# Metrology, standardization and certification

#### Theme 12: Measuring tools

## Lecture plan:

- 1. The total measurement error.
- 2. Selecting measurement tool.
- 3. Beam tool.
- 4. Micrometric tool.
- 5. Dial indicating tools.
- 6. Profilographs and profilometers.
- 7. Instrumental microscopes.
- 8. Coordinate measuring machine.

#### The total measurement error

$$\Delta_{\Sigma} = \Delta_{\text{mod}} + \Delta_{\text{m}} + \Delta_{\text{mt}} + \Delta_{\text{con}} + \Delta_{\text{o}} \leq \Delta_{\text{per}},$$

where the components of this error:  $\Delta_{\rm mod}$  – measurement model;  $\Delta_{\rm m}$  – measurement method;  $\Delta_{\rm mt}$  – measuring tools;  $\Delta_{\rm con}$  – conditions in which measurements are carried out;  $\Delta_{\rm o}$  – operator.  $\Delta_{\rm per}$  – permissible error.

According to GOST 8.051-81 (ST SEV 303-76) permitted limits of measurement error for a range of 1 - 500 mm are set from 20% to 35% value of tolerance.

 $\Delta_{\rm mt}$  – measuring tools error is about 50% of the total error. Therefore it is necessary to choose the means of measuring with an accuracy of 0.1 ... 0.17 (large values for precision grade) from tolerance a controlled size. Thus, the accuracy of measuring tool must be approximately one order higher than the accuracy of the controlled parameter (in 8 ... 10).

## Selecting measurement tool

**Task:** Select measurement tool for size control Ø80 js7 ( $\pm$  0,015).

#### **Decision:**

- 1. Define the tolerance for controlled size: Td = es-ei = 0.015 - (-0.015) = 0.030 mm;
- 2. Define the maximum permissible error of measurement tool:  $\Delta mt = 0.1 \cdot 0.030 = 0.003 \text{ mm} = 3 \text{ } \mu\text{m}.$
- 3. Select measurement tool depending on the estimated  $\Delta mt$ : meets the required specification the lever-gear head  $\Delta mt = 2.5 \ \mu m$  and indicator with  $\Delta mt = 2 \dots 4 \ \mu m$ .

Since the main deviation is written in lowercase letters, then you must select the measurement tool for monitoring the size of the shaft.

**Conclusion:** The problem is solved, measurement tools above are suitable for the control shaft size  $\emptyset 80$  js7 ( $\pm$  0,015).

#### Beam tool



Caliper 1 has a measuring range from 0 to 125 mm and the vernier scale with interval of 0.1 mm.

Caliper 2 is made with different measuring ranges: 0 ... 160 mm; 0 ... 200 mm; 0 ... 250 mm and vernier with scale division value of 0.05 and 0.1 mm.

Caliper 3 is available with measuring ranges from 0 ... 160 mm to 0 ... 2000 mm with interval of the vernier scale of 0.05 mm and 0.1 mm.

#### Beam tool



International firms and domestic tool plants are manufacturing the calipers with a dial and digital reading device.



Slide depth gage with a thin rod

Slide depth gage

## Beam tool



Vernier height gauges

## **Protractors**







УМ-127



**4**YM



2УРИ

#### Micrometric tool



Smooth micrometer



Thread micrometer



Smooth micrometers

#### Tube micrometer



Sheet micrometer

#### Micrometric tool



Micrometric depth gage with extension points





Tubular inside micrometers

#### Micrometric tool



Limit micrometer



Dial indicating micrometer





Micrometer with digital reading device

## Stands and tripods for dial indicating tools



## Dial indicating tools



Dial indicating snap gage



Dial indicating hole gage



Dial indicating depth gage

## Dial indicating tools



Dial indicating wall gage

## Dial indicating tools





Thickness gage





Microcator

## Instrumental microscopes





Nicon M800 БМИ–1Ц

## Profilographs and profilometers



Profilograph-profilometer BV-7669



Portable profilometer TR- 110



Profilograph-profilometer MarSurf M300

## Coordinate measuring machine

The measurements on coordinate measuring machines can make contact by using special probes with ruby-tipped and non-contact method using a laser scanner.



Coordinate measuring machine Coord 3 is designed for measuring parts with dimensions on the axes XYZ:  $500 \times 400 \times 400$  with an accuracy of (2,5 + 3L)  $\mu$ m, where L - length of detail measured in meters.

# Thank you for attention