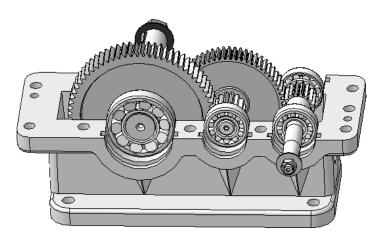
Metrology, standardization and certification

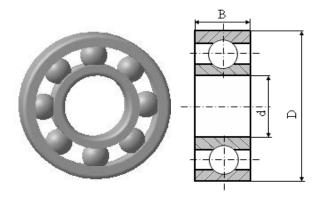

Lecture plan:

- 1. General information about rolling bearing.
- 2. Rationing of the accuracy for a rolling bearing.
- 3. Choice of fits for races.
- 4. Designation of the race fits in assembler drawing.

General information about rolling bearing

Rolling bearings are universal units in which set the parts. They intended for support of rotating elements and works under conditions of predominant of rolling friction.

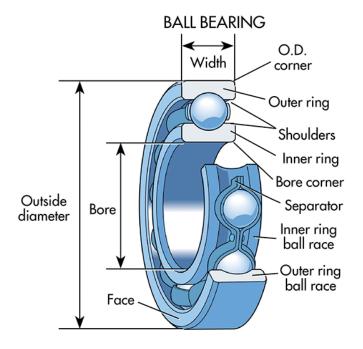
For the first time in the world the production of frictionless bearings was organized in Germany at 1883. And at the same time in USA. In Russia the first workshop was created at 1916, but the first trade plant was build at 1932 in Moscow.


Shafts are inserted in the rolling bearings and placed in the body of reducer.

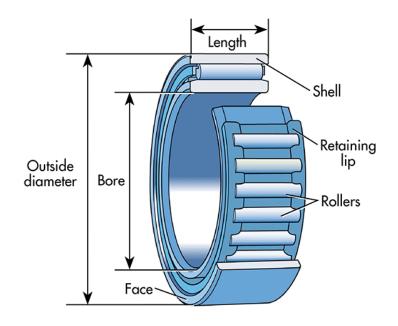
General information about rolling bearing

Operability of rolling bearings is highly dependent on the quality of the materials from which they are made, on the accuracy of their manufacture, of the type of their connection to mating parts and operating conditions.

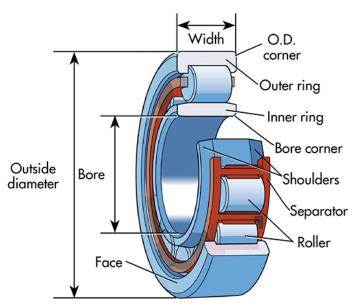
Roll double-row bearing

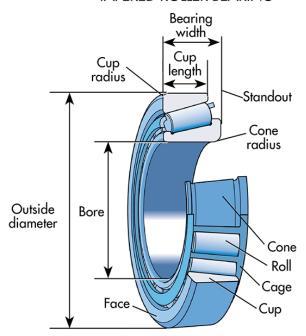


Ball single-row bearing

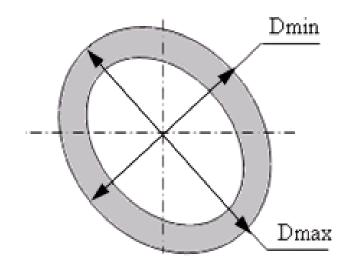

- *1– outer race;*
- 2- inner race;
- *3 cage*;
- 4- element of rolling

- B width of the bearing;
- d fit diameter of the inner race;
- D fit diameter of the outer race.


Rolling bearing must ensure the accuracy and uniformity of rotation of the moving parts of machines and devices, and also to have a high durability.

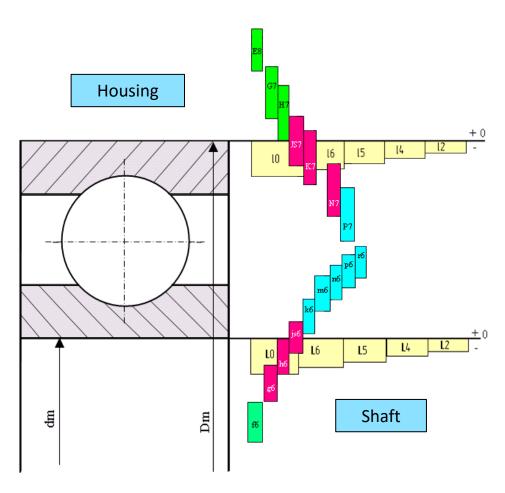

NEEDLE ROLLER BEARING

STRAIGHT ROLLER BEARING



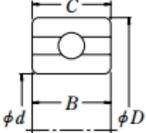
TAPERED ROLLER BEARING

General information about rolling bearing


Rolling elements can be balls, cylindrical rollers, needle rollers, tapered rollers or barrel rollers. The rolling elements are generally guided by a cage that keeps them at a uniform distance from each other and prevents them coming into contact with each other. In needle roller bearings and rib less spherical roller bearings, the cage also ensures that the rolling element axis is positioned correctly. Where bearings can be dismantled, the cage holds the rolling elements together and gives easier fitting of the bearings. For particular applications, rolling bearings with a full complement of balls, cylindrical rollers or needle rollers may be used.

$$D_m = \frac{D_{\text{max}} + D_{\text{min}}}{2}$$

Outer race of rolling bearing


Rationing of the accuracy for a rolling bearing

The scheme of arrangement of the tolerance zones for rolling bearings (selectively)

Symbols for Boundary Dimensions and Running Accuracy

	-		
d Δ_{ds} Δ_{dmp} V_{dp}	Brg bore dia., nominal Deviation of a single bore dia. Single plane mean bore dia. deviation Bore dia. Variation in a single radial plane	$D \atop \varDelta_{D\mathrm{s}} \atop \varDelta_{D\mathrm{mp}} V_{D\mathrm{p}}$	Outside dia. Variation in a single radial
V_{dmp}	Mean bore dia. Variation	$V_{D{ m mp}}$	plane Mean outside dia. Variation
B	Inner ring width, nominal	_	
Δ_{Bs}	Deviation of a single inner ring width	\boldsymbol{C}	Outer ring width, nominal
$V_{B\mathrm{s}}$	Inner ring width variation	$\Delta c_{\rm s}$	Deviation of a single outer ring width
		$V_{C\mathrm{s}}$	Outer ring width variation
K_{ia}	Radial runout of assembles brg inner ring		
S_{d}	inner ring reference face (backface, where	K_{ea}	Radial runout of assembled brg outer ring
	applicable) runout with bore	S_D	Variation of brg outside surface generatrix
S_{ia}	Assembled brg inner ring face (back face) runout with raceway		inclination with outer ring reference face (backface)
S_i, S_s	Raceway to backface thickness variation	S_{ea}	Assembled brg outer ring face (backface)
-ı, -e	of thrust brg	-ea	runout with raceway
T	Brg width, nominal		
1 _m	Deviation of the actual brg width		
$\Delta T_{\rm S}$	Deviation of the actual bry within		

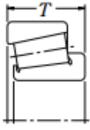


Table 8. 1 Bearing Types and Tolerance Classes

	Bearing	Types		Applica	able Tolerance (Classes		Applicable Tables	Reference Pages
I	Deep Groove Ba	II Bearings	Normal	Class 6	Class 5	Class 4	Class 2		
- 1	Angular Contac	Ball Bearings	Normal	Class 6	Class 5	Class 4	Class 2		
	Self-Aligning Ba	III Bearings	Normal	Class 6 equivalent	Class 5 equivalent	_	— Table		A60
(Cylindrical Rolle	er Bearings	Normal	Class 6	Class 5	Class 4	Class 2	8.2	to A63
- (Needle Roller B (solid type)	earings	Normal	Class 6	Class 5	Class 4	_		
5	Spherical Roller	Bearings	Normal	Class 6	Class 5	_	_		
	Tapered Roller	Metric Design	Normal Class 6X	_	Class 5	Class 4	_	Table 8.3	A64 to A67
	Bearings	Inch Design	ANSI/ABMA CLASS 4	ANSI/ABMA CLASS 2	ANSI/ABMA CLASS 3	ANSI/ABMA CLASS 0	ANSI/ABMA CLASS 00	Table 8.4	A68 and A69
- 1	Magneto Bearin	gneto Bearings		Class 6	Class 5	_	_	Table 8.5	A70 and A71
1	Thrust Ball Bear	ings	Normal	Class 6	Class 5	Class 4	_	Table 8.4	A72 to A74
5	Spherical Thrus	t Roller Bearings	Normal	_	_	_	_	Table 8.7	A75
so.	JIS	(1)	Class 0	Class 6	Class 5	Class 4	Class 2	_	_
ndard:	DIN	(²)	P0	P6	P5	P4	P2	_	_
Equivalent standards (Reference)	ANSI/ ABMA(³)	Ball Bearings	ABEC 1	ABEC 3	ABEC 5 (CLASS 5P)	ABEC 7 (CLASS 7P)	ABEC 9 (CLASS 9P)	Table 8.2	A60 to A63
quival (R		Roller Bearings	RBEC 1	RBEC 3	RBEC 5	_	_	[Table] 8.8	(A76 and A77)
В		Tapered Roller Bearings	CLASS 4	CLASS 2	CLASS 3	CLASS 0	CLASS 00	Table 8.4	(A68 and A69)

Notes (1) JIS: Japanese Industrial Standards (2) DIN: Deutsch Industrie Norm

Remarks The permissible limit of chamfer dimensions shall conform to Table 8.9 (Page A78), and the tolerances and permissible tapered bore diameters shall conform to Table 8.10 (Page A80).

^(*) ANSI/ABMA: The American Bearing Manufacturers Association

Nominal I	Nominal Bore Diameter d (mm)					Δ,	_{dmp} (²)						△ ds (²)			
(Normal		Class 6		lass 5	C	lass 4		Class 2	Dia S	ass 4 ameter eries 2, 3, 4	Class 2		
over	incl	high	low	high	low	high	low	high	low	high	low	high	low	high	low	
0.6(¹) 2.5 10	2.5 10 18	0 0 0	- 8 - 8 - 8	0 0 0	- 7 - 7 - 7	0 0 0	- 5 - 5 - 5	0 0 0	- 4 - 4 - 4	0 0 0	-2.5 -2.5 -2.5	0 0 0	- 4 - 4 - 4	0 0 0	-2.5 -2.5 -2.5	
18 30 50	30 50 80	0 0 0	- 10 - 12 - 15	0 0 0	- 8 -10 -12	0 0 0	- 6 - 8 - 9	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4	
80 120 150 180	120 150 180 250	0 0 0	- 20 - 25 - 25 - 30	0 0 0	-15 -18 -18 -22	0 0 0 0	-10 -13 -13 -15	0 0 0 0	- 8 -10 -10 -12	0 0 0	-5 -7 -7 -8	0 0 0	- 8 -10 -10 -12	0 0 0	-5 -7 -7 -8	
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	0 0 0	-25 -30 -35	0 0 -	-18 -23 -	-	_	- - -		 - -	_ _ _	_ _ _	_ _ _	
500 630 800	630 800 1 000	0 0 0	- 50 - 75 -100	<u>0</u> _	-40 - -	-	_	-	_	- -		-	<u>-</u> -	_ _ _	_ _ _	
1 000 1 250 1 600	1 250 1 600 2 000	0 0 0	-125 -160 -200	<u>-</u> -	- - -	=	<u>-</u> -	<u>-</u> -	=	_ _ _	_ _ _	- -	<u>-</u> -	_ _ _	- - -	

							V_{di}	np (²)								
Normal Diameter Series			Class 6 Diameter Series			Dian	ss 5 neter ries	Dian	ss 4 neter ries	Class 2 Diameter Series	Normal	Class 6	Class 5	Class 4	Class 2	
9	0, 1	2, 3, 4	9	0, 1	2, 3, 4	9	0,1,2,3,4	9	0,1,2,3,4	0,1,2,3,4						
	max.			max.		m	ax.	m	ax.	max.	max.	max.	max.	max.	max.	
10 10 10	8 8 8	6 6 6	9 9 9	7 7 7	5 5 5	5 5 5	4 4 4	4 4 4	3 3	2.5 2.5 2.5	6 6	5 5 5	3 3 3	2 2 2	1.5 1.5 1.5	
13 15 19	10 12 19	8 9 11	10 13 15	8 10 15	6 8 9	6 8 9	5 6 7	5 6 7	4 5 5	2.5 2.5 4	8 9 11	6 8 9	3 4 5	2.5 3 3.5	1.5 1.5 2	
25 31 31 38	25 31 31 38	15 19 19 23	19 23 23 28	19 23 23 28	11 14 14 17	10 13 13 15	8 10 10 12	8 10 10 12	6 8 9	5 7 7 8	15 19 19 23	11 14 14 17	5 7 7 8	4 5 5 6	2.5 3.5 3.5 4	
44 50 56	44 50 56	26 30 34	31 38 44	31 38 44	19 23 26	18 23 —	14 18 -	- - -	- - -	_ _ _	26 30 34	19 23 26	9 12 —	<u>-</u> <u>-</u>	_ 	
63	63	38	50	50	30	_	-	_	-	_	38	30	_	_	_	
_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	

	Δ_{Bs} (or Δ_{Cs})(3)													$V_{B\mathrm{s}}$ (or $V_{C\mathrm{s}}$)					
	Single Bearing Combined Bearings (4)									Inner R Outer R	Inner Ring (or Outer Ring) (²) Inner Ring								
		rmal ass 6		lass 5 lass 4	С	Class 2		Class 2		ormal lass 6		lass 5 lass 4	С	lass 2	Normal	Class 6	Class 5	Class 4	Class 2
high	h	low	high	low	high	low	high	low	high	low	high	low	max.	max.	max.	max.	max.		
0 0		- 40 - 120 - 120	0 0 0	- 40 - 40 - 80	0 0 0	- 40 - 40 - 80	0 0	-250 -250	0 0 0	-250 -250 -250	0 0 0	-250 -250 -250	12 15 20	12 15 20	5 5 5	2.5 2.5 2.5	1.5 1.5 1.5		
0 0		- 120 - 120 - 150	0 0 0	-120 -120 -150	0 0	-120 -120 -150	0 0 0	-250 -250 -380	0 0 0	-250 -250 -250	0 0 0	-250 -250 -250	20 20 25	20 20 25	5 5 6	2.5 3 4	1.5 1.5 1.5		
0 0 0		- 200 - 250 - 250 - 300	0 0 0	-200 -250 -250 -300	0 0 0	-200 -250 -250 -300	0 0 0	-380 -500 -500 -500	0 0 0	-380 -380 -380 -500	0 0 0	-380 -380 -380 -500	25 30 30 30	25 30 30 30	7 8 8 10	4 5 5 6	2.5 2.5 4 5		
0 0		- 350 - 400 - 450	0 0 -	-350 -400 -	- - -	Ξ	0 0 -	-500 -630 -	0 0 -	-500 -630 -	 - -	=	35 40 50	35 40 45	13 15 —	=	=		
0 0		- 500 - 750 -1 000	 - -	=	-	Ξ	=	=	 - -		 - -	=	60 70 80	50 - -	_ _ _	_ _ _	_		
0 0		-1 250 -1 600 -2 000	 - -	_	-	=	=		_ _		 - 	_	100 120 140	_ _ _	_ _	_ _	_ _		

Notes

- (1) 0.6mm is included in the group.
- (2) Applicable to bearings with cylindrical bores.
- (3) Tolerance for width deviation and tolerance limits for the width variation of the outer ring should be the same bearing. Tolerances for the width variation of the outer ring of Class 5, 4, and 2 are shown in Table 8.2.2.
- (4) Applicable to individual rings manufactured for combined bearings.
- (5) Applicable to ball bearings such as deep groove ball bearings, angular contact ball bearings, etc.

Units: um

												iita . μπι		
		K_{ia}				S_d			S ia (5)		Nominal Bore Diameter			
Normal	Class 6	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	<i>d</i> (mm)			
max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	over	incl		
10	5	4	2.5	1.5	7	3	1.5	7	3	1.5	0.6(¹)	2.5		
10	6	4	2.5	1.5	7	3	1.5	7	3	1.5	2.5	10		
10	7	4	2.5	1.5	7	3	1.5	7	3	1.5	10	18		
13	8	4	3	2.5	8	4	1.5	8	4	2.5	18	30		
15	10	5	4	2.5	8	4	1.5	8	4	2.5	30	50		
20	10	5	4	2.5	8	5	1.5	8	5	2.5	50	80		
25 30 30 40	13 18 18 20	6 8 8 10	5 6 6 8	2.5 2.5 5	9 10 10 11	5 6 6 7	2.5 2.5 4 5	9 10 10 13	5 7 7 8	2.5 2.5 5	80 120 150 180	120 150 180 250		
50	25	13	_	_	13	_	_	15	_	_	250	315		
60	30	15	_	_	15	_	_	20	_	_	315	400		
65	35	—	_	_	—	_	_	—	_	_	400	500		
70	40	_	_	_	_	_	_	_	_	_	500	630		
80	_	_	_	_	_	_	_	_	_	_	630	800		
90	_	_	_	_	_	_	_	_	_	_	800	1 000		
100	_	_	_	_	_	_	_	_	_	_	1 000	1 250		
120	_	_	_	_	_	_	_	_	_	_	1 250	1 600		
140	_	_	_	_	_	_	_	_	_	_	1 600	2 000		

- Remarks 1. The cylindrical bore diameter "no-go side" tolerance limit (high) specified in this table does not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face.
 - 2. ABMA Std 20-1996: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7, and ABEC9-RBEC9 are equivalent to Classes Normal, 6, 5, 4, and 2 respectively.

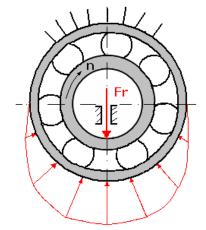
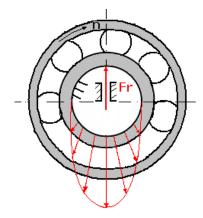

Choice of fits for races

Table 9.1 Loading Conditions and Fits


Load Application	Bearing (Operation	Load	Fitt	ing
Load Application	Inner Ring	Outer Ring	Conditions	Inner Ring	Outer Ring
Load	Rotating	Stationary	Rotating Inner Ring Load		
Load Rotating	Stationary	Rotating	Stationary Outer Ring Load	Tight Fit	Loose Fit
Load Stationary	Stationary	Rotating	Rotating Outer Ring Load	Loose Fit	Tight Fit
Load Rotating	Rotating	Stationary	Stationary Inner Ring Load		
Direction of load indeterminate due to variation of direction or unbalanced load	Rotating or Stationary	Rotating or Stationary	Direction of Load Indeterminate	Tight Fit	Tight Fit

Choice of fits for races

- 1. Stationary loading
- 2. Rotation loading
- 3. Fluctuation loading

Stationary loading of outer race and rotation loading of the inner race

Stationary loading of the inner race and rotation loading of the outer race

Table 9.2 Fits of Radial Bearings with Shafts

			S	haft Diameter (mm	1)	T-1			
Load	Conditions	Examples	Ball Brgs	Cylindrical Roller Brgs, Tapered Roller Brgs	Spherical Roller Brgs	of Shaft	Remarks		
			Radial Bearings	with Cylindrical Bo	res				
Rotating Outer	Easy axial displacement of inner ring on shaft desirable.	Wheels on Stationary Axles	Stationary		g6	Use g5 and h5 where accuracy is required. In case of large			
Ring Load	Easy axial displacement of inner ring on shaft unnecessary	Tension Pulleys Rope Sheaves	,	All Glian Diameters	h6	bearings, f6 can be used to allow easy axi movement.			
	H-ball-s-d-	Electrical Home	<18	_	_	js5			
	Light Loads or Variable	Appliances Pumps, Blowers, Transport Vehicles, Precision Machinery,	18 to 100	<40	_	js6(j6)			
	Loads $(<0.06C_r(^1))$		100 to 200	40 to 140	_	k6			
	(<0.06C ₇ (*))	Machine Tools	_	140 to 200	-	m6			
	Normal Loads (0.06 to 0.13C _r (1))		<18	_	-	jsSorjs6 (Borj6)			
			18 to 100	<40	<40	k5 or k6	k6 and m6 can be		
Rotating Inner			100 to 140	40 to 100	40 to 65	m5 or m6	used for single-row tapered roller		
Ring Load or Direction of			140 to 200	100 to 140	65 to 100	m6	bearings and single-		
Load			Engine Main Bearings,	200 to 280	140 to 200	100 to 140	n6	row angular contact ball bearings	
ndeterminate		Gears,	_	200 to 400	140 to 280	р6	instead of k5 and		
		Woodworking Machines	_	_	280 to 500	т6	m5.		
			_	_	over 500	r7			
		Railway Axleboxes,	_	50 to 140	50 to 100	n6	More than CN		
	Heavy Loads or Shock Loads	Industrial Vehicles, Traction Motors,	Traction Motors,	Traction Motors,	_	140 to 200	100 to 140	р6	bearing internal
	(>0.13C _r (1))	Construction Equipment,	_	over 200	140 to 200	r6	clearance is necessary.		
		Crushers	_	_	200 to 500	r7	necessary.		
Axial	Loads Only			All Shaft Diameters		js6 (j6)	_		
		Radi	al Bearings with 1	Tapered Bores and	Sleeves				
All Types of Loading		General bearing Applications, Railway Axleboxes	ons,				ITS and IT7 mean that the deviation of the shaft from its true geometric form, e. g. roundness and		
ли тург	J. Londing	Transmission Shafts, Woodworking Spindles		and Diameters		h10/IT7	cylindricity should be within the tolerances of ITS and IT7 respectively.		

Note ($^{\rm t}$) $C_{\rm r}$ represents the basic load rating of the bearing. Remarks This table is applicable only to solid steel shafts.

Table 9.4 Fits of Radial Bearings with Housings

	Load Co		Examples	Tolerances for Housing Bores	Axial Displacement of Outer Ring	Remarks	
		Heavy Loads on Bearing in Thin-Walled Housing or Heavy Shock Loads	Automotive Wheel Hubs (Roller Bearings) Crane Travelling Wheels	P7			
	Rotating Outer Ring	Normal or Heavy Loads	Automotive Wheel Hubs (Ball Bearings) Vibrating Screens	N7	- Impossible	_	
Solid Housings	Load	Light or Variable Loads	Conveyor Rollers Rope Sheaves Tension Pulleys	М7	Impossore		
		Heavy Shock Loads	Traction Motors				
	Direction of Load	Normal or Heavy Loads	Pumps Crankshaft Main Bearings	K7	Generally Impossible	If axial displacement of the outer ring is not required.	
	and a second	Normal or Light Loads	Medium and Large Motors	JS7 (J7)	Possible	Axial displacement of outer ring is necessary.	
Solid or Split		Loads of All kinds	General Bearing Applications, Railway Axleboxes	H7			
Housings	Rotating Inner Ring	Normal or Light Loads	Plummer Blocks	H8	Easily possible	_	
		High Temperature Rise of Inner Ring Through Shaft	Paper Dryers	G7			
	Luau	Accurate Running Desirable under	Grinding Spindle Rear Ball Bearings High Speed Centrifugal Compessor Free Bearings	JS6 (J6)	Possible	_	
Solid Housing	Direction of Load Indeterminate	Normal or Light Loads	Grinding Spindle Front Ball Bearings High Speed Centrifugal Compressor Fixed Bearings	К6	Generally Impossible	For heavy loads, interference fit tighter than K is used. When high accuracy is	
	Rotating	Accurate Running and High Rigidity Desirable under Variable Loads	Cylindrical Roller Bearings for Machine Tool Main Spindle	M6 or N6	Impossible	required, very strict tolerances should be used for fitting.	
	Inner Ring Load	Minimum noise is required.	Electrical Home Appliances	H6	Easily Possible	<u>—</u>	

Remarks This table is applicable to cast iron and steel housings. For housings made of light alloys, the interference should be tighter than those in this table.

9.2 Bearing Internal Clearances

9.2.1 Internal Clearances and Their Standards

The internal clearance in rolling bearings in operation greatly influences bearing performance including fatigue life, vibration, noise, heart-generation, etc. Consequently, the selection of the proper internal clearance is one of the most important tasks when choosing a bearing after the type and size have been determined.

This bearing internal clearance is the combined clearances between the inner/outer rings and rolling elements. The radial and axial clearances are defined as the total amount that one ring can be displaced relative to the other in the radial and axial directions respectively (Fig. 9.1).

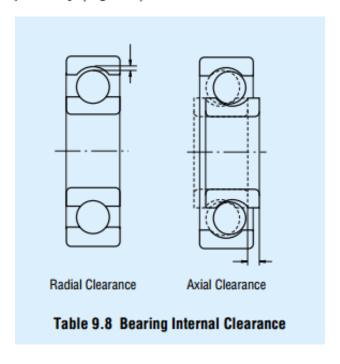


Table 9.9 Radial Internal Clearances in Deep Groove Ball Bearings

Units: µm

	Nominal Bore Diameter					Clear	rance				
d (mm)		С	2	С	N	С	3	С	4	С	5
over in	ncl	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
	18 24	0 0 0	7 9 10	2 3 5	13 18 20	8 11 13	23 25 28	14 18 20	29 33 36	20 25 28	37 45 48
30	30	1	11	5	20	13	28	23	41	30	53
	40	1	11	6	20	15	33	28	46	40	64
	50	1	11	6	23	18	36	30	51	45	73
65 8	65	1	15	8	28	23	43	38	61	55	90
	80	1	15	10	30	25	51	46	71	65	105
	00	1	18	12	36	30	58	53	84	75	120
120 14	20	2	20	15	41	36	66	61	97	90	140
	40	2	23	18	48	41	81	71	114	105	160
	60	2	23	18	53	46	91	81	130	120	180
160 18		2	25	20	61	53	102	91	147	135	200
180 20		2	30	25	71	63	117	107	163	150	230
200 22		2	35	25	85	75	140	125	195	175	265
250 28	50	2	40	30	95	85	160	145	225	205	300
	80	2	45	35	105	90	170	155	245	225	340
	15	2	55	40	115	100	190	175	270	245	370
315 35	00	3	60	45	125	110	210	195	300	275	410
355 40		3	70	55	145	130	240	225	340	315	460
400 45		3	80	60	170	150	270	250	380	350	510
450 50	60	3	90	70	190	170	300	280	420	390	570
500 56		10	100	80	210	190	330	310	470	440	630
560 63		10	110	90	230	210	360	340	520	490	690
630 71	_	20	130	110	260	240	400	380	570	540	760
710 80		20	140	120	290	270	450	430	630	600	840

Remarks To obtain the measured values, use the clearance correction for radial clearance increase caused by the measuring load in the table below.

> For the C2 clearance class, the smaller value should be used for bearings with minimum clearance and the larger value for bearings near the maximum clearance range.

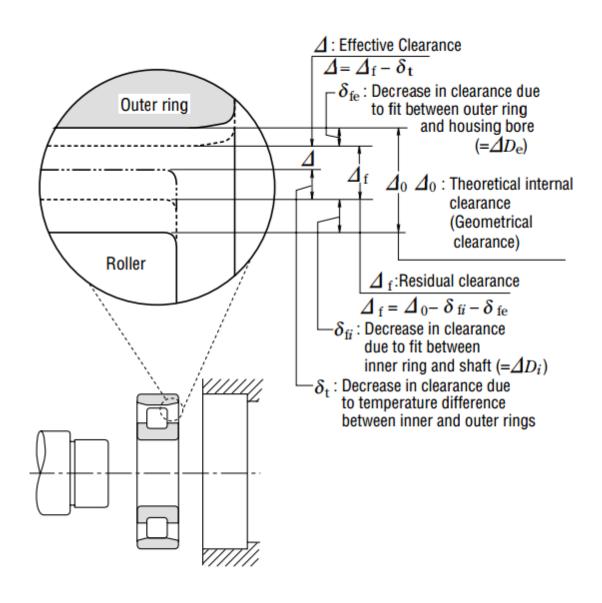
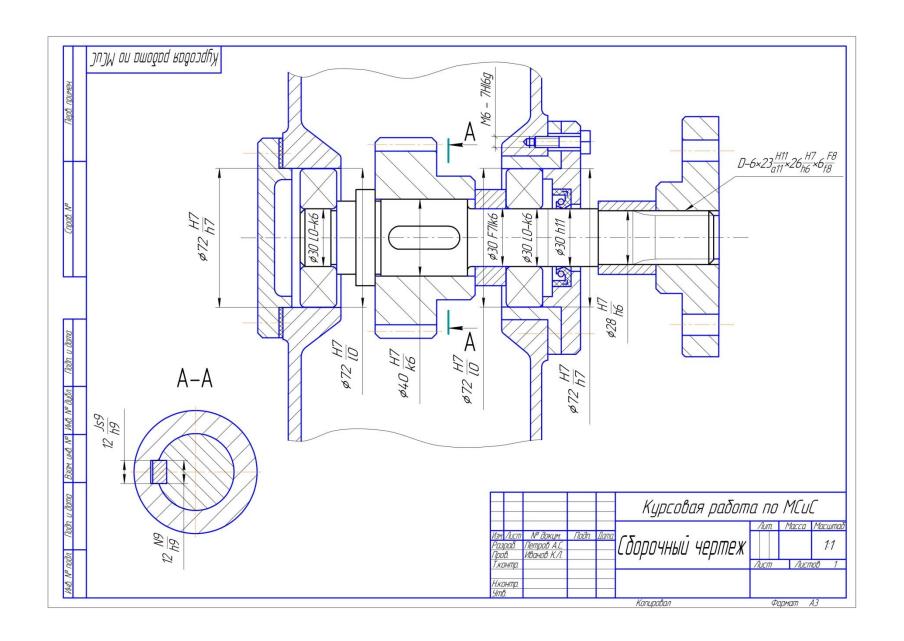
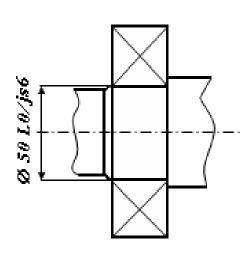
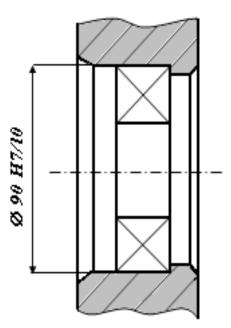



Fig. 9.2 Changes in Radial Internal Clearance of Bearings

Table 9. 19 Examples of Clearances for Specific Applications


Operating Conditions	Examples	Internal Clearance
When shaft deflection is large.	Semi-floating rear wheels of automobiles	C5 or equivalent
When steam passes	Dryers in paper making machines	C3, C4
through hollow shafts or roller shafts are heated.	Table rollers for rolling mills	C3
When impact loads and	Traction motors for railways	C4
vibration are severe or	Vibrating screens	C3, C4
when both the inner and outer rings are tight-	Fluid couplings	C4
fitted.	Final reduction gears for tractors	C4
When both the inner and outer rings are loose- fitted	Rolling mill roll necks	C2 or equivalent
When noise and vibration restrictions are severe	Small motors with special specifications	C1, C2, CM
When clearance is adjusted after mounting to prevent shaft deflection, etc.	Main shafts of lathes	CC9, CC1


Designation of the race fits in assembler drawing

Ø50 L0/js6 or Ø50 L0 – js6.

Ø90 H7/I0 or Ø90 H7 – I0.

Designation of the fit for the inner race with the shaft in assembly drawing

Designation of the fit for outer race with the housing in assembly drawing

Thank you for attention