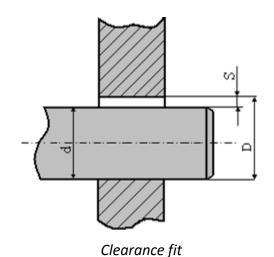
Metrology, standardization and certification

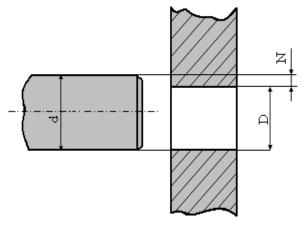
Theme 3: Types of fits in Hole and Shaft systems

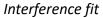
Lecture plan:

- 1. Types of fits
- 2. Hole and shaft systems
- 3. ISO code system for tolerances on linear sizes

Types of fits

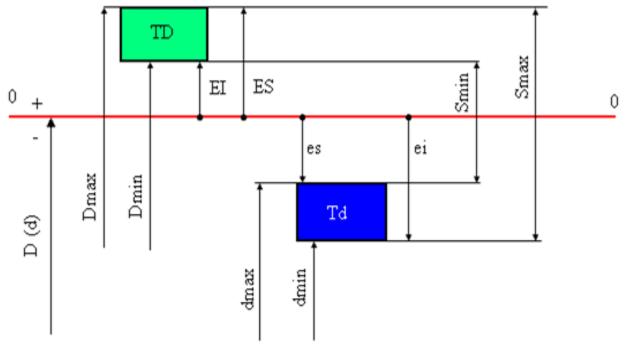

Fit: the nature of connections details, determined by the difference in their sizes before assembly

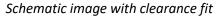

Depending on the relative motion of mating parts or their resistance to relative displacement fits is divided into three types:


- 1. Clearance fit
- 2. Interference fit
- 3. Transition fit

Clearance (S)- the difference between the sizes of the hole and shaft, if the hole size is larger than the size of the shaft.

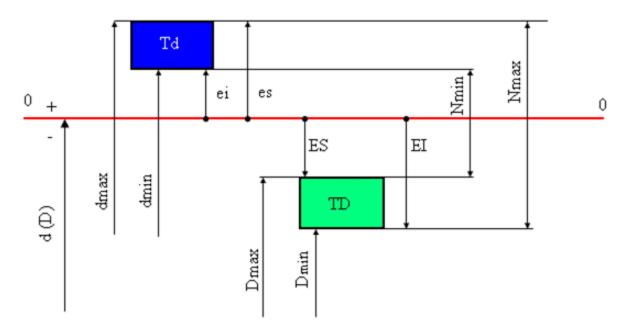
Interference (N) - the difference between the shaft and the hole sizes before assembly, if the shaft size is larger than the hole size.





Clearance fit

Clearance fit: the fit, in which the gap is always formed in the connection, i.e. minimum limit of size of hole larger than the maximum limit of size of shaft or equal to it



TD – diameter tolerance of the hole, Td – diameter tolerance of the shaft,

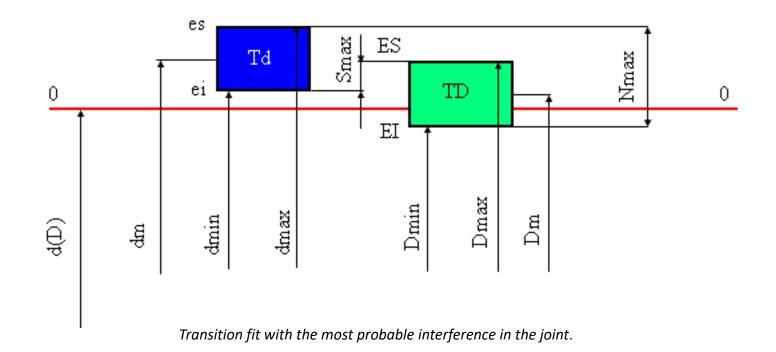
Smin - the smallest clearance; Smax – the largest clearance

Interference fit

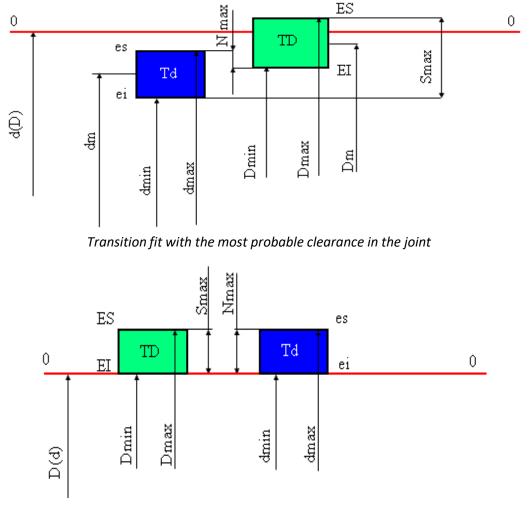
Interference fit: the fit, in which always formed interference in the connection, i.e., the maximum limit of size of the hole smaller than the minimum limit of size of the shaft or equal to it

Schematic representation of the interference fit,

TD – diameter tolerance of the hole, Td – diameter tolerance of the shaft,

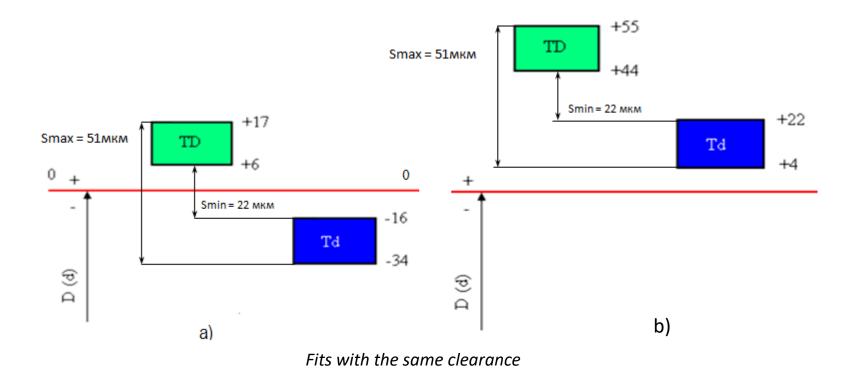

Nmin – the smallest interference, Nmax – the largest interference

Transition fits


Transition fit: the fit in which it is possible to obtain a clearance or interference in the joint.

There are the following types of transition fits:

- 1. With the most probable interference in the joint.
- 2. With the most probable clearance in the connection.
- 3. With equiprobable clearance and interference in the connection.

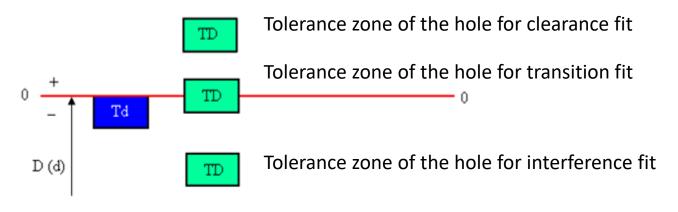

Transition fits

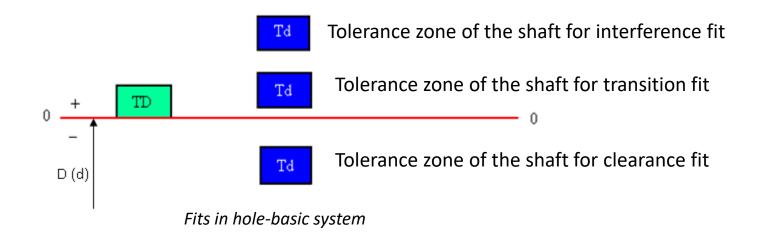
Transition fit with equiprobable clearance and interference in the connection

Function of transition fit is to ensure the accuracy of the centering of the elements of the parts. (EXAMPLE: Connection of pulley or toothed wheel with a gear shaft)

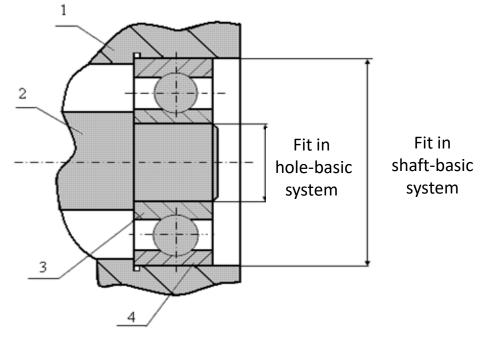
Hole and shaft-basis systems of fits

This "freedom" of choice is uneconomical. If any tolerance zones will be appointed in the design, of such zones may be countless. But this means that it is practically impossible to produce centrally for market dimensional processing tool for making holes (drills, countersinks, reamers) - the tool directly forming a size.


A tool for making holes


A tool for making holes, a) drill b) reamer

Hole and shaft-basis systems of fits


Basic hole - hole lower deviation is zero Basic shaft - shaft upper deviation is zero

Fits in shaft-basic system

Example of the fits in hole-basic and in shaft-basic system

1-body; 2 – shaft; 3 – inner bearing ring; 4 – outer bearing ring

ISO code system for tolerances on linear sizes

ISO 286-1 (2010) Geometrical product specifications (GPS) - ISO code system for tolerances on linear sizes - Part 1: Basis of tolerances, deviations and fits.

ISO 286-2 (2010) Geometrical product specifications (GPS) - ISO code system for tolerances on linear sizes - Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts.

Tolerances and fits system - a set of rows of tolerances and fits, logically constructed on the basis of production experience, experimental researches, theoretical generalizations and executed as a standard

This part of ISO 286 establishes the ISO code system for tolerances to be used for linear sizes of features of the following types: a) cylinder; b) two parallel opposite surfaces.

The main features of the system of tolerances and fits:

- 1. Size intervals.
- 2. Standard tolerance factor.
- 3. Tolerance grades.
- 4. Tolerance zones of holes and shafts.
- 5. Hole-basic and shaft-basic fit systems.
- 6. Normal temperature.

ISO code system for tolerances on linear sizes

INTERNATIONAL STANDARD ISO 286-1

Second edition 2010-04-15

Geometrical product specifications (GPS) — ISO code system for tolerances on linear sizes —

Part 1: Basis of tolerances, deviations and fits

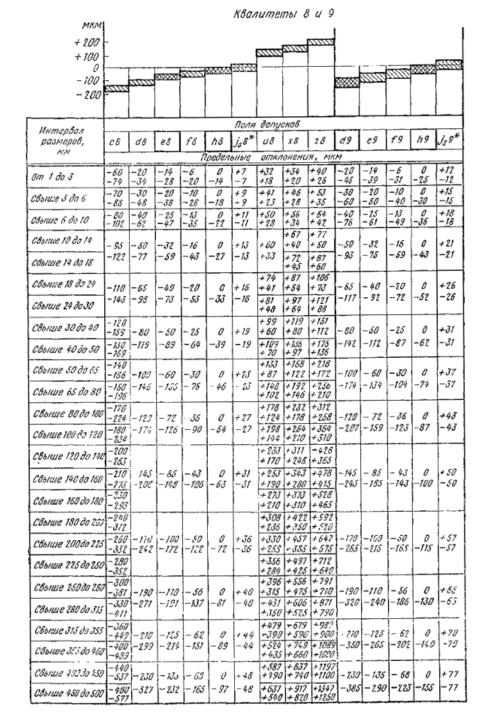
Spécification géométrique des produits (GPS) — Système de codification ISO pour les tolérances sur les tailles linéaires — Partie 1: Base des tolérances, écarts et ajustements

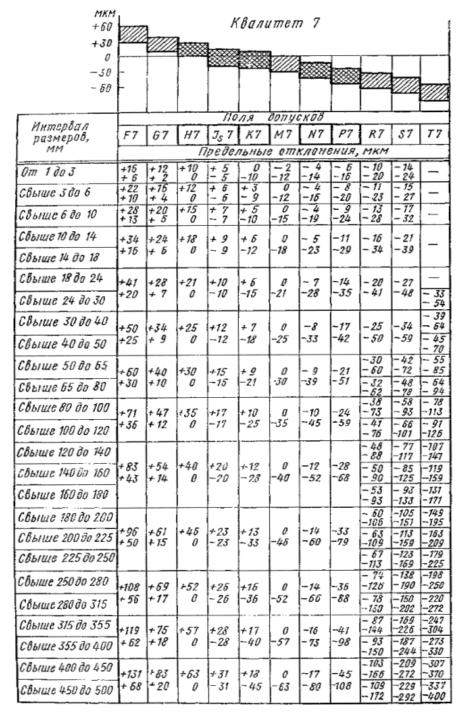
Ì

Reference number ISO 286-1:2010(E)

© ISO 2010

Size intervals


In the world there are restrictions on the use of the size of the values inherent in the concept of preferred numbers and ranks of preferred numbers, i.e standardized values to which it is necessary to round the calculated values. This approach makes it possible to reduce the number of sizes of parts and components, the amount of dimensional cutting tools and other technological and measuring equipment. Preferred number are the same all over the world and are members of the geometric progression with ratio: 1.6; 1.25; 1.12; 1.06


$\sqrt[5]{10} \approx 1,6; \quad \sqrt[10]{10} \approx 1,25; \quad \sqrt[20]{10} \approx 1,12; \quad \sqrt[40]{10} \approx 1,06.$

For example: for **R5** (denominator 1.6) take values from the set:R5: ... 10; 16; 25; 40; 63; 100; 160; 250; 400; 630, etc.

In **R10** (denominator 1.25) take values from the set:R10: ... 10; 12.5; 16; 20; 25; 31.5; 40; 50; 63; 80; 125; 160; 200; 250; 315; 400; 630, etc

ISO 286 standard provides **13 intervals** of sizes in the range of 1 to 500 mm, within which tolerances are constant. These intervals are called basic. Intervals increase along with the size, accounting for an approximate geometric progression with ratio 1.6

Standard tolerance factor

Standard tolerance factor (i) - a measure characterizing parts manufacturing complexity depending on its size

For sizes from 1 up to 500 mm:

$$i = 0,45 \sqrt[3]{D_m} + 0,001 \cdot D_m,$$

i - standard tolerance factor, μm

Dm- geometric mean extremes sizes of each interval, mm

 $D_{\rm m} = \sqrt{D_{\rm min} \cdot D_{\rm max}}.$

0,001 Dm - measurement error, μm

Value of Tolerance depends on the standard tolerance factor (i) and quantity of these factor (a): $T = a \cdot i$

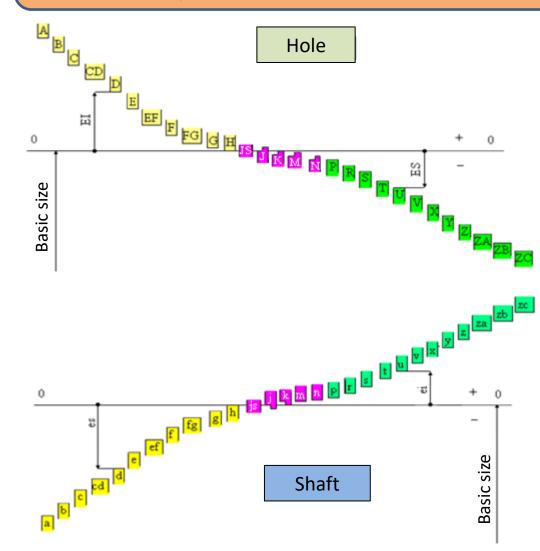
For example: The value of Tolerance for quality class 7 is taken equal to 16 units of standard tolerance factor. **IT7 = 16i**

Tolerance grades

In order to meet the requirements of various products for accuracy of the components, the ISO system implements 20 grades of accuracy, which are called **tolerance grades**. The bigger is grade number, the bigger is tolerance value for a given dimension.

Tolerance grades is denoted as IT01, IT0, IT1, IT2....up to IT18.

From IT1 up to IT4



From IT5...IT14 up to IT 18

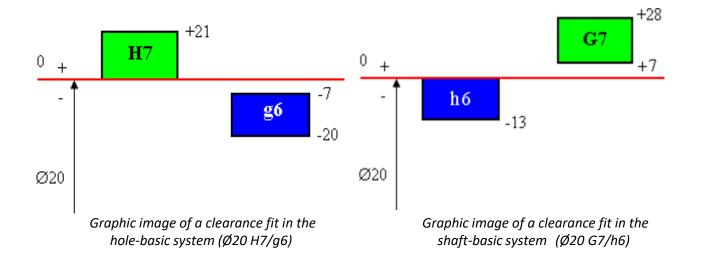
Tolerance zones for holes and shafts

Fundamental deviation - one of two deviations (upper or lower) that is used to determine the position of the tolerance zone relative to the zero line (deviation closest to the zero line)

There are 28 deviations of holes and 28 deviations of shaft.

The tolerance zone is formed like a combination of fundamental deviation and grade of tolerance.

For example: for the shaft: h6, g6, p6, and for the hole: H7, F8, JS6


Fits in hole and shaft-basic systems

Fits in hole-basic system - fits, in which the various clearances and interferences is formed by combination of various tolerance zones of shafts with one basic hole.

Fits in shaft-basic system - fits, in which the various clearances and interferences is formed by combination of various tolerance zones of holes with one basic shaft.

Usually, the fits is designated in the form of a fraction. Tolerance zone of hole is always indicated in the numerator, and the shaft tolerance zone - in the denominator

Example: Ø20 H7/g6 - fit in hole-basic system; Ø20 G7/h6 - fit in the shaft-basic system

Normal temperature

In the world considered that the dimension values, which are listed in the regulations pertain to the details of when their temperature of 20 ° C. If the parts are different from the temperature of 20 ° C, it is necessary take into consideration the amendment:

 $\Delta I \approx I \cdot (\alpha_1 \cdot \Delta t_1 - \alpha_2 \cdot \Delta t_2),$

ΔI - temperature error;

I - the measured size in mm;

 Δt_1 - the difference between the parts temperature and the temperature of 20 ° C.

 Δt_2 - the difference between the temperature of measuring means and a normal temperature of 20 ° C.

 $\alpha_{1\nu}$, α_{2} - temperature coefficients of linear expansion of the materials and details of the measuring means, C⁻¹.

Table 1 Selected fits - hole basis

Diagram to scale for 25 mm diameter

Holes		Clearance fits									Transition fits				Interference fits								
		+	H11		H9		19 22 99	H 977		н В	<i>111</i>	- 27	17 772 h6	H7 <u>177772</u> 3	k6	H7 977723	n6	H7 277773	p6	H7 977723	s6		loles
-	192	-				- dia	1120											1. 1. A.	Bush				<u></u>
Basic size		200	Upper and lower deviations for tolerance class (Values µm)												Basic size (mm)								
(m	im)	H11	c11	H9	d10	H9	e9	H8	f7	H7	g6	<u>H7</u>	h6	H7	k6	H7	n6	H7	p6	H7	s6		Deres.
bove	Up to and incl.	+	11-20	+	-	+	-	+	-	+	-	+		+	+	+	+	+	+	+	+	Above	Up to and inc
0	3	60 0	60 120	25 0	20 60	25 0	14 39	14 0	6 16	10 0	2 8	10	6	10	6	10	10	10 0	12 6	10 0	20 14	0	3
3	6	75	70	30 0	30 78	30	20 50	18	10 22	12 0	4	12	8	12	9	12	16 8	12	20 12	12	27 19	3	6
6	10	90	80 170	36	40 98	36	25 61	22 0	13 28	15	5 14	15	9	15 0	10	15 0	19 10	15 0	24 15	15 0	32 23	6	10
10	18	110	95 205	43	50 120	43 0	32 75	27 0	16 34	18 0	6 17	18	11	18 0	12	18	23 12	18 .0*	29 18	18 0	39 28	10.	/ 18
18	30	130	110 240	52 0	65 149	52 0	40 92	33	20 41	21 0	7 20	21 0	13 0	21 0	15 2	21 0	28 15	21 0	35 22	21 0	48 35	18	30
30	40	160	120 280	-			50 112		25 50	25 0				Sec. 1	18 2	11 North	1000	25 0	Still St	1000	59	30	• 40
40	50	160	130 290	62 E 0 18	80 180	62 0		39 0			9 25	25 0	16 0	25 0		25 0	33 17		42 26	25 0	43	40	50
50	65	190	140 330	74 0	100 220	74 0	60 134	1 10	1.52	18 - ₁₉₆₇	10	_			21	30 0	39 20	30 0		30	72 53	50	65
65	80	0 190 0	150 340					46 0	30	30 0		30	19 0	30 0					51 32	30	78 59	65	80
80	100	220	170 390	87 0	120 260 145 305					35 0 40 0	12 34 14 39	35 0 40 0				35 0 40	45 23 52 27			35	93 71	80	100
100	120	220	390 180 400			87 0 0	87 72 0 159	54 0					22 0	35 0	25 3				59 37	35	101 79	100	120
120	140	250	200 450			-	-						-		1.813				383	40	117 92	120	140
140	160	250	210 460	100 0		100	84 185	63 0					25	40 0	28 3				68 43	40	125	140	160
160	180	250	460 230 480			0		0					0	v	3		21			40	133 108	160	180
180	200	290	480 240 530		-	-	-	-	2	1727	-						0.000		1200	46	151 122	180	200
	200	0 290 0	530 260 550	115	170 355	115	100	72 0	50 96	46 0	15 44	46	29	46 0	33	46 0	60 31	46 0	79	48	159	200	225
200		290	550 280 570	0	355	0	215	0	96	0	- 44	0	0	0	4	0	31	0	50	46	130 169	225	250
225	250	320	570 300 630	130 190 0 400					1 56 0 108		17 49		1			52	66 34	52 0	88 56	0 52 0	140 190 158	250	280
250	280	0	630 330 650		190 400	130	130 110 0 240	81 0		52 0		52 0	32	52 0	36 4					0 52 0	202	280	315
280	315	0 360	650 360	140 210 0 440		(2171)	1990	1986	- Carlo		1.1			-		- 32		200	57 0	170 226 190	315	355	
315	355	0 360	360 720 400		210 440	140	125 265	89 0	62 119	57 0	18 54	57 0	36 0	57 0	40 4	57 0	73 37	57 0	98 62	57	190 244 208	315	400
355	400	0	400 760 440					155				_			-	-		-		0 63 0	208 272 232	400	400
400	450	400 0 400	440 840 480	155	155 230 0 480	155	135 290	97 0	68 131	63 0	20 60	63 0			45 5	63 0	e0 40	63 0	108 68	63	232 292 252		
450	500	100	880	0 480		v 200		1		1			1/7.5	1							252	450	500
				ose ance		Average Average running location				Precision location				Push/drive			Press Shrink		rink				

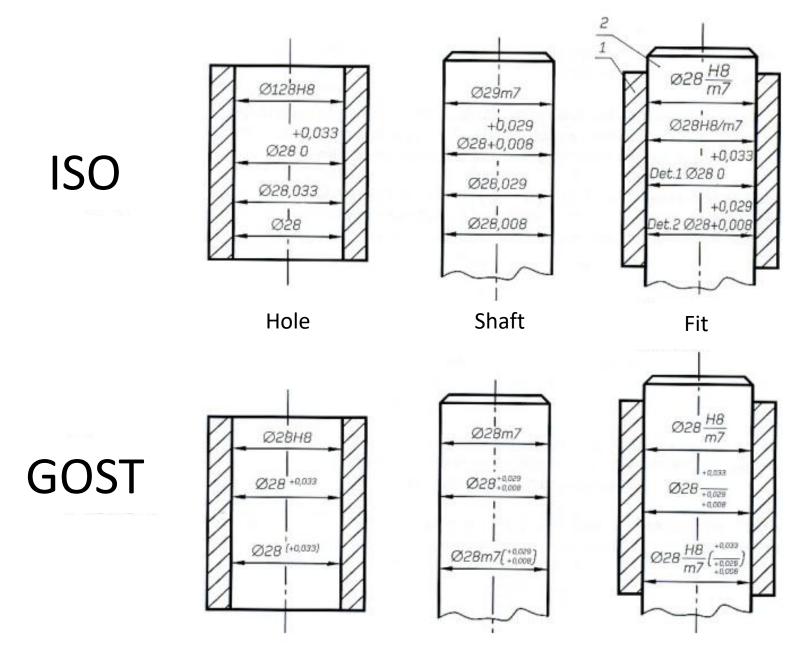
USEFUL TOLERANCES (mm)

Nominal Diameter (mm)

A

12

T


					Jamete				
Tolerance		from 1 to 3	over 3 to 6	over 6 to 10	over 10 to 18	over 18 to 30	over 30 to 50	over 50 to 80	over 80 to 120
	e ⁸	014 028	020 038	025 047	032 059	040 073	050 089	060 106	072 126
	e ⁹	014 039	020 050	025 061	032 075	040 092	050 112	060 134	072 159
	f ⁶	006 012	010 018	013 022	016 027	020 033	025 041	030 049	036 058
	f7	006 016	010 022	013 028	016 034	020 041	025 050	030 060	036 071
	g ⁶	002 008	004 012	005 014	006 017	007 020	009 025	010 129	012 134
S H	h ⁶	.000.	.000 800. –	.000 009	.000 011	.000 013	.000 016	.000 019	.000 022
A	h7	.000 010	.000 012	.000 015	.000 018	.000 021	.000 025	.000 030	.000 035
F	h ⁸	.000 014	.000 018	.000 022	.000 027	.000 033	.000 039	.000 046	.000 054
S	h ⁹	.000 025	.000 030	.000 036	.000 043	.000 052	.000 062	.000 074	.000 087
	h11	.000 060	.000 - :075	.000 090	.000 110	.000 130	.000 160	.000 190	.000 220
	h ¹²	.000 100	.000 120	.000 150	.000 180	.000 210	.000 250	.000 300	.000 350
	k6	+.006 .000	+.009 +.001	+.010 +.001	+.012 +.001	+.015+.002	+.018 +.002	+.021 +.002	+.025
	n ⁶	+.010 +.004	+.016 +.008	+.019 +.010	+.023 +.012	+.028 +.015	+.033 +.017	+.039 +.020	+.045+.023
	p ⁶	+.012 +.006	+.020 +.012	+.024 +.015	+.029 +.018	+.035+.022	+.042 +.026	+.051 +.032	+.059
HOLES	F ⁸	+.020 +.006	+.028 +.010	+.035 +.013	+.043 +.016	+.053 +.020	+.064 +.025	+.076 +.030	+.090+.036
	G ⁷	+.012 +.002	+.016 +.004	+.020 +.005	+024 +.006	+.028	+.034 +.009	+.040 +.010	+.047
	H7	+.010 .000	+.012	+.015	+.018	+.021	+.025	+.030 .000	+.035
	H ⁸	+.014	+.018 .000	+.022	+.027	+.033	+.039 .000	+.046	+.054
	H9	+.025	+.030	+.036	+.043	+.052	+.062	+.074 .000	+.087
	H12	+.100	+.120	+.150	+.180	+.210	+.250	+.300	+.350

PREFERRED FITS

The following chart covers a simple selection of Fits for Shafts and Holes which will meet the needs of a large proportion of the requirements for normal engineering products.

Shaft Basis	Hole Basis	Description / Application							
-		CLEARANCE FITS							
C11 / h11	H11 / c11	LOOSE RUNNING FIT - Wice commercial tolerances, used where accuracy is not essential.							
D9 / h9	H9 / e9	FREE RUNNING FIT - High running speeds, large temperatur variations, heavy pressures and where accuracy is not essential.							
F8 / h7	H8 / f7	CLOSE RUNNING FIT - Accurate location at moderate speed on accurate machines.							
Ğ7 / h6	H7 / g6	SLIDING FIT - Accurate location where components are intended to move and turn freely but not run freely.							
H7 / h6	H7 / h6	LOCATIONAL CLEARANCE FIT - Snug fit for locating stationary components which need to be freely assembled and disassembled.							
		TRANSITION FITS							
K7 / h6	H7 / k6	LOCATIONAL TRANSITION FIT (Tap Fit) - Accurate location where assembly requires gentle persuasion.							
N7 / h6	H7 / n6	LOCATIONAL TRANSITION FIT - More accurate location where assembly permits greater interference.							
		INTERFERENCE FITS							
P7 / h6 H7 / p6		LOCATIONAL INTERFERENCE - Prime accuracy of location where assembly requires alignment and rigidity.							
S7 / h6	H7 / s6	MEDIUM DRIVE FIT (Press Fit) - For assembly of steel parts and shrink fits on light sections.							
U7 / h6	H7 / u6	FORCE FIT (Press Fit) - For assembly of components when high pressures and stresses are permitted.							
Note: See	pages 56 ani	1 57 for tolerances.							

Designation of tolerances and fits in the drawing

Thank you for attention