the kinetic energy of particles; ( - entrance angle; U (r) – potential at incidence point: 

U(r)= 
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V((i) - Umin                                                                                                (5.9)

The summation should be performed through all the chains forming the channel. The quantity Umin is chosen in such a way that the potential at the channel axis would be zero; (i is the distance from the chain to ion (See Fig.5.2в). 

It is assumed that the particle does not approach the atomic chain nearer than certain distance (min, which depends on the screen radius and the transversal amplitude of thermal oscillations.  At that, E( = U((min). 

Taking into account (5.3) and (2.7) and assuming ((мин ( 0), the critical channeling angle:  

(1 = (2Z1Z2e2/Ed)1/2                                                                                                  (5.10)

Expressing the quantity (1 in degrees (and radians) we get:  

(1 (  0,307(2Z1Z2/Ed)1/2 
                                                                                                                                       (5.11)

(1 (  5,36(10-3(Z1Z2/Ed)1/2 

Here: E is the energy (MeV); d is the chain period (Å). For example, for 2 MeV helium ions channeling in <110> direction in germanium crystal, (1 ( 0,870; if energy is 21.4 MeV, (1 ( 0,2650.

When ( < (1, the ions having entered the crystal would canalize (trajectory "C"of Fig.5.2,). The particles"А" enter crystal at angles ( >> (1 and do not undergo any influence from the chain atoms. Their trajectory is like that one in an amorphous medium. 

The entrance angle of particles "В" is slightly greater than (1. They move as if in a denser medium in comparison with particles "А" (quasi-channeling). When ( = 0, the transversal kinetic energy in accordance with equation (5.8) depends on the potential in an entrance point. Thus, channel particle has to move in the region where the transversal energy is greater than the potential one (Fig.5.2б). 

When the angle of incidence ( = 0 or ( < (1, the particles would oscillate in a transversal direction (condition 5.1) not approaching to atomic chains at a distance smaller than (min (dashed aria in Fig.5.2). The particles having entered the cylindrical region with radius (min stop channeling and are scattered at an angle greater than (1. 

It follows from Fig.5.2 that there are particles "А", which enter the cylinder (мин. In order to evaluate their number, the quantity (min (minimal yield) is introduced. For an axial channeling:  

(min =(
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For a plane channeling: 

(min = 2(min/dplane,    (min = u1 + aТФ.                                                                        (5.13)

N is an atomic density (N = N0a-3); dplane is the distance between neibouhr planes;
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 are the amplitudes of thermal oscillations normal to atomic chain (u1) or plane (u2):  daxis = kaа and dplane = kpа.  The coefficients ka and kp are listed in Table 5.1.
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Fig.5.3.The energy spectra of samples with various violation of the crystal structure (a) and dependence of ( on the inclination angle (б); the letters A,B, and C designate the beam type (Fig. 5.2).

Table 5.1. Coefficients ka and kp of simple cubic lattice

	Crystal structure 
	Atoms per elementary cell 
	ka
	kplane

	
	
	<100>
	<110>
	<111>
	{100}
	{110}
	{111}

	SCC
	4
	1
	1/(2
	(3
	1/2
	1/2(2
	1/(3

	VCC
	2
	1
	(2
	(3/2
	1/2
	1/(2
	1/2(3

	Diamond
	8
	1
	1/(2
	(3/4

3(3/4
	1/4
	1/2(2
	1/4(3

(3/4


The thermal oscillation amplitude is given by:  

u1 = 12,1[{Ф(х)/х + 1/4}(M2TD)-1]1/2,                                                                       (5.14)

Ф(х) is a Debye function (Appendix 13); x= TD/T (TD  is the Debye temperature); М2 is the target atom mass, AMU. Analyzing formulas (5.12) and (5.13) and Table 5.1 we can say that the minimal yield of the plane channeling is appreciably greater than that one of the axial motion.  The quantity аТF   and u1 varies from 0.01 to 0.02 nm and from 0.005 to 0.01 nm. While using the channel-effect in a nuclear analysis, three types of spectra are available. The energy spectrum ("Д" in Fig.5.3a) corresponds to an experimental geometry when the crystallographic axis and direction of the particle beam coincide. The spectrum of this type is called the axial or plane energy spectrum (AES or PES).

Index  "А" designates spectra for non-oriented (relative beam) samples (( >> (1).   Such spectra are called the energy random spectra (ERS). 

The angle between direction of beam incidence and crystallographic axis can be changed by rotation of a crystal about an axis normal to the beam. The energy spectrum angular dependence is being controlled.  This dependence is called the axis or plane channel orientation dependence (OD). 

The normalized (on random spectrum) yields are conventional for comparing data obtained for different crystals and experiment arrangement. The normalized yield is designated by ((E) (energy), ((l) (depth), ((() (inclination angle). A surface approximation of normalized yield gives a minimal quantity ((l) =
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(5.12 and 5.13) we can evaluate the crystal surface quality.  Fig.5.3б shows the normalized yield as a function of inclination angles. The yield depends on two basic parameters: the angular distribution half-width (1/2  (at ‘altitude’  (1 - (min)), and the normalized yield (мин.  

Those parameters evaluated by the Barret formulas coincide with experimental data with accuracy 10-20%. 

(Б1/2 = 0,80F(()(1 ,                                                                                                 (5.15)

(Бmin = 18,8Ndu12 (1 +(-2)-1/2 (( 3Nd((2(1 + (-2)-1/2.                                             (5.16)

The quantity (1 is defined by equation (5.11); ( =1,2u1/aТF; function F(() is a square root of a non-dimension chain potential (5.5). While evaluating by equation (5.5), the Mollier screen function F(()  (5.6) has been used. The function is tabulated in Appendix 14. The quantity ( = 126u1/((1/2d)  = 1,55(/((1/2d), ((1/2, degrees).  The Table 5.2 shows the quantities (1, (1/2 and (min for 1.0 MeV helium ions channeling along <100> axis in Si, Ge, and W crystals. While evaluating (Л1/2, the Linhard potential has been used: (Л1/2 = ((1/(2)/ln{(CaТФ /() + 1}1/2.

It follows from the Table 5.2 that the better agreement with experiment is observed when applying the Barrett formulas for the critical angle (B1/2. An explorer himself should choose the minimal value of (min (from two magnitudes (Тmin).

For a plane channel: 

((1/2)plane = ((2(Z1Z2e2NdplaneаТФ/Е)1/2 ,                                                                     (5.17)

The coefficient ( is 1.5 - 2.0. 

The minimal yields for axial <100> and plane {100} cannels for 1.0MeV helium ions in Si, Ge, and W crystals are listed in the Table 5.3. The quantity (min for a plane is greater than that one for an axis. The plane channeling is not conventionally applied because of great (min and small ((1/2) in comparison with the axial channeling. 

The theoretical quantity (Тmin is the limit of the quantity (Эmin obtained in experiment. The crystallographic axis (or plane) can be identified by the minimal yield and angular half-width of spectra. 

Table 5.2. The critical angle and minimal yield of 1.0 MeV helium ions while moving in <100> axis 
	 Crystal
	Critical angle (1/2, degree
	Minimal yield (min, relative units

	
	(1
	(Л1/2
	(Б1/2
	(Э1/2
	Nd((2
	3Nd((2
	(Бmin
	(Эmin

	Si
	0,70
	0,71
	0,60 
	0,63 [74 ]
	1,03 10-2
	3,1 10-2
	3,3 10-2
	2,9 10-2 [76 ]

	Ge
	1,03
	0,89
	0,77
	0,80 [74 ]
	1,13 10-3
	3,39 10-3
	3,6 10-3
	4,2 10-3 [76 ]

	W
	2,1
	2,17
	1,81
	1,97 [75 ]
	0,31 10-3
	0,92 10-3
	1,2 10-3
	1,0 10-3 [73 ]


Notice: for evaluation of quantities the following magnitudes of (d) and (( ) have been used: <100> Si  d = 5.43Å, ( = 0.106Å; <100> Ge  d = 5.66Å, ( = 0.120Å; <100> W  d = 3.16Å, (  = 0.064Å.

Table 5.3. Axis and plane parameters of orientation curves for 1.0 MeV helium ions 

	Crystal
	Critical angle (1/2, degree

 (Experiment) 


	Minimal yield (min, relative units 

 (Theory) 

	
	Axis <100>
	Plane {100}
	Axis  <100>
	Plane {100}

	Si
	0,63 [74]
	0,17 [75]
	1,1(10-2
	11(10-2

	Ge
	0,80 [74]
	0,18 [74]
	1,1(10-2
	12(10-2

	W
	1,97 [75]
	0,38 [74]
	0,3(10-2
	6,3(10-2


Using expressions (5.12), (5.13), (5.15), (5.16), and (5.17) we can find the quantities (1/2 and (min at the surface of a crystal. With penetration depth, the half-width decreases, and parameter (min increases. 

Thus, there are allowed and forbidden zones in crystals for channel particles. In ideal crystal, up to 95-98% of beam particles can be involved in axial channeling. The processes with impact parameter smaller than (min are forbidden for these particles. Hence, the yields of backscattering, nuclear reactions, characteristic X-radiation induced by channel particles would be strongly handicapped in comparison with those in non-oriented crystals.  
5.2. Ion beam distribution in channels 

Distribution of charged particles density in channels of crystals was treated both as by computer modeling as well analytically using the Linhard approximation. It was proposed to apply that phenomenon for localization of impurity atoms in inter-node positions. 
While moving through channel the particle density at channel axis becomes appreciably greater than for the non-oriented beam falling on the crystal. 
It can be explained if we take into consideration the transversal momentum conservation law. A channeling particle moves in the potential field produced by atomic chains. The magnitude of potential is given by equation (5.9).  Fig.5.4б shows the axis-symmetric channels of silicon crystals (See Fig.5.1). For areas (dashed areas, one fours of axial channel), equipotential lines (formula 5.9) are shown. The numbers designate the potential magnitude in electron volts. 

The transversal kinetic energy of particles entering channel at angle (0 at a point (x0,y0) in accordance with (5.8) can be written as follows:  

E((x0,y0,(0) = E(02 + U(x0,y0),                                                                                (5.18)

The energy U(x0,y0,) is given by (5.9). 

In ideal crystal the transversal kinetic energy does not change. The particle would move in the region where E((x0,y0,(0) (  U(x,y. Let S(E() be the channel area limited by an equipotential  line U(x,y). While reaching the statistic equilibrium, the probability Р0(Е() of finding the particle inside that area is:

                     ( 1/S(E0)   when U(r) ( E(
    P0(E()  = (                                                                                                           (5.19)

                     ( 0             when U(r) ( E( .

Thus, while axial channeling the distribution probability is uniform. The probability to find an ion at any point is: 

F(r)=
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Fig.5.4. Angular distributions of 21.4 MeV helium ions in <100> and <110> planes and <111> channel of silicon crystals (numbers near the curves are the distances ( from the channel center, in angstroms); insets show equipotential lines (in electron volts)
When (inc ( 0, in a transversal plane in the region where U(r) ( E(2inc , the integration should be made through entire plane of incidence.  Hence, in the region limited by equipotential line U(r) = E(2inc, the flux is uniform. At zero incidence angle, S(rincE,0) = S[U(rinc)] = S((rinc) and we can assume:

F(r) = 
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dS(rinc)/S((rinc) = ln [S0(r)/S((r)],                                 

   (5.21)

The quantity S0 =1/Nd is the cross-section area of a channel. 

It follows from (5.21) that the flux is minimal at the channel center. At zero incident angle when r tends to zero, the function F(r) tends to infinity. 

It should be noted that in reality, the transversal momentum (and hence kinetic energy E() changes because of the scattering on electrons, thermal atomic oscillations, lattice defects, and so on.  Thus, the allowed region is transformed that leads to changing the flux density, especially at the channel axis. 

 At the channel borders where the potential is rather great the increment of transversal energy does not appreciably affect the flux density. Fig.5.5 shows the transversal energy increment while moving through <100> copper crystal channel. The angular divergence is SYMBOL 177 \f "Symbol"0.030, the amorphous film thickness is 0.72 nm, and the thermal oscillation amplitude is 0.0104 nm at 00С. The films with thickness up to 20 nm have been treated.  

At low energy, the amorphousness of surface films leads mainly to increasing transversal energy (curve 2). At greater energy, the angular divergence is of importance (curve 3). 

An inelastic scattering also leads to increasing transversal momentum (curve 4). The thermal oscillations of lattice atoms do not appreciably affect the transversal momentum  (curve 5) of a collimated beam. It should be noted that the multiply scattering of high energy (E( ( 1/2(E(2col) non-oriented particles (curve 6) is the basic process resulted in increasing the transversal energy. 
Let the quantity (E(( be the transversal energy fluctuation due to the multiply scattering and S((E(() be the allowed region. In this region, the potential energy U(r) decreases. The potential in the channel center becomes of а plane type. The flux can be assumed to be uniform in accordance with equation (5.21): 
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Fig.5.5. Increment of transversal energy of helium ions caused by multiply scattering: (1)-total; (2)- amorphous surface film; (3)- beam angular dispersion; (4)- electron scattering; (5)- thermal atomic oscillations; (6)- non-oriented beam component

Fmax = 1 + ln(S0/S((E(().                                                                                         (5.22)

Equation (5.21) and (5.22) corresponds to a zero incident angle. For an arbitrary incident angle:

F = ln(1 + S0/S(E(2) if E(2 ( (E((,                                                             (5.23)

F = 1-S(E(2)/S((E(()+ln{S0+S(E(2)]/S((E(()} if E(2 ( (E((.                (5.24)

Fig.5.4a shows theoretical (in accordance with 5.21-5.24) 21.4 MeV helium ion flux distribution in <100>, <110> transversal planes, and  <111> channels of silicon crystal as a function of incidence angles. In order to eliminate the logarithm divergence in equation (4.21) we have taken into account the beam angular dispersion, which leads to increasing the transversal momentum of high-energy particles (See Fig.4.5). The transversal energy fluctuation is evaluated as follows: 

(E( = E(2col/3.                                                                                                       (5.25)
For example, when (col = 0.3(, (E( ( 2 eV. The numbers designating the angular distribution curves (Fig.5.4a) are the distances ( from the point where potential U(r) is zero (in angstroms). At the channel center (for the main crystallographic axes), the peaks of angular distributions of the helium ion flux are observed. 
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Fig.5.6. Reaction yields: (a)-protons, 2H(d,p)3H (1); (2)- deuterons, scattered by niobium atoms; (b)- alpha particles, 7Li(p,()4He (1) and protons elastic scattered by Si atoms (2) 

Increasing of the density in the channel axis can be explained as follows. At zero inclination angles, the particles move in the region limited by an equipotential line, (depending on the entrance point).  A few particles with great transversal energy reach the outer border of a channel, the particles with small transversal momentum being located in the central region.  In accordance with (5.19) the channel ions are uniformly distributed in allowed region that leads to a sharp flux increment in the channel center. 

The transversal momentum increases with inclination angle, the allowed region being greater. When particles reach that region, the flux would reach its maximum. The flux angular distribution would split. For example, in silicon crystals for <100> direction, ( = 0.048 ( 0.086 nm; for <110> axis, ( = 0.085 ( 0.134 nm; and for <111> channel ( = 0.060 ( 0.080 nm (See Fig.5.4a). 

A.Tulinov and I.Andersen were the first who observed the channel-effect while studying the nuclear reactions products from impurity atoms. A.Tulinov used the niobium crystal saturated by deuterium atoms located in <111>-channel center. The appreciable proton yield increment of  2H(d,p)3H-reaction has been observed (curve (1) in Fig.5.6a). 

 I.Andersen observed the anomaly increment of alpha-particles in Li(p,()4He-reaction in comparison with the yield of back scattered protons from silicon crystals (curve (1) in Fig.5.6b). 

 Till now we have been discussing the particles distribution in a transversal plane of a channel at the depth where, due to the phase mixing, the equilibrium distribution is reached (usually at the depth 0.1-1.0 mm). 

At smaller depth, due to the periodicity of motion (condition 5.1), the density flux oscillates with the depth.  It should be noted that according to equation (5.19) there would be no such oscillations.

In order to study the flux density redistribution along the axial and plane channels, the computer modeling has been used (Barret). 

Fig.5.7 illustrates the space distribution of alpha particles. Fig.5.8 shows the impact parameter spectrum in the <110>-plane of silicon crystals for energy 21.4 MeV at zero inclination angles. It follows, that while moving along the axis, the alpha particles repulse from atomic chains.

 At the certain distance (SYMBOL 126 \f "Courier New CE"192 nm for Si <110> plane) the particles concentrate in the channel center (Fig.5.7д). The number of particles in the axis region decreases with the penetration depth (Fig.5.7, e-k) and then increases again (Fig.5.7 л).
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Fig.5.7. Distribution of alpha particles (Е0 = 21.4 MeV) in a transversal plane of  <110>-channel of silicon crystal as a function of the penetration depth 

 Fig.5.8 proves the statement. The abscissa axis represents the impact parameter (in the channel radius units). The vertical axis represents the number of collisions in the layer with thickness 9.6 nm (at different depths).  The space distribution is symmetrical relative the channel center: only one half of distribution is shown (<110>- channel of a silicon crystal).  

It appears that alpha particles undergo maximal number of collisions with crystal atoms at a distance from the channel center up to the atomic chain. This tendency holds also for an average number of collisions in the (200-600 nm) depth range (Fig.5.8б). Thus, the particles occupy mostly the central region of a channel. 

Fig.5.9 shows the 1.0 MeV alpha particles flux in the center of a copper crystal <100> channel as a function of the penetration depth. The strong oscillations are observed in the surface regions, being damped with the depth. The multiply scattering strongly affects the oscillation amplitude. 
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Fig.5.8. Dependence of  the 21.4 MeV alpha particle impact parameter on the depth for the  <110>-channel of silicon crystals
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Fig.5.9. The alpha particle flux in the <001>-channel of copper crystals [79]; (a)- not taking into account the multiply scattering; (б)- Т = 0 0C, (col = SYMBOL 177 \f "Symbol" 0.060; (в)- Т = 0 0C, (col = SYMBOL 177 \f "Symbol" 0.230; (г)- in the  <110>-channel of silicon crystals (experiment)

Aizen and Ugerhoy were the first who studied the depth distribution of channel ions. Ytterbium ions were implanted in silicon crystals. The helium ions with energy 0.5, 1.0, and 2.0 MeV falling along the <110>-axis of silicon crystals were used. The yield of back scattered particles as a function of the impurity deposit depth is shown in Fig.5.9g. 

The experimental data coincide with theoretical ones. 
5.3. Location of atoms in elementary cells 

The channel ions redistribution is widely used in controlling the location of impurity atoms in crystal cells. Impurity atoms can be located in different positions: nodes, internodes, and chaotically positions.   The nuclear spectrometry methods also can be applied with success. The most effective method is the combination of channel effect and the Rutherford back scattering. 

Along with the channel effect, the blockade and two-orientation effects can be used. The blockade effect was utilized in early works while using radioactive isotopes for implanting. At that, only radioactive decay products are being controlled. To get data on matrix atoms, the method of back scattering is to be applied additionally. Thus, the radioactive implantation method of controlling impurity atoms has not become conventional.  
A two-orientation method (the incident and analyzed beams are parallel to the crystallographic axes) is of higher sensibility and accuracy than the back scattering method. Besides it is the only method of controlling impurity atoms implanted in the lattice of the same type atoms (for example, silicon atoms implanted in silicon crystals).  But analysis time is too great (about 102 - 103 times greater than that of the back scattering method). Thus, this method also has not become conventional. 
To control positions of impurity atoms, the channel effect is usually used. The yields of the short distance processes (less than 0.01-0.02 nm) are tens times lower than while a chaotically falling beam. When impurity atoms are located in nodes or along matrix atomic chains, the yields due to impurity atoms become smaller.  If impurity atoms are displaced (from chains or planes) at a distance greater than (min or they populate inter-nodes channel centers, the decreasing yields of processes with small impact parameters are not observed. And what is more, the yield due to channel particles can exceed that of chaotically incident particles. 

   In order to control the locations of impurity atoms (in inter-nodes), the dynamical redistribution of channel ions in the axial or plane channels is of importance.  At certain depth, the particle density in the channel center becomes greater than while the beam chaotic incidence. The channel flux oscillates with the depth by approaching the center or walls of the channel. Variations of density flux make the number of particles dispersed by impurity atoms to be depended on what position the impurity atoms are located in. The method can directly distinguish one inter-node position of an impurity atom from the other

The base of the method consists in using the normalized angular yields of interaction products of beam particles with impurity and matrix atoms. As a rule, these dependences are obtained for three crystallographic axes (sometimes for two main axes and a plane of lower or higher order). The main parameters of orientation curves for interpreting the experimental data are (min and (1/2. Comparing those parameters with theoretical ones gives information on the impurity atoms localization. 

The simplest situation is when the impurity atoms are located in the lattice nodes and their thermal oscillation amplitude is of the same order as that one of matrix atoms. At that, the normalized angular distribution parameters ((1/2 and (min) of particles scattered by the impurity and matrix atoms should coincide. It has been confirmed while studying the gold atoms localization (dissolved in copper crystal while growing from 2% impurity gold solution, which is shown in Fig.5.10a). 

In the work, which can be considered as a logical confirmation of this experiment, the localization of 200 keV Au atoms implanted in copper crystal has been studied (implanted dose was 1016 atoms/cm2). Two regions were under investigation: the plane (Fig.5.10б) and a region at the depth SYMBOL 187 \f "Symbol" 80 nm, which corresponds to the maximal concentration of gold atoms. 

You can see that the angular distribution of the particles scattered by Au and Cu atoms coincide (in limits of experimental errors).  It means that all implanted gold atoms are located in nodes. The small discrepancy in the curve half-widths (Fig.5.10 б,в) can be  explained  by the depth dependence of the curve half-width. 
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Fig.5.10. Detection of the impurity atoms localization by the channel effect  

To get the trustworthy information on localization of impurity atoms you are to build the orientation dependences corresponding the same depth both for impurity and for matrix atoms. It should be noted that the angular dependence for tungsten and sodium does not coincide. These atoms build up a mixed chain in the tungsten bronze <111>-direction. The discrepancy is due to the difference of thermal oscillation amplitudes (
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To find the localization of Yb atoms implanted in the Fe lattice, 12С and 14N ions with energy of several MeV were used. The concentration of ytterbium atoms was 0.3 %.  The angular scanning has been made relatively three main crystallographic axes. The half-widths of the ytterbium orientation curves has been found to be close to that ones while scattering by iron atoms, the depth being appreciably less (Fig.5.10д). It means that some impurity atoms replace the matrix atoms or are shadowed by the matrix atoms located along corresponding chains. 

The relative number of those atoms: 
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The quantity 
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 is the minimal yield of particles scattered by the impurity and matrix atoms in an  <hkl>- direction. 

If the quantities fsim for two axes coincides we can state that fsim is the relative number of the replacement atoms. According to equation (5.26), about 60% of ytterbium atoms are in the replacement position while implanted without heat treatment. The other atoms are uniformly distributed in elementary cells (there are no local peaks on the orientation curves). 

 Fig.5.10e shows the results of angular scanning relative the <110>-axis of silicon crystals by 1 MeV helium ions at 296 K. The implanted dose of bismuth atoms was (2 - 4)SYMBOL 215 \f "Symbol"1014 atoms/cm2). At small angles, the width of the curves differs appreciably.  The angular distribution (at 0.4-0.7 of the relative yield while scattering by bismuth atoms) manifests that not all impurity atoms are located in the lattice nodes (as had been supposed). 

In order to evaluate the relative number of atoms located in the lattice nodes, the Andersen model (continuous potential approximation) has been applied. The good agreement with experimental data is observed if suppose that about 50% of bismuth atoms are located in the lattice nodes and others are displaced at a distance ( = 4.5 nm.  Displacements can be evaluated by equation (5.15) and (5.16); however, the quantity < u1 > should be substituted by up1 = (u21 + (2)1/2.
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Fig.5.11. The diamond type cell with possible regular internodes:  tetrahedron (Т) with coordinates (1/2, 0, 0), (1/2, 1/2, 1/2), (1/4, 1/4, 1/4); hexahedron (Н) - (3/8, 1/8, 7/8), (1/8, 3/8, 7/8), (3/8, 3/8, 5/8), (1/8, 1/8, 5/8); center (С) - (1/8, 1/8, 1/8), (3/8, 3/8, 1/8), (1/8, 3/8, 3/8), (3/8, 1/8, 3/8); splinting in <100> -direction configuration (S) - (L) ( (1/8, 0, 0), (L) being the lattice atoms coordinates (in lattice parameter units  

There is a narrow maximum in the orientation curve if impurity atoms are located in the channel center. The yield decreases with incidence angle (relative to crystallographic axes). An interesting result has been observed when controlling thallium atoms location relative <110>-axis of silicon crystals (Fig.5.10 ж).  
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Fig.5.12.The normalized angular distribution of oxygen atoms in inter-nodes of the silicon crystal lattice  
The orientation dependence represents a narrow peak at zero incidence angle and two symmetrical minimums. The small angular width of the central peak proves the presence of thallium atoms in the central region of the <110>-channel. The minimums confirm the shadowing some of thallium atoms by matrix atoms.

Comparison of the experimental data of channeling along <110> and <111>-axis leads to conclusion that about 25% of thallium atoms are located in the tetrahedron inter-nodes and 75% are located in the lattice nodes. However, Kumachov  analyzing the flux redistribution has concluded  that about 50% of thallium atoms are located in inter-nodes of the silicon lattice. 

In monocrystals lattice there are several equivalent positions characterizing the same regular inter-node.  

For example, Fig.5.11 shows the one fourth of the diamond type lattice with possible regular inter-nodes: tetrahedron (T), hexahedron (H), center (C), and splinted in <100>-direction configuration (S). 

While projecting the elementary cell on a plane normal to a given crystallographic axis (See Fig.5.1), the different positions corresponding to the same inter-node would have the identical projections: for example, in position Т1 two tetragonal inter-nodes are projected, and only one inter-node is projected in position Т2 (Fig.5.11б). Thus, while evaluating the yield from impurity atoms for given direction, it is necessary to take into account the identical projections on transversal plane (Fig.5.4).   
Fig.5.12 shows the normalized angular yields for 21.4 MeV helium ions scattered by oxygen atoms. The minimal yield and angular half-width depend on the inter-node type. For example, in tetragonal inter-nodes there is a peak at zero incidence angles relative to <110>-axis, minimums (of different half-width) in <100> and <111>-direction being observed.

In hexagonal inter-nodes for <110> and <111>-axis, the minimal yield is observed at zero incidence angle (the yields differ by amplitude and half-width), the scattered particles yield peak (for <100>-direction) being displaced relative the central position. The inter-node projection is also displaced relative the channel center. 

In centered inter-nodes there is a peak for <111>-direction at zero incidence angle, the peaks (of different half-widths) for <100> and <111>-axis being displaced from the center. When the angular distributions for main crystallographic axes are different we have the splinted configuration. The position of a displaced peak depends on the distance between an impurity atom and the channel axis (or atomic chain). 

L.Feldman studied the location of bismuth atoms implanted at 450 0С into GaP-crystal (implantation dose 3SYMBOL 215 \f "Symbol"1014 ion/cm2). The angular half-widths for impurity and matrix atoms while helium ions channeling along gallium and phosphorus atomic chains (in <110>-direction) are represented by Fig.5.10з. The yields of scattered helium ions from mixed GaP chains  (along <111>-axis) have been also measured (Fig.5.10и). The quantity Z2 (equation 5.10 and 5.11) has been chosen as the arithmetic average of component atomic numbers.  

The quantity (Bi1/2 is appreciably less than (Ga1/2 (in <110>-direction). It leads to conclusion that the bismuth atoms are mainly localized in lattice nodes (substituting phosphorus atoms).  Thus, the method is based on the comparison of half-widths of orientation curves for different sub-lattices of a crystal. 

The flux maximum can be displaced from the channel center to its border by changing the incidence angle. It leads to increasing the yield of particles scattered by impurity atoms located in the channel. Having found the angle corresponding to the increasing of the back scattered particles yield and using formula (5.15), the location of impurity atoms can be established. G.Pochil has proposed this method. 

In order to find the location of impurity atoms in crystals of А3В5 –type N.Chechenin has used the asymmetry of the backscattered particles yield from impurity and matrix atoms.  The asymmetry is resulted from the reciprocal screening of the "А" and "В" atomic chain pairs in the <110>-direction. At positive incidence angles, the particles are scattered mainly by “A” atoms, at negative (symmetrical) angles – by “B” atoms. The asymmetry is observed in angular interval ( = (0.8 – 2.0)(1 (formula 5.10) and at the depth smaller than the length, at which the statistical equilibrium is reached. 

 Sometimes the damping oscillations of the energy depth spectra are observed. The oscillations on the “A” and “B” sub-lattices of А3В5Т-structure are of opposite phases. At symmetrical incidence angles when scattering from a sub-lattice, the oscillations are also in opposite phases. 

The asymmetry method for the localization of substituting impurity atoms in compounds of А3В5-type based on screening effect of <110>-atomic chains has been developed. It was shown that the indium atoms are mainly located in inter-nodes of the gallium sub lattice; the antimony atoms are localized in phosphorus or arsenic sub-lattice nodes of the GaP and GaAs crystals. 

5.4. Dechannelization of ions in crystals, Analysis of defects  

At small depths of crystals (in accordance with analytical calculation and computer modeling) the particle flux oscillates with the depth, the oscillation amplitude being dependent on the crystal lattice perfection. At great depth in transversal plane of a channel, the equilibrium state is produced. The flux distribution in transversal plane is not uniform (Fig.5.8): the flux density in the central regions of a channel increases strongly due to the flux density decrement near the atomic nuclei.

Under action of the scattering from atomic electrons, the thermal oscillations of node atoms, and crystalline defects; the channel particles distribution is violated, the transversal kinetic energy is changed. The distribution function g(E(,l) depends on the energy and depth. The probability to find the particles with great energy (E() increases with the depth. For an oriented beam, the minimal yield as a function of the penetration depth (the dechanneling function) is defined as follows: 
((l) = 
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The theory is based either on the micro-canonical distribution or kinetic equation. The multiply scattering dominates the evolution of channeling particles. Two types of the multiply scattering are supposed to be. 

The first one is the scattering of channeling particles from continuous atomic chains or planes when scattering from a separate atomic chain is supposed to be the elementary process (not the scattering from a separate atom while moving in amorphous media).  The Boltzmann kinetic equation can be applied. The equation describes the transition to the equilibrium state, under assumption that there are no correlations between separate collisions. At that, the channeling can be interpreted as a random two-dimensional scattering from continuous atomic chains or planes. 

The second one is the scattering from electrons and thermal oscillations. Some authors have used the density matrix formalism and diffuse approximation. The action of atomic chains on channeling particles is described by diffusion coefficients. The others have used the Fokker-Planck equation. 

Thus, kinetic equations are the main instrument of solving the problem. This method is rather tiresome, and approximation methods are needed. One of possible solution is separate treatment of particles with small (are supposed to move in the channel central region and to be scattered by atomic electrons) and great (are supposed to move in the channel outer region and to be scattered by nuclei) impact parameters. At that, the results are good. 

It should be noted that all the models describe the channeling in ideal crystals when the scattering from electrons thermal oscillations dominates. Dechannelization in real crystals has not been studied in fool measure.  Channel ions cannot approach nuclei at a distance smaller the Thomas-Fermy screening radius. Thus, the Rutherford and resonance backscattering and nuclear reactions from atomic chain nuclei are forbidden. 

While channeling through an ideal crystal, particles are scattered by electrons at small angles, which are summarized. Hence, the number of particles approaching atomic chains increases monotonously. 

These particles can undergo collisions with lattice atoms displaced from their equilibrium positions because of thermal oscillations. The particles can be scattered at an angle greater than critical channelization angle. At that, the multiply scattering from lattice atoms increases the number of decannelized particles. The atoms located in inter-nodes and crystal channels intensify this process in great measure.

 For identifying the defect type when analyzing an energy spectrum, the axis yields of ions must be measured.  The yield depends on defect cross-sections. For spectra of “B”-type (Figf.5.3a) we can define a defect parameter as follows: 
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Fig.5.13. Energy spectra (a), normalized yields (б), and defect profiles for <100> GaAs <Cr> (в): (1)- axial spectrum and yield of control (non-implanted) sample; (2)- (5)- samples implanted by sulfur ions (energy 100 keV, dose 1015 atoms per cm2) and thermally treated at 3-573K, 4-773K,and 5-873K; (б)- spectrum of non-oriented crystal

The scattering cross-section depends on a defect type. While scattering from chaotically displaced atoms it is reversibly proportional to the energy, while scattering from lattice defects it is proportional to the energy. When scattering from dislocations it is proportional to the square root of energy and while scattering from niter-node atoms it is inversely proportional to the square root of energy.  The twins’ dechannelization factor depends on the energy in a rather complicated way. 

The type of a dominant defect can be found while observing the yields (from the same depth) in an axial and random direction. Fig. 5.14 shows the normalized yields and cross-sections for the channeling particles scattered from defects of various types. 

The measurements of defect profile and its localization depends on the information about the depth and transversal distribution of channel particles.  It stimulates the development of the new theoretical ideas and new experimental installations. 

5.5. Discrete X-radiation induced by channeling ions

The discrete X-radiation induced by ions while moving through non-ordered structures has been thoroughly discussed in Chapter 4.  The method is applied for controlling materials, biological objects (leave, wood, blood, tissues), aerosols, liquids, and suspensions. The method is also used in medicine and criminalistics. Applying of the channel effect has some advantages. 

The background intensity is appreciably smaller (especially, the background caused by fast electrons). This circumstance is due to decreasing of the small impact parameter collisions with atomic electrons. Sometimes the background intensity is reduced by one order of magnitude (Fig.5.15). The peak corresponding to the silicon atoms is caused by the oil vapor (from the vacuum pump). The peaks corresponding to Cl, K, and Ca atoms give the surface distribution of deposited impurities (while ablution). Because of small background, the sensibility of analysis is great (Table 5.4). 

The method sensibility is about 1013 atoms/cm2. The sensibility depends on the integral ion flux (up to 20 mkCu for GaAs and mkCu for GeВ). 
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Fig.5.14. Normalized yields and cross-sections while channel scattering from different defects  

It should be noted that while analyzing the surface impurities, the concentrations are controlled only when the non-oriented irradiation is emitted. The characteristic X-radiation yield decreases for substituting impurities and increases for atoms located in inter-nodes. 

We recommend this method for localization both the heavyweight and the lightweight imparities. The L and M lines are conventionally used for heavy impurities in a lightweight target.  
The absorption of radiation by the target limits the layer sounding depth. It should be noted that for not great depths, the scattering does not strongly affect the angular distribution. At that, the yields from impurity and matrix atoms coincide.   For impurity atoms located at the distances greater than the screening radius, the quantity (min appears to be greater and the quantity (1/2 less than those for matrix atoms.

Fig.5.15. The discrete X-radiation spectra from GaAs crystals implanted by 34S+ ions (induced by 2 MeV helium ions: (1)- non-oriented crystal; (2)- <110>-orientation
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Table 5.4. Minimal detected impurity concentration in GaAs and Ge crystals while exciting discrete X-radiation by 2 MeV helium ions

	Isotope
	Orientation
	Minimal impurity concentration,1013atoms/cm2

	
	
	GaAs
	Ge

	Al
	R / A
	
	-/500

	Si
	R / A
	48/24
	250/100

	S
	R / A
	4/3
	

	P
	R / A
	
	100/30

	Cl
	R / A
	1,5/0,9
	-/2

	K
	R / A
	1/0,5
	3/1

	Ca
	R / A
	1/0,6
	-/1


Notice: R – non-oriented crystal; А – <110>-orientation; «-» - impurity is not identified; Ni = Nп / 3
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, Np – the peak number counting, NФ – background. 

The intensity of X-radiation yield can be written as follows: 
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The quantity ( is the orientation angle; I1 = 
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the X-radiation yield of particles which are not involved in channeling; I0 is the yield while random irradiation; I2, I3 are the yields of impurity atoms excited by channeling and scattered ions.  We have applied the X-radiation produced by 600 keV channeling protons for controlling the cobalt atoms (implanted by 250 keV Со+ ions after heat treatment at 1400 K) in molybdenum crystals. Fig.5.16 shows the X-radiation yield in <111>, <110>, and <100>-direction obtained experimentally and by the Monte-Carlo method. About 95% of cobalt atoms are supposed to be in a substituting position. While irradiating by protons, some portion of these atoms transits in inter-nodes, the atoms being displaced mainly at 0.105 nm in <110>-direction. At greater doses, some atoms are displaced at 0.14 nm in <100>-direction.
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Fig.5.16. Angular yields of СоК( X-radiation while irradiating Mo crystals by 600 keV protons at 50K: (a)- Ф = 3(1016 cm-2 and (b)- Ф = 8(1016 cm-2. The curve designated by (( ( ( ( () corresponds to the situation when cobalt atoms are in inter-nodes; 18 % (а) и 25 % (б) are in <110> splitter configuration  (•••); 1.7 % (а) and 5 % (б) cobalt atoms are in octahedral position (( ( (); two last configurations are present  (—) 
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